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1. Introduction. A (v, k, ^-configuration, also called a symmetric balanced incomplete
block design, is an arrangement of v distinct objects called points or varieties into v subsets
called lines or blocks such that each line contains exactly k points and each pair of distinct
lines contains exactly A points in common. To avoid certain trivial configurations, one assumes

In this paper we show that a (v, k, A)-configuration with v of the form 4pe where p is a
prime must have the parameters

(v, k, A) = (4m2, 2m2 -m,m2- m), (1)

where m = ±pie. Hence, in particular, e must be even. This result was proved for p = 2
by Mann [2, pp. 72-73] or [3, p. 213]. The method of proof can be extended to determine
all possible parameter values when v is of the form 2dpe and d is a small positive integer. We
list the possible parameter values for v = 2pe, 8/?e and \6pe.

The ambiguity in the sign of m in (1) arises from the fact that replacing m by — m in (1)
yields the parameters of the complementary (v, k, ^-configuration, that is, the (v, k, A)-
configuration obtained by replacing each line by its complement.

The parameters (1) for arbitrary integral m are of some interest since the incidence matrix
of such a (v, k, A)-configuration yields a Hadamard matrix on replacing each 0 by — 1 (see,
e.g., Mann [2, p. 71]).

For further general information on (v, k, A)-configurations and Hadamard matrices, see,
e.g., Hall [1, Chapters 10 and 14].

2. Main result. We shall use the following two well-known facts concerning the para-
meters of a (v, k, A)-configuration (see, e.g., Hall [1, Chapter 10]). First, the parameters are
related by

k(k-l) = X(v-l). (2)
As is customary, set

n = k-X. (3)
Then (2) can be written as

n = k2-Xv. (4)

Second, if v is even, then n is a square.
We now show that if the parameters of a (v, k, A)-configuration satisfy v = 4n, then the

parameters are of the form (1) for some integer m, a result first noted by Menon [4, pp. 739-
740]. If v = 4n, then (3) and (4) yield

n = k2-Xv = (n+A)2-4A« = {n-Xf.

Let m = n—X. Then n — m2,X = n-m — m2—m,k = n + X = 2m2—m and v = 4n = 4m2,
as desired. Note that m > 0 if and only if k < %v.
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THEOREM. Suppose there exists a (v, k, ^-configuration with v of the form 4pe, where p
is a prime and e is a positive integer. Then e is even and the parameters are of the form

(v, k, X) = (4m2, 2m2 — m, m2 — m),
where m = +pie.

Proof. Replace the (v, k, ^-configuration by its complementary configuration if necessary
so that

k < iv. (5)

Since v = 4p" is even, n = k—X must be a square, say

where nt is not divisible by p. First suppose that 2 / ^ e. Then (3) and (5) yield

p2fn\ = n < k < \v = 2pe. (6)

Thus 1 £p2f-en2 < 2, so that 2 /= e and nx = 1. Therefore v = 4p2f = An and, as noted
above, the parameters (1) result with m =pie. The complementary parameters with k > %v
correspond t o m = — pie.

Now assume that
2 / < e. (7)

We complete the proof by showing that (7) is impossible. Substituting for n and v in (4)
yields

p2fnl = k2-4P
eL (8)

Hence
k = p%

for some integer kt. Let
A1 = fe1-p

/n2. (9)
Then

X = k-n =

Substituting the above expressions for k and A in (8) yields

4pF-% = k\-n\ = (k. + n.Xk.-n,). (10)

Since (k1+n1) — (k1 — n1) = 2nx a.n&.p)(nu (10) implies that

pe-f\kx + ni or /»- / | fc1-B1, (11)

even if p = 2. Now
\v\pi = 2pe~f,

y/2p*-' ^ pe~f. (12)
Thus

3pe- / , (13)

2/-/. (14)
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Then (10), (11), (13) and (14) imply that either

pe~f = k1±nu 4A1 = fc1 + «, (15)
or

2f-f = kl + nu 2Xl = k1-nl. (16)

Suppose that (15) holds. Then eliminating kL yields

pe~f+n1 = fcj = 4A1±n1,

P*"r = 4A1±2n1.

Therefore 2\p, and so p = 2. But /J^HJ, so that e - / = 1. Then (7) implies that e = 1, so
that v = Ape = 8. There are no nontrivial parameter values satisfying (2) with v = 8. Suppose
that (16) holds. First eliminate kx using (9) and then eliminate the quantity ky+n^

fe1-n1=2l1=2(fc1-|/fif),

But ^/t'Mi, so that e = 2/in opposition to (7). This completes the proof.

3. Further results. As noted previously, Mann [2] or [3] has shown that a (v, k, X)-
configuration with v a power of 2 must have parameters of the form

(», k, X) = (22- f + 2 ,22 / + 1±2/ , 2 2 '+2 ' ) . (17)

G. F. Stahly has pointed out (written communication via a third party) that Mann's proof
actually shows (on replacing most occurrences of 2 by p) that a (v, k, A)-configuration with v
of the form 2pe, where p is a prime, must have p = 2 and hence parameters of the form (17).

The proof of this paper can be extended (straightforward but tedious) to determine all
possible parameter values of a (v, k, ^-configuration when v is of the form Spe or \6pe,
where p is a prime. The results are: If v is of the form 8/?e, then the parameters are of the form
(17), or up to complementation the (v, k, X) parameters are (40, 13, 4) or (56,11, 2). If v is
of the form I6pe, then the parameters are of the form (1) with m = ±2pie so that e must be
even in this case, or up to complementation the parameters are one of the following.

V

112
176
208
400
496
944
976
3888

k
37
50
46
57
55
369
351
507

X
12
14
10
8
6

144
126
66

n
25
36
36
49
49
225
225
441
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In proving the theorem we used the inequality n < \v in (6) and (12); in these further
calculations it is better to use instead the inequality n ^ \{v+\) at the corresponding steps.
This inequality is a consequence of the relation

A ( 2 / J - 1 ) ^ « 2 - n + A 2 = k(v-2n),

in which the inequality is equivalent to n—X^{n—X)2 and the equality follows from (2)
and (3).

Note added in proof. A proof of G. F. Stahly's result that a (v, k, ^-configuration with v
of the form 2pe, where p is a prime, must have p = 2 can be found in J. F. Dillon, Elementary
Hadamard difference sets, Ph.D. Thesis (University of Maryland, 1974).
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