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THE CONE = HYPERSPACE PROPERTY 
JAMES T. ROGERS, JR. 

T h e author has recently shown [11] t ha t the hyperspace of subcontinua of 
a solenoid is homeomorphic to the cone over t ha t solenoid. This is an interesting 
result, for it is the first t ime tha t the hyperspace of subcontinua of a com
plicated space has been recognized. This homeomorphism, moreover, is the 
expected map ; it maps the singletons onto the base of the cone and the point 
corresponding to the whole space onto the vertex of the cone. We say t ha t 
spaces for which such natural homeomorphisms exist have the cone = hyper
space property. In the first section we prove the following theorem. 

T H E O R E M . If a finite-dimensional continuum X has the cone = hyperspace 
property, then X is an arc, a circle, or an indecomposable continuum each proper 
sub continuum of which is an arc. 

In the second section we investigate some spaces for which a homeomorphism 
exists between the cone and the hyperspace, even though the space does not 
have the cone = hyperspace property. One consequence of this is a proof 
t ha t the hyperspace of a circle with a spiral does not have the fixed point 
property. 

In the third section, we consider a hereditarily indecomposable continuum X 
and show tha t there exists a monotone, open map of the cone over X onto 
the hyperspace of X. 

A continuum is a compact, connected, nonvoid, metric space. C(X), the 
hyperspace of subcontinua of a continuum X, is the space of all subcontinua 
of X metricized by the Hausdorff metric p ( that is, p(A, B) = gib {e} for all 
e such t ha t A C Ve(B) and B C Vt(A), where Ve(A) is the e-neighborhood 
of A). We write X' for the point in C(X) which corresponds to the cont inuum 
X. T h e subspace of C(X) consisting of the degenerate subcontinua of X is 
isometric to X, so we identify X with this subspace. For more information 
about C(X), see [5]. 

The cone over a continuum X is obtained from the space X X [0, 1] by 
identifying XX {1} to a point v, called the vertex of the cone. Let h denote 
this identification map, and let ir be the projection of X X [0, 1] onto X. T h e 
base of the cone, B(X), is the space X X {0}. When no confusion will arise, 
we will write X for B(X), since B(X) is natural ly isometric to X. We denote 
the cone over X by K(X). 
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1. Continua with the cone = hyperspace property. A continuum is 
said to have the cone = hyperspace property if the triples (K(X), X, v) and 
{C{X),X, Xr) are homeomorphic. Although it was not explicitly stated in 
[11], the homeomorphism constructed there implies that the solenoids have the 
cone = hyperspace property. Furthermore, we know that the simple closed 
curve and the arc have this property; moreover, these are the only finite-
dimensional, locally connected continua which have the cone = hyperspace 
property, for such a continuum must be an atriodic linear graph, by [5, 5.4 and 
5.5]. We can show by the methods of [11] that the familiar "buckethandle" 
continuum constructed with semi-circles from the Cantor ternary set and 
described by Kuratowski [7, p. 205] has the cone = hyperspace property. 

We prove in this section that each subcontinuum of a finite-dimensional 
continuum with the cone = hyperspace property is an arc. We restrict our
selves to finite dimensions because if H is the Hilbert cube, then K(H) is 
homeomorphic to H, so the existence of a homeomorphism between K (H) and 
C(H) is equivalent to the topological equivalence of H and C(H). 

THEOREM 1. If the continuum X has the cone = hyperspace property, then 
each composant of X is arcwise connected. 

Proof. Let p and q be points of X which belong to the same composant, and 
let F be a proper subcontinuum of X which contains both p and q. Let g:(K(X), 
X, v) —> (C(X), X, X') be a homeomorphism of triples. If F is an arc, then 
we are done. Suppose F is not an arc. C(g(Y)) is arcwise-connected, by [5, 
Theorem 2.7]. Furthermore, C(g(Y)) is a subcontinuum of C(X) which does 
not contain X'. Since X has the cone = hyperspace property, there exists 
an arc A in K(X) — v which contains both p and q. The continuum irh~1(A) 
is thus an arcwise-connected subcontinuum of X containing p and q. Therefore, 
there is an arc B in X which contains both p and q. B is a proper subcontinuum 
of X, since it does not contain all the points of F. Hence B is a subset of the 
composant of X which contains p and q. 

COROLLARY 1. If the decomposable continuum X has the cone = hyperspace 
property, then X is arcwise-connected. 

The next theorem is [10, Theorem 1]. 

THEOREM 2. Suppose F, Xi, X2, . . . , Xn are proper sub continua of the 
continuum X such that Y C\ Xt 7* 0, Xt Çf_ F, and (Xt — Y) C\ (Xj - F) = 0 
when j 9^ i. Then CÇX) contains an n-cell. 

COROLLARY 2. / / C(X) has dimension ^ 2, then X is atriodic. 

THEOREM 3. Suppose X is a continuum with arcwise-connected composants, 
and suppose C(X) is 2-dimensional. Then X is an arc, an arcwise-connected 
circle-like continuum, or an indecomposable continuum that contains only arcs as 
sub continua. 
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Proof. We note the following properties of any proper subcontinuum F of X: 
(A) Y is atriodic. X is atriodic, by Corollary 2. 
(B) Y is decomposable. Suppose Y is indecomposable. Consider 3 points in 

different composants of F, and let Z be an arc which contains these points. 
Then there exist subarcs Xu X2, Xz of Z such tha t the hypotheses of Theorem 
2 are satisfied. C(X), however, is 2-dimensional. 

(C) Y is unicoherent. Suppose Y can be expressed as the union of 2 cont inua 
A and B such tha t A C\ B is not connected. Let C be an arc from the comple
ment of F to a point in A C\ B. Then continua Xi, X^, X%, and F can be 
chosen to satisfy the hypotheses of Theorem 2. 

(D) If X is indecomposable, then Y is arcwise connected. If F is not arcwise-
connected between 2 of its points, let Z be an arc between these 2 points. Then 
F U Z is a proper multicoherent subcontinuum. 

Therefore, if X is indecomposable, each proper subcontinuum is a heredi
tarily unicoherent, hereditarily decomposable, atriodic, arcwise-connected 
continuum. Such continua must be arcs [2]. If X is decomposable and uni
coherent, then X is an arc, for the same reason. If X is decomposable and not 
unicoherent, then X is a circle-like continuum [4]. 

COROLLARY 3. If X is arcwise-connected, and C(X) is 2-dimensional, then X 
is an arc or a circle-like continuum. 

T h e next theorem is proved in [10]. 

T H E O R E M 4. / / X is a continuum with arcwise connected composants of dimen
sion at least 2, then dim C(X) = 00. 

T H E O R E M 5. Suppose X is a finite-dimensional continuum such that each 
composant is arcwise-connected and such that K(X) is homeomorphic to C(X). 
Then X is an arc, an arcwise-connected circle-like continuum, or an indecompos
able continuum that contains only arcs as subcontinua. 

Proof. K{X), and hence C(X), is finite-dimensional, so X is 1-dimensional, 
by Theorem 4. Thus C(X) is 2-dimensional, and the conclusion follows from 
Theorem 3. 

The next theorem is a generalization of [5, Theorem 4.4]. 

T H E O R E M 6. Suppose the subcontinuum Y of X has open, connected neighbor
hoods V€(Y) in X, where e is an arbitrarily small positive number. Then C(X) 
is connected im kleinen at F . 

Proof. Let V = F e ( F ) be an open, connected neighborhood (in X) of F . 
If p(Y,Z) < e, then p(Y, V) < e and p(Z, V) < 2e. Let A t be a segment 
from F to V and B t a segment from Z to V. (For the definition of segment, 
see [5, p . 24].) The continuum 

W= {At}UlBt},0£t£ 1, 
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is of diameter less than 3e. Hence any two points of C(X) less than e apart can 
be joined by a continuum of diameter less than 3e. 

COROLLARY 3. If X is locally connected, then C(X) is locally connected. 

Since the converse of this corollary is true [5, Theorem 4.4], we might hope 
that the converse of Theorem 6 is true. This is not the case. Let X be the 
curve in the xy-plane defined by 

y = sin(l/x) for 0 < x ^ 1 

- 1 S y ^ 2 for x = 0. 

Then the interval {(x, y):0 ^ y ^ 1^, x = 0} has small open neighborhoods 
homeomorphic to an open 2-cell. 

THEOREM 7. Suppose the finite-dimensional continuum X has the cone = 
hyper space property. Then each proper sub continuum of X is an arc. 

Proof. It suffices to show that the simple closed curve is the only circle-like 
continuum with the cone = hyperspace property. Consider W, the sin(l /x)-
circle (or Warsaw circle), obtained from the standard sin(l/x)-curve by 
identifying a pair of opposite endpoints. W is an arcwise-connected, circle-like 
continuum. 

In K(W) there are points arbitrarily close to v at which K(W) is not connec
ted im kleinen. In C{W), however, W has a neighborhood at each point of 
which C(W) is locally connected (in fact, W has small neighborhoods homeo
morphic to 2-cells). Nadler [8, Theorem 6] has shown that an arcwise-connec
ted, non-Peanian, circle-like continuum X resembles W in that X is the union 
of an arc A and a chainable metric continuum C with exactly 2 arc components, 
and A C\ C is 2 points which are opposite endpoints of both A and C. So the 
proof that W does not have the cone = hyperspace property can be applied 
to any non-Peanian, arcwise-connected, circle-like continuum. 

Let 5 be the continuum obtained from identifying the two noncut-points of 
two sin(l/x)-curves. Then an argument similar to that of Theorem 7 may be 
used to show that, for 5, and continua resembling 5, no homeomorphism 
between the cone and hyperspace is possible. 

2. Homeomorphisms between C(X) and K(X). In this section we 
investigate some spaces X such that C(X) and K(X) are homeomorphic. In 
particular, we consider the space Z consisting of a ray spiraling down on a 
circle and show that C(Z) and K(Z) are homeomorphic. In view of the result 
of Ronald Knill [6] (see also [1, p. 129]) that K(Z) does not have the fixed 
point property, we have an example of a space X such that C(X) does not 
have the fixed point property.* 

*I am indebted to Knill for a helpful conversation about this space. 
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Notice that if a space X is locally connected, then C(X) is an AR [5, Theorem 
4.4] and hence has the fixed point property. We observe in the next section 
that if X is a continuum at the other end of the spectrum, namely, a heredi
tarily indecomposable continuum, then C(X) has the fixed point property. 
This leads us to raise the following question: 

Question. When does C(X) have the fixed point property? 

Z, the circle with a spiral, is defined in polar coordinates as follows: the 
circle B is defined as [(r,6):r = 1] and the spiral S as [(r, 6):r = 1 + 1 / ( 1 + 6), 
6 ^ 0]. Following Bing [1, p. 129], we call the cone over the spiral the skirt of 
the cone. 

THEOREM 8. C(Z) is homeomorphic to K(Z). 

Proof. Write subarcs of Z as [s, t] with a counterclockwise orientation. Let 
l[s, t] denote the length of the arc [s, /], and let [s, B] denote the continuum 
with complement [(2, 0), s]. 

Consider the subset of the plane 

{(x,y):0 g x ^ l j è O | . 

Compactify this set by adding an arc [0, 1] X {oo} and delete the set 

[(x,y):x = 1,0 ^ y < 2ir}. 

Call the resulting space X and let Y be the decomposition space obtained 
from X be shrinking 

A = {(x, y):x = 1, 27r ^ y g oo } 

(O.oo), . ( l ,oo) 

(0,0) 

(1, 2T) 

(1,0) 

X 

Figure 1. 
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to a point. Let d:X —> F be the map associated with this decomposition. X is 
pictured in Figure 1. We think of Y as the skirt of the cone. 

Let the cone K{B) over B have its vertex v at (0, 0, 2w). If [a, b] is a sub-
continuum of B and if R is the line segment from a to v, define/([a, b]) to be 
the point on R which has s-coordinate l[a, b]. Then F is a homeomorphism of 
C(B) onto K(B). 

Let g be a homeomorphism from 5 to [1,0). Extend / to a multi-valued 
function from C(Z) to the free union of X and K(B) by defining 

f[s,t] = (g(s),l[s,(\) 

f[s,B] = (g(s), co) 

f(B) =A. 

If we follow/ by the collapse d and then wrap the skirt back around the cone 
in the obvious way, then we have a homeomorphism between C(Z) and K(Z). 

Theorem 8 is true for several other continua, such as the sin (1/x)-continuum; 
the proof is simply a modification of the above proof. 

3. Hyperspaces of hereditarily indecomposable continua. A continuum 
is indecomposable if it is not the union of 2 of its proper subcontinua. A 
continuum is hereditarily indecomposable if all of its subcontinua are inde
composable. If X is a hereditarily indecomposable continuum, then C(X) is 
not homeomorphic to K(X); nevertheless, a strong mapping relation exists 
between the two spaces. 

THEOREM 9. If X is a hereditarily indecomposable, nondegenerate continuum, 
then there is a monotone, open, arc-preserving mapping of K(X) onto C(X) 
which is the identity map on X. 

Proof. It suffices to construct a suitable map from XXI onto C(X), by 
the Transgression Theorem [3, p. 123]. Rhee [9] has constructed the following 
continuous map in proving that C(X) is contractible: <£> is the map from 
XXI onto C(X) defined by 

&(x, t) = A, if x £ A e C(X) and n(A) = /. 

$ is monotone since <ï>-1 ({^4} ) = A. $ is clearly arc-preserving. 
To see that $ is open, let 0 X P be a standard basic open set in I X I . 

Let A be a point in $(0 X P ) . There exists a point x in 0 such that x G A. 
Let Q be an e-neighborhood of x such that Q C 0. Consider the open set V in 
C(X) which is the intersection of /x_1(P) and the (e/2)-neighborhood of A. 
If B £ V, then n(B) 6 P and A is contained in the (e/2)-neighborhood of B. 
Hence there is a point y in B such that d{x, y) < e/2. Hence y Ç 0 and 5 G 
* ( 0 X P ) . 

Remark. The hyperspace of subcontinua of a hereditarily indecomposable 
continuum X has the fixed-point property. For C(X) is contractible and 
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uniquely arcwise-connected [5, Theorem 8.4]; Gail Young [12] has shown such 
a continuum must have the fixed-point property. This same reasoning shows 
that the cone over a hereditarily indecomposable continuum has the fixed-point 
property-this partially answers a question of Knill [6, p. 36]. 
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