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Abstract

We consider hypersurfaces of En+l whose position vector x satisfies Ax = Ax + B , where
A is the induced Laplacian, and prove that these are open parts of minimal hypersurfaces,
hyperspheres or generalized circular cylinders.

1991 Mathematics subject classification (Amer. Math. Soc.): 53 C 40, 53 A 05.

0. Introduction

Let M be a connected n-dimensional submanifold of a Euclidean space
Em , equipped with the induced metric. Denote by A the Laplacian of M
associated with the induced metric. Let x and H denote the position vector
and the mean curvature vector of M in Em respectively. Then we have

(0.1) Ax = -nH.

In [3], T. Takahashi proved that the submanifolds for which

(0.2) Ax = kx,

that is, for which all coordinate functions are eigenfunctions of A with the
same eigenvalue A e R are either the minimal submanifolds of Em(k = 0)
or the minimal submanifolds of hyperspheres Sm~l(k ^ 0) in Em .

O. Garay in [2] studied hypersurfaces in En+ for which

(0.3) Ax = Ax,
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where A is a constant diagonal matrix

(K 0

VO xn+l
and proved that the only hypersurfaces which satisfy (0.3) are open portions
of minimal hypersurfaces of En+ , ordinary hyperspheres and generalized
circular cylinders.

It is easy to observe that condition (0.3) is not coordinate-invariant. With
a change of the coordinate system of En+l, (0.3) becomes
(0.4) Ax = Ax + B,
where A — (a,..) is a constant (n + 1) x (n + 1) matrix and B = (/?(.) a

constant vector in En+ .
From this point of view it would be an interesting problem to determine

those hypersurfaces which satisfy (0.4) with respect to a certain coordinate
system of En+ . In [1] the problem was treated for surfaces in E and it
was proved that a surface of E3 satisfies (0.4) if and only if it is an open
part of a minimal surface, a sphere or a circular cylinder. The work of these
authors has been brought to our attention by O. Garay and we thank him for
it.

Our aim is to classify completely the hypersurfaces of En+ satisfying
(0.4). The main result is given by the following

THEOREM. A connected hypersurface of En+ which satisfies (0.4) is an
open part of a minimal hypersurface, a hypersphere or a generalized circular
cylinder.

1. Some basic lemmas

Let M be a hypersurface in En+i (n>2), which satisfies (0.4). Without
loss of generality we may assume that M is given locally as the graph of a
smooth function / : U -> E, where U is an open subset of E" . That is, M
can be locally described as the set of points (x{,... , xn, f{xx, ... , xn)).

Now it is obvious that the vector ( - / , - / , . . . , - / „ , 1) is normal to
M. So we have

n H = 9{-fx ,-fx ,...,-fx , 1 ) ,
x\ X2 Xn

where <p is a smooth function. Combining the last equation with (0.1), we
get the following system of differential equations:
(1.1) Ax,. = p / V i=l,...,n
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(1.2) A/=-p.

Taking account of (0.4) equations (1.1) and (1.2) become

n

m=\

(i.4) -<p=it>
m=\

We also have

m=\

Differentiating (1.3) with respect to x and (1.5) with respect to xi we get

C1-6) <PX/Xl + <PfXiX. = a u + ain+lfXj

From (1.4) we get

Subtracting (1.6) from (1.7) and substituting <px and q>x from (1.8) and

(1.9) we obtain

(1.10) (ajn+l - aH+lj)fXi + (an+u - aiH+l)fXj = atJ - ajt, 1 < i < j < n.

The above equation shows that the vectors

rtj = (0, . . . , 0, ajn+l-an+lj,0, . . . , 0, an+u-ain+l, 0 , . . . , 0, fly-fl^-),

1 < i < j <n

where a;n+1 - aB+1., an+u - ajn+l appear in the i-th and j-th position
respectively, are tangent to M. So we have proved the following

LEMMA 1. Let M be a hypersurface in En+l for which (0.4) holds. Then

the constant vectors

? u = (0, . . . , 0, ajn+l-an+lj, 0, . . . , 0, aH+u-aiH+i, 0, . . . , 0, a^-aj,

I <i <j <n

are everywhere tangent to M.

There are n(n - l)/2 vectors Ttj (1 < i < j < n). We denote by C
the set of these and call rank C the dimension of the space generated by C.
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It is obvious that rank C < n. We need some more computations. Setting
ai = an+u ~ ain+x a n d Ytj = «,, ~ "]>, (1.10) becomes

(1.10') -ajfXi + atfXi = Yij, l<i<j<n.

Now, it is obvious that

(1.11) -ajVki + atykj = akytj, \<k<i<j<n

and since 7?,.. = (0, . . . , 0, - a . , 0, . . . , 0, a(, 0, . . . , 0, y(J) we easily ob-
tain

(1.12) -aj~?ki + ai~?kj = ak~?ii' l<k<i<j<n.

The following lemma is useful for the proof of the main result.

LEMMA 2. With the preceding notation we have rank C <n — \. Moreover
if rank C < n - 1 then A is a symmetric matrix.

PROOF. We first show that rank C < n-1. In fact, if all at (i = 1 , . . . , « )
are zero then (1.10') ensures that A is symmetric. Hence rankC = 0 . Now,
suppose there exist a A; (1 < k < n) such that ax = a2 = ••• = ak_{ = 0 and

a. / 0 . Then, from the system (1.12), we deduce that all ~c* belong to the

space generated by the vectors ~clk, ~c lk, ... , ~ck_lk , ~ckk+l, ... , ~c' kn ,
of which there are n — 1. Thus rank C < n - 1 . If rank C < n - 1 then the
vectors ~c*12, . . . , ~c ln must be linearly dependent and so a, = 0 . Similarly

from a, = 0 and the fact that the vectors ~ ? , 2 , ^ 2 3 ' ••• > ~^in m u s t ^ e

linearly dependent we obtain a2 = 0 . Proceeding in an analogous way we

get al: = 0 , / = 1, . . . , n - 1. Finally the vectors ~c\n , ~c2n , ... , ~c n_ln

must be also linearly dependent, so an = 0 . This implies that an+u = ain+1

(i = I, ... , n) and equation (1.10') implies that A is symmetric.

Moreover, we need the following.

LEMMA 3. Let g: En+X - •
vector of the level hypersurface

is given by

LEMMA 3. Let g: En+ —> E be a smooth function. The mean curvature

M = { (* , , . . . ,xn+x)&En+l\g(xx, ... ,xn+x) =

=

2|V«|4
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where A and V denote the Laplace and gradient operators of En+ , respec-
tively.

2. The results

The case of plane curves (n = 1) is not covered by the analysis given
in the first paragraph, so we consider it separately. The conclusion is the
following result which has been proved in [1].

PROPOSITION. Let y(s) be a unit speed curve of E2 satisfying Ay — Ay+B,
where A is a constant 2 x 2 matrix and B is a constant vector in E2. Then
y{s) has constant curvature and so is a line segment or a portion of a plane
circle.

PROOF. We outline the proof in [1] for the sake of completeness. Using
the Frenet frame (T, N) of y the relation Ay = Ay + B becomes (since
A = -d2/ds2)

-f = Ay + B

or, equivalently,

Differentiating the last equation twice we compute the entries of the constant
matrix A with respect to the base (T, N),

From the constancy of det A and trace A we see that the curvature function
k satisfies a system of two differential equations, whose solutions are just the
constant functions.

The next examples illustrate, in some cases, the proof of the theorem.
EXAMPLE 1. Let i

We easily verify that
EXAMPLE 1. Let M be the hyperplane of E"+i with equation x ,, = 0.

/0 ••• 0 1
Ax = Ax, where A = I • 0 :

\ 0 ••• 0 1

In this case we have ~c .. = (0, . . . , 1, 0, . . . , - 1 , 0, . . . , 0) , where 1 and
- 1 occur in the z-th and 7-th positions respectively. The n - 1 linearly
independent vectors ~~c xl, • • • ,~c \n generate all ~c {j... Hence rankC =
M - l .
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EXAMPLE 2. Let M be the circular cylinder of En+l described by x, +
x* =R2. Then

Ax = Tx, where F =

fl/R2 0 •••
0 0 •••

0 \
0

V 0 0 ••• l/R2)

Suppose that y is another coordinate system in En+ . Then x = Py + D,
where P is an orthogonal matrix and D is a constant vector. With respect to
the system y we obtain Ay = Ay + B, where A = P~lFP and B = P~lYD.
Obviously A is a symmetric matrix. So, in the case of the cylinder, we have
rank C = 0.

PROOF OF THE THEOREM. We distinguish two cases:
CASE I. Assume that rankC — n - \. Then, by using Lemma 1, we see

that all tangent spaces of M are parallel to a constant space of dimension
n - 1. So M is a cylinder erected over a plane curve y .

We may assume, without loss of generality, that the position vector of M
is given by x(s, tx, ... , tn_x) = y(s) + Y,"lil tfit where y{s) is the arc length
parametrization of y and £(. = (0, . . . , 1, . . . , 0), where 1 appears in the
(/ + 2)-position, are normal to the plane of y . Then (0.4) implies that

//
' \ 11' 1

n+\

0 = any, + ai2y2 2<i<n

From the first two equations, after differentiating with respect to
(/ = 1 , . . . , « - 1), we find that a
Hence the first two equations imply
(/ = 1, ... ,n - 1), we find that ai}, = 0 , i = 1, 2 , ; = 3 , . . . , « + 1.

hi 222
7 +

where A = -d1 Ids1 Now, by using Proposition 1, y is a portion of a line
or a circle. Hence M is a hyperplane or a circular cylinder. Since for a fixed
coordinate system the matrix A in (0.4) is unique, (unless M is a hyperplane
and because of Example 2), we conclude that the second case is not possible.

CASE II. Assume that rank C < n - 1. Then A is symmetric. After a
coordinate transformation we may suppose that

(2.1) Ax = Ax + B
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(K c

383

A =
0

0

fir

and r is the rank of A. If r = 0, then (2.1) becomes Ax = B and from
(0.1) we get —nH = B, which implies that H = 0 and thus M is a minimal
hypersurface. From now on, we assume that 0 < r < n + 1. By a parallel
translation at the point (/?,/A,, . . . , /?r/Ar, 0, . . . , 0) we may suppose that
i?' = ( 0 , 0 , . . . , / ? r + 1 , . . . , / ? B + 1 ) .

Let {xx{ux, ... , un),... , xn+x{ux, ... ,un)) be a parametrization of this
hypersurface. Then from (0.1) the vector Ax+B = (At x{,... , Xrxr ,Pr+l,...,
/?n+1) is normal to M. So we have

n

or, equivalently,

(2.2)

where c is a constant, from which we see that M should be a part of a
quadratic hypersurface. Computing the mean curvature vector from Lemma
3 and taking into account that -nH = Ax + B = (A(x,, . . . , Xrxr, jSr + 1, . . . ,
/?n+1) we obtain

,3 2

n-r+1 = - 1 ,

or, equivalently,
(2.3)

= 0.

We are going to prove that /?r+1 = ••• = /?n+1 = 0 . We proceed by con-
tradiction. If one of fir+1, . . . , /?n+1 is different from zero, equation (2.3)
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becomes a polynomial which is identically zero on some open set. Thus the
coefficient k* of xf (i = I, ... , r) should be zero, which is a contradiction.

Now, the equation of the hypersurface becomes

(2.4) £V,2 = ^
i=i

and (2.3) also becomes

It is obvious from (2.4) that, for r = 1, M is a hyperplane. So, in the
following, we assume 2 < r < n + 1
we obtain the following polynomial

y
following, we assume 2 < r < n + 1. Eliminating x\ from (2.4) and (2.5)

1=2

k\c2 + k]c - kxc r£Xj\ = 0.

The above polynomial is identically zero on some open subset. Hence the
coefficient of x* must be zero, that is, kl, = A, , i — 2, ... , r. This shows
that all the k( are equal to kx and c = r - 1 . Thus, if r = « + 1 , then M is a
portion of a hypersphere with radius y/n/kx and if 2 < / • < « + 1 then M is
the generalized circular cylinder Sr~x x En~r+X of radius p - y/{r - 1)/A,.

ADDED APRIL 15, 1991. B.-Y. Chen and M. Petrovic independently ob-
tained our main result in the paper "On spectral decomposition of immer-
sions of finite type", which will appear in the Bulletin of the Australian Math.
Society.
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