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REFINEMENT CONDITIONS ON OPERATIONS 
IN SAMPLE SPACES 

ROBERT J. WEAVER 

1. I n t r o d u c t i o n . The recent s tudy of operational statistics (see [2; 4 ; 5 ; 
10 ; 11 ; 12 ; 13 ; 14 ; 15 ; 16]) describes a generalized sample space which represents 
the set of all possible outcomes of a collection of coherently related operations 
(experiments). This approach to probability generalizes the classical notion of a 
sample space due to A. N. Kolmogorov [8], and it gives the concept somewhat 
wider applicability. For instance in [4] and [14], D. J. Foulis and C. H. Randall 
set out the s tar t of a program wherein a generalized sample space (hereafter 
called a GSS) and its affiliated partially ordered set of generalized propositions 
could be a framework within which a genuinely operational interpretat ion of the 
so called "logic" of quan tum mechanical systems may be found. In particular, 
in the GSS, as in quan tum mechanics, there need not exist any single operation 
which simultaneously "refines" all other operations available in the system 
(as does the "grand canonical operat ion" of Kolmogorov). 

In Theorem 20 of [14] the notion of refinement among operations in a GSS is 
given and is shown to imply a number of other conditions, each of which has a 
fairly appealing intuit ive interpretation. Furthermore, in the classical case 
(of Kolmogorov) these conditions are mutual ly equivalent and coincide with 
the usual meaning of refinement among operations. I t is our purpose in this 
paper to explore and set forth precisely those properties of operations which 
will make these "refinement-like" notions mutually equivalent. The local 
conditions which wre find become conditions on the entire GSS when required of 
all operations, and in this global sense, the properties have particularly 
interesting "visible" consequences as will be seen in Theorems G and 12. Before 
proceeding with our discussion of the conditions, we introduce some definitions. 

The basic s t ructure on which a GSS is constructed is the orthogonality 
space. An orthogonality space, (X, _L), consists of a nonempty set X equipped 
with a symmetric binary relation _]_ (called orthogonality) which satisfies the 
condition tha t if x, y £ X and x _L y, then x ^ y (anti-reflexivity). Now-
borrowing some more notation from Hilbert space (the nonzero vectors of which 
furnish us with an important example) we define, for W(Z X, WL = {x £ X\x J_ w 
for all w in W), W1-1- — (W1-)1-, and so forth. If x Ç X, then we write simply x-1 

for {x}-1. For MCX, let Mu = {Jlm^m £ M). Also, if W C X, then 
W C Wu C W^; M1- C WL whenever W C M; and W^- = W±. A set 
V C X is said to be orthogonal provided tha t distinct elements of F a r e pairwise 
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orthogonal. Let 

Û(X,±) = {V CX\ V is or thogonal}. 

With this background we are ready for the following definition due to Foulis 
and Randall . 

1. Definition. A generalized sample space (GSS) consists of a triple (X, J_, J # ) 
where (X, J_ ) is an orthogonality space ands/ C 0 (X, _L ) satisfies the following 
three conditions: 

(i) E ts/^E1- = 0, 

(ii) U ^ = X, 
(iii) if A C E £ <%?, B C E £ se, and A C B1-, then there exists G G srf such 

that A \J B C G. {This is called the coherency condition.) 

We call s/ the manual of admissible operations, and X is interpreted as the 
outcome set for the entire experimental procedure being depicted. As is cus
tomary, the actual physical operations for the procedure are identified with 
their outcome sets, the elements (sets) in the manual S$. These operations are 
orthogonal sets which (by (i)) are maximal as such with respect to set in
clusion. I t is easy to see tha t if X is a finite set, all maximal orthogonal sets are 
operations by the coherency condition. If D C X and there exists E £ ^ such 
tha t D C E, then D is called an admissible event. T h e set of all events is 
denoted Û(X, ± , J / ) . I t is clear t ha t Û(X, ±,s/) C 0(X, J_). Il x, y £ X 
and x J_ y, then x j* y, and (by (ii) and (iii)), there exists an operation E G se 
such tha t x, y £ E. We interpret this orthogonali ty then to mean tha t x 
"operat ional ly rejects" y. If D G 0(X, _L, >$/), then D1- is the set of all out
comes which reject the event D, whereas D is said to be confirmed by the out
comes in D^. An ordered pair of the form (Z)-1^, D^) is called an operational 
proposition for the sample space, and the collection of operational propositions, 
ordered by set inclusion of the confirming sets, is called the logic of the space. 
T h e logic, then, is a partially ordered set (see [1]) where the order relation 
corresponds to implication of propositions. Let x d X and E Ç ,9/. Then we 
say tha t E tests {x} if E C x1-1 VJ x^. T h u s E tests a singleton event {x} if 
every outcome in E either confirms or refutes the outcome x. More generally, E 
tests a proposition (Z^1-1, D1-) if E C D1± \J D±. Hence any outcome in E must 
either confirm or reject the event D. A detailed and interesting discussion of the 
physical interpretat ion of the GSS may be found in [4; 5; 10; 11 ; 12; 13; 14]. 

An orthogonality diagram may represent a finite orthogonali ty space (X, _L) 
as a graph whose vertices represent the elements of X while the orthogonali ty of 
twx> elements is depicted by an edge connecting the corresponding vertices. 
Note t h a t such a graph is undirected since _]_ is symmetr ic , and it has no loops 
(edges which begin and end a t the same vertex) since _L is antireflexive. 
Figure 1 shows three examples of orthogonali ty diagrams. Occasionally such 
diagrams give a part ial , though useful, representat ion of infinite spaces as well. 

https://doi.org/10.4153/CJM-1975-103-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-103-8


REFINEMENT CONDITIONS 993 

The sample space in Figure 1 (i) will be called a hook while that in (ii) will be 
a house. 

b 
O-

Ô 
a 

c 

-o 

Ô 
d 

(i) 

FIGURE 1 

Finally we shall need to consider subsets of the outcome set considered as a 
sample space. Suppose (X, J_, se) is a GSS, F C X, # is J_ restricted to F, 
and S3 is the collection of all maximal #-orthogonal subsets of F. Then ( F, #, ^ ) 
is a sample space in its own right called the completely coherent sample space 
induced on the subset F, hereafter called simply a subset space. 

2. Refinement and coarsening of operations. Frequently we are in
terested in two operations E and F which are related in such a way that all of 
the information obtainable with the execution of E can be gotten also by 
carrying out F. More precisely, we say that operation F is a refinement of E 
(or E is a coarsening of F), denoted E < F, if and only if for each e in E, there 
exists a set Fe C -Fsuch that e1-1 = Fe^. Thus every outcome in E is confirmed 
precisely when some event contained in F is confirmed. 

As an example, consider the operation E of throwing a die, observing the 
number of dots on its upper face, and recording whether that number is even or 
odd: E = {even, oddj. Let F be carried out in the same way except that the 
outcome recorded is the actual number of dots observed: F = {1, 2, 3, 4, 5, 6}. 
Now let us add to the manual operations of observing the throw of the die and 
recording the appropriate symbols as follows: G = {1, 2, 3, even],H = {2,4,6, 
odd}. This is done so that we may reasonably claim that, for instance, the 
appearance of outcome " 3 " rejects the outcome "even". Now arising from 
manual ,$/ = {E, F, G, H\ we have a sample space whose orthogonality 
diagram is shown in Figure 2. Certainly E < G, G < F, E < H, H < F, and 
E < F. 

In [14, Theorem 20], mentioned earlier, Foulis and Randall list seven 
conditions on pairs of operations, conditions either equivalent to or weaker than 
the relation E < F. In particular, of the seven, the following implications are 
shown to occur: (i) <=* (ii) <=> (iii) =» (iv) <=> (v) <=> (vi) ==> (vii), and (i) is the 
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FIGURE 2 

same as our coarsening condition. We shall choose one condition from each 
equivalence class, say (i), (v), and (vii), calling them henceforth respectively, 
(a), (b), and (c). We express these in the following using slightly different 
notations from their counterparts in [14]. 

2. Refinement conditions. Let (X, _L, se) be a GSS and suppose E, F £ s/. 
Consider these conditions: 

(a) E < F. 
(b) e G £=> F tests {e}. 
(c) e 6 E => there exists f £ F such that f £ eLL (i.e., each element of E is 

confirmed by some element of F). 

Then (a) => (b) => (c) and, as we shall see, the reverse implications do not in 
general hold. In the example given above, however, all of these conditions are 
equivalent for all pairs of operations. Furthermore, by [14] we know that (b) is 
equivalent to our condition 

(b)' f G F => there exists e in E such that f G e-L±. 

This says that every element of F confirms some element of E. Note in 
Figure 1 (i) (the "hook") that £ = {a, b] and F = {b, c) satisfy (b) but not (a). 
Furthermore in the "house" (Figure 1 (ii)), E = {<?,/}, F = {x, / , g} obey (c) 
and not (b). We shall pay special attention to these examples in what follows. 
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3. Weak Dacey s a m p l e spaces . J. C. Dacey [2] has described those GSS's 
whose logics are orthomodular posets (see [ 1 ; 3 ; 6]). A special significance in 
this si tuation is t ha t it identifies in the logic of a GSS an impor tant proper ty 
almost always taken to hold in the "logic" of quan tum mechanics (see [7; 9]). 
Such GSS's have come to be known as Dacey sample spaces, or just D-spaces [4]. 
In part icular (X, J_, se) is a P-space if and only if a, b £ X, E £ s/, and 
E C a1- ^J b-1 together imply tha t a J_ b. We will show tha t a condition slightly 
weaker than this "D" property will be necessary and sufficient to insure t ha t 
2(a) is equivalent to 2(b) . 

3. Definition. Let (X, J_, s/) be a GSS. 
(a) An operation F £ seis said to be a weak operation if whenever a, b £ X 

where F C a^KJ bL and F tests either a or b, we have a J_ b. 
(b) (X, J_, s/) is a weak Dacey sample space (WDSS) if every operation 

F £ s$ is weak. 

4. T H E O R E M . Let F £ s/ where (X, JL, s/) is a GSS. Then a necessary and 
sufficient condition that 2(a) and 2(b) be equivalent for F and each E in se is that 
F is a weak operation. 

Proof. Suppose F £ se and 2(a) , (b ) are mutual ly equivalent for F and each 
E in s/. We must show tha t F is a weak operation. Suppose F C. a1-VJ bL and 
tha t F tests {a}. Let 

D = (FHa-1-) VJ {a} £ 0(X, ±,s/). 

(Here we have used the coherency condition.) Then there exists E in s/ such 
t ha t D C E, and with respect to E and F it can easily be seen tha t 2 ( b ) ' holds 
since F tests {a}. Hence 2(a) holds by hypothesis. Therefore there exists 
Fa C F such tha t TV-1 = «JJ_- But since F tests {a}, we have F(l = F Pi a± x . 
Now T7 was chosen so tha t F (Z a-1- KJ b-1, so T7 C\ a-1-1 C ^±- Thus 
b £ ft-1-1 C (F f^\ a1-1)1- = a x ; t ha t is, a J_ 6. Hence F is a weak operation. 

Conversely, suppose F is a weak operation and E £ s/ where E and F 
satisfy 2 (b) . Suppose e £ E, and let Fe = F C\ e1±. Then Fe C ^LL, so 
/V1-1 C ^_LL. We must show tha t the reverse containment holds. If F C eL1-, 
then Fe = F and we are done. Thus we may suppose tha t an e l emen t / £ F\eL± 

exists. Now if F^1- ^ e1-1-, then e1- £ F / 1 and we may choose a £ F^e1-. Then 
by 2 (b) r there exists £i £ £ such t h a t / G er1-1 C ^ , so tha t F clearly tests {e\. 
Also F = FeVJ (F\e±J-) C a-1 U ^±. Since F is a weak operation, necessarily 
A f e 1 , a contradiction to the choice of a. Hence 2(b) => 2(a) for £ , F. 

5. COROLLARY. (X, ± , &) is a W D S S i / and owty if for all E, F e s / , 2(a) 

and 2(b) are equivalent. 

If a GSS together with all of its subset spaces is a P - s p a c e , then the space is 
called a hereditary Dacey space (HD-space). Dacey has shown tha t a GSS is an 
HD-space if and only if it contains no subset space which is in the form of a hook 
(Figure 1 ( i)) . Fur thermore [14, Theorem 20] asserts t ha t if (X, J_, S$) is a 
D-space, then 2(b) is equivalent to 2 (a ) . Our next theorem shows us t ha t the 

https://doi.org/10.4153/CJM-1975-103-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1975-103-8


996 ROBERT J. WEAVER 

ilHD" property is exactly what we need to give us a "hereditary" property for 
WDSS's. 

6. THEOREM. (X, A.,£0), together with all of its subset spaces is a WDSS if and 
only if (X, _L, £0) is an HD-space. 

Proof. HX and all of its subset spaces are WDSS's, then no subset space of X 
may be a hook (since a hook is not a WDSS). Conversely, if X contains no 
subset space in the form of a hook, then (X, JL, £0) is an HD-space, so that X 
and all of its subset spaces are Z)-spaces, hence WDSS's. 

The orthogonality diagram in Figure 3 showrs a GSS which is a WDSS but 
has a subset space \a} c, d, e) which is not. 

FIGURE 3 

4. Operation inclusive sample spaces. We turn our attention to the 
equivalence of 2(b) and 2(c). 

7. Definition. Let (X, J_, £0) be a GSS. 
(a) If E £ £0 and D £ € (X, J_, ,90), then we say that D partially refines E 

provided for each e in E, D C\ e1-1 ^ 0. (That is, every outcome in E is con
firmed by some outcome in the event D.) 

(b) E £ 90 is inclusive if for every event D £ @ {X, J_, £0) where D partially 
refines E, we have D C Eu. 

(c) (X, J_, £0) is an operation inclusive sample space (OISS) if every opera
tion E £ £0 is inclusive. 

(d) (X, ±,£0) is a hereditary OISS (HOISS) provided (X, _L, J / ) together 
with each of its subset spaces is an I OSS. 
If E Ç £0 is not inclusive, then there exists an event D which is a partial 
refinement of E and an element x in D where x (? Eu. In this case we say that E 
is not inclusive by x, and we observe that for all e in E, x1- C\ eL1- ^ 0. 

8. THEOREM. Let E 6 £0 where (X, ±,.90) is a GSS. Then a necessary and 
sufficient condition that 2(b) and 2(c) be equivalent for E and each F £ £0 is that 
E is inclusive. 

Proof. Suppose E G £0 and 2(b) and (c) are mutually equivalent for E and 
each F G £0. Now let D f © (X, ±.,-90) where D partially refines E. We must 
show that D C Eu in order to show E inclusive. For each e G E, set 
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De = D r\ e^ 9* 0. If D g Eu, then there exists d G D such tha t d $ Eu. Let 

D1 = | d ) U [ U { D a k e £} ] . 

Then Di Ç ^ ( X , _L, s/) so by definition we may extend D\ to an operation 
F 6 J / where P i C ^ Now £ , F satisfy 2(c) and so, by hypothesis, 2(b) also. 
But 2 (b ) ' , which also holds here, says tha t F C Eu. Thus we have 
d G Di C F C £w , bu t J was originally chosen outside of Eu, a contradiction. 
T h u s E is an inclusive operation. 

Conversely, suppose E is inclusive, and let F £ s/ where E, F satisfy 2(c) . 
Then for all e £ E, F C\ e±J- ^ 0 so tha t F is a partial refinement of E. (F being 
an operation is certainly an event.) Hence by hypothesis, F C Eu, and so e a c h / 
in F confirms some element of E; i.e., 2 (b ) ' holds, which is equivalent to 2 (b) . 

9. COROLLARY. (X, ±,s/) is an OISS if and only if for all E, F £ - i / , 2(b) 

and 2(c) are equivalent. 
In analogy with our discussion of weak D-spaces, the next objective is to find 

a condition on an OISS (X, ±, s/) so tha t each of its subset spaces will also 
be an OISS. 

10. LEMMA. Suppose (X, ±,>$/) contains no subset space in the form of a house 
(Figure 1 (ii)) and that E £ se is not inclusive by x. Then either E P\ x1- = 0 or 
else there exists a unique point g in E such that E\{g] C x1-. 

Proof. Suppose x C\ E ^ 0 and for each g in E, E\{g} (J_x^. Choose 
e £ E C\ x1-. Now E (£ x-1, so we may choose a particular g £ E so tha t 
g £ x±. Then e ^ g so tha t e _1_ g. Hence g11- C eL. Now x1- C\ g1-1 7e 0 since E 
is not inclusive by x. Thus choosing z d x1- C\ g1^, we have z £ e 1 and z £ g-1. 
Let h £ £ \{g} where /& £ r 1 (by assumption such an h exists). Then 
{h, e, g} £ Û(X, ±_,st?) and z £ g^ C ^ Now if we let b £ /*±J- H x-1 ^ 0, 
then & G \x, e, g, z}1- and 6 $ Ẑ -1. Thus Ave have constructed the orthogonality 
diagram in Figure 4 (where it is known tha t only those orthogonalities which 
are shown by connecting edges exist among the given points) . But here the 
subset space [x, z, h, g, b} is in the form of a house, a contradiction. Hence, such 

FIGURE 4 
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a g as mentioned in the s ta tement of the lemma must exist. Clearly no more 
than one such element can have this proper ty since otherwise we would have 
tha t x Ç E1- = 0, a contradiction. Hence the conclusion holds. 

11. T H E O R E M . / / a GSS (x, JL, s/) contains no subset space in the form of a 
house, then (X, J_, s/) is an OISS. 

Proof. Assuming tha t (X, JL, J / ) is not an OISS yet contains no house, there 
is an E £ se which is not inclusive by some element x 6 X. By (10) there are 
two cases, each of which leads ra ther easily to the construction of a forbidden 
house as a subset space. This contradiction completes the proof. 

Note tha t a house is not itself an OISS since, in Figure 1 (ii), {ej\, {e, h}, and 
{h, g} are each operations which are not inclusive by x (and the event \x,f, g}). 

12. T H E O R E M . (X, J_, <sf) is an HOISS if and only if (X, _J_, s/) contains no 
subset space in the form of a house. 

Proof. If (X, ±,s/) is an HOISS, ye t contains a house, then t h a t house is 
not an OISS, a contradiction to definition 7(d). On the other hand, suppose 
(X, ±, se) contains no house and is not an HOISS. Then there exists a subset 
s p a c e ( F , #, 38) oi (X, J _ , j / ) which is not an OISS. Thus , by (11), ( F , # , ^ ) 
contains a subset space (H, 6, ^ ) which is a house. Bu t then (H, b, @) is a 
subset space of (X, ±,sf) also, a contradiction. 

We conclude with an example of an OISS which is clearly not an HOISS. I ts 
orthogonali ty diagram is given in Figure 5. This example has other interesting 
properties which have been noticed by AI. F. Janowitz and reported in [14]. 

FIGURE 5 
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