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A LITTLEWOOD AND PALEY-TYPE INEQUALITY ON THE BALL

JuN Soo CHOA AND HoNG OH KM

A multi-dimensional analogue of a well known inequality of Littlewood and Paley
is obtained on the ball.

1. INTRODUCTION AND STATEMENT OF THE RESULT

A well known inequality of Littlewood and Paley states that (see [2, 3]) : if 2 <
p < oo and f is a function, analytic in the unit disk, D, which belongs to the Hardy
space HP(D), then there ezists a positive constant C = C(p) such that

P

[ (@ =12) 17 44() < CUAIL
D

where A is the normalised area measure on D.

Recently Luecking [3] gave a new proof of this result, which motivates our work.
In this note we shall extend the result of Littlewood and Paley to the multi-dimensional
case. To state our result, we need some notation and definitions.

Let B be the unit ball of the n-dimensional complex space C". (Hereafter n will
be fixed.) The letter V stands for the normalised Lebesgue measure on B so that
V(B) =1, while ¢ is the normalised surface area measure on its boundary §.

For 0 < p < o0, the Hardy space HP(B) is defined to be the set of all analytic
functions f on B for which

P

151 sup / FE)P do(€) < oo,
<rLlJS

mM(B)
It is well known [4] that if f € HP(B) for 0 < p < o0, then the radial limit f*(¢) =
,].m}f('rf) exists for [o]-almost all £ € § and ”f”:rv(a) = Js|f*(&)I® do(£). We denote
f € HP(B) and its radial limit function f* by the same latter f.

The result in this note is formulated as follows :
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THEOREM. Let 2 < p < oo. Then there exists a positive constant C = C(p) such
that

2\P/2 -1 2 2\P/2 »
/B (1 — 2l ) (lVf(Z)l - [Rf(2)] ) av(z) < C|Ifll

HP(B)
for all f € H?(B).

of . of
8z, 0z,

and Rf(z) =) z,-ng denotes the radial derivative of f.
i=1 ]

Here and elsewhere, Vf(z) = ( ) denotes the complex gradient of f

2. PRELIMINARIES

n
2.1 AUTOMORPHISMS OF B. For z,w € C™ let (z,w) = Y 2;W; denote the complex
i=1

inner product on C™ and |z| = (z,2)}/2. For a,2 € B, (a # 0) define

a— P,z — (1 - Ia.!z)l/zQaz
1—(z,a)

Pa(z) =

where P,z = (z,a) a/ |a|* and Q,z = z — P,z. For a = 0 we let po(z) = —z. Then
¢a(0) = a and (pa0@a)(z) = z for all z € B. Thus ¢, € Aut(B), the group of
all automorphsims of B. Furthermore each ¥ € Aut (B) has a unique representation
% = U oy, for some a € B and some unitary transformation U on C™. The following
two properties of ¢, are found in Rudin [4, Section 2.2].

,_ (1-lef) (- 14F)
1) L= fealall’ ==

]_—l |2 n+1
Jrea(z) = —a_2
(2 R¥a(2) (|l—(z,a)| )

where Jrip, is the real Jacobian of ¢,.

2.2 INVARIANT LAPLACIAN. For f € C*(B) and a € B, we define

~ 1
(8)(@) = 5 6(F oa)(0)
n 2 -~
where A =4 ) ———— is the ordinary Laplacian. The operator A is invariant under

j=1 Oa;0a;
Aut (B), that is, (ZSf) oY = Z(fod)) for all 4 € Aut(B). For this reason, A is
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called the invariant Laplacian. In terms of partial derivatives, the invariant Laplacian
A is computed as follows:

) (B)@ = (1= 1) 3 G - e 2,

k=1

where §;) is the Kroneker symbol. See (4, Section 4.1] for details.

2.3 GREEN’S FUNCTIONS FOR A. For each a € B , we define the Green’s funtion
G(z,a) for A on B by
G(z,a) = g(va(2))

where g(z) = (n +1)/(2n) flil (1-1) "~1¢=2n+1 gt See [5] for more information about
Green’s functions.

3. PROOF OF THE THEOREM

We begin with the following Littlewood-Paley type identity whose proof is a slight
modification of ones given in [1, Theorem A}, and so we state it without proof.

LEMMA 1. If2<p < oo and h € HP(B), then
@ v dz = )P + [ (B1nP)()o(z) dr(e)

—(n+1)
where g(z) is the function as defined in Section 2 and dr(z) = (1 - |z|2) dv(z).

LEMMA 2. Suppose 2 < p< oo and a € B. Then

®) (B177) (@ = E 1P (B 1£7) (@)

for every analytic function f on B.

PRrRoOOF: For f analytic on B, using the property (3), we have

(6) (B17) (@ = =5 (1= 1a?) (IV5(@)1 - 1RF(@)).

Replacing f by fP/? in (6) (here fP/2 = exp((p/2)log f) is the principal branch), we
get

(7) (B177) (@) = = (1~ 1l )(|va/2(a)|’ - |'Rf"/2(a)l2)-
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A little computation shows that

V@) = B i5(a)P~? 19 @)
and )
[RFE@)| = Z If(@)P " IR

By inserting these into (7) we obtain

(B15P) (@) = -2 (1 - o) IF@P (19 1(@)P - [RF(@F),

which gives the desired conclusion. 0

LEMMA 3. If2 < p < oo and f € HP(B), then there exists a positive constant
C = C(p) such that

(8) IVHOP < C(Ifl, 5, = IFO)F).-

PROOF: Suppose f € HP(B) with 2 < p < 00. Then by the reproducing property

we have
f(€) — £(0)
S (1 - (z’E))n

Differentiation under the integral sign gives

£(z) - £(0) = ()
3—5;0) =n /S &(f(6) = £(0))do(§), 1< T <.
It follows that
VHOF <n* [ 15(6)- £O)F do()
=n’ (llflla,w) - |f(0)12).

Without loss of generality, we may assume that f(0) =0 or |f(0)| =1.
In the first case, we clearly obtain

IVFOF <n2 (11,5, ~ 1FOF)

because ||f||H2(B) < | fllaecsy for p2 2.
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We next consider the case |f(0)| = 1. A simple calculation shows that
(9) (1P < 2P —1forz > 1.

Replacing ¢ by ||f|| and 1 by |£(0)) in (9), we deduce that

HP(B)

(VAP <1 (g, ~ LFOF)”
< (Il 5, = IFOF)

which shows Lemma 3. 0

In the proof of the rest of this paper, we use the same letter C' to denote a positive
constant which may change with each occurrence.

LEMMA 4. Let G(z,a) and g(z) be as defined in Section 2. Then there exists a

positive constant C such that

G(z,a)
(10) [, ok avie) < Ol

PROOF: Since |pa(2)| = |p:(a)|, we have

G(z,a) o(pa(2) olp=(a)) 0.
[T = / S "”‘/1—|| dv(a).

By making the change of variable ¢.(a) = w and using formulas (1) and (2), we see
that the last integral becomes

I A e e G VA

where 1 is the integral over |w| > 1/2 and II is the integral over |w| < 1/2. It remains
to show that each integral of I and II in (11) is bounded.

On |w| > 1/2, we clearly have g(w) < (1-— [w] ) . Thus

< me)go/ (=rt)™

1172 |1 = (w,2)*" B |1 - (w,z)|""

Therefore the first integral I is bounded by Proposition 1.4.10 in {4].
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For the second integral, it is easy to verify that

Inge g(w)dV(w) < C —%dV(w)
[w]<1/2 lwi<1/2 |w]

and integrating in polar coordinates the last integral shows that the second integral II
is bounded . This finishes the proof. 0

We now turn to the proof of the main result of this paper.

PROOF OF THEOREM: Suppose f is analytic on B. By successive applications of
(8), (4) and (5) in this order, we have

[B152 0)]"

— V50 <€ [ I(O)F de - 17O

<c [ (BIfP)(watw) dr(w)

= ¢ [ 1)~ (B177)(w)a(w) dr(w)
If f is replaced by f o a, we obtain by a simple change of variables

[B111 @] <0 [ 17 0wl (BISF) (valwlotew) drw)
(12) = ¢ [ 1P (B1£1)(:) 6z 0)dr(a)

If we now integrate both sides of (12) with respect to the measure dV(a)/ (1 - |a|2)
and use (4), (5) and (10), we obtain

[ B ——1"1’(;'), <o [ e (Zm’)(z){ [ &) dV(a)}dr(z)

1-|af

<c [ 1P~ (B 1) (2)a(e) )
P
S C ”f“HP(B) -
Therefore our conclusion comes easily from (6). 1
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