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The temporal structure of chaos in three-body dynamics is analyzed; the em­
phasis is made on a similarity and difference between three-body chaos and basic 
patterns of chaotic behaviour known in nonlinear physics. 

1. With the use of homology mapping (Agekian and Anosova 1967), we study a 
set of computer models of thee-body systems in a stationary spherically symmetric 
potential well (Valtonen et al. (1994); the well confines the bodies, and because 
of this the system can generate fairly long time series. Typical time series reveal 
sequences of seemingly periodic motion and short bursts of strong chaos that 
appear in an irregular manner (Heinamaki et al. 1998). The quasi-ordered states are 
associated with hierarchical homology, and the quasi-period of the low-amplitude 
oscillations is very near the period of the temporary close binary in the system. 
The high-amplitude irregular states are mostly due to active three-body interplay 
when each of the bodies interacts with the two others with almost equal intensity. 
In the evolutionary history of most systems, these two extreme kinds of states 
alternate in an apparently random way producing together a non-stationary pattern 
of unpredictable behaviour. 

The time behaviour of this type is similar in its appearance - and actually in its 
physical nature too - to the phenomenon of intermittency observed in the ocean 
flows. A time series close in shape to what we observe in three-body dynamics may 
also be found in laboratory hydrodynamical experiments with Rayleigh-Benard 
flow. The chaotic behaviour with this shape of time series is classified as type-Ill 
intermittency. 

2. We use the correlation integral method (Lehto et al. 1993) and find that the 
dimension D of the time series generated by three-body systems is between 2 
and 2.1 (Heinamaki et al 1998). It means that the number of the major physical 
parameters of the systems is 3; one can expect that they are the eccentricities of the 
binary orbit and that of the third body and also the ratio of semi-major axes of these 
two orbits, in hierarchical states of the systems. Two first of these parameters are 
related to the compact 2-dimensional homology hypersurface of the whole phase 
space. The third parameter corresponds to the infinite configuration coordinate in 
the whole non-compact phase space of the system. 

For the system motions, the area of the homology hypersurface contracts with 
time onto the set of hierarchical states of lower dimensionality DH = D— 1 < 1.1. 
The phenomenon of contraction (which is similar to the contraction of the whole 
phase space in dissipative systems) is seen from the fact that a typical system spends 
about 2/3 of its life-time in hierarchical states with temperary close binaries; these 

465 

J. Henrard and S. Ferraz-Mello (eds.), Impact of Modern Dynamics in Astronomy, 465-466. 
© 1999 Kluwer Academic Publishers. Printed in the Netherlands. 

https://doi.org/10.1017/S025292110007319X Published online by Cambridge University Press

https://doi.org/10.1017/S025292110007319X


466 ARTHUR D.CHERN1N 

states attract almost all the trajectories, no matter where they start. The trajectories 
approach these states in highly irregular, chaotic way, which is similar to what is 
observed in the cases of strange attractors of dissipative systems. 

However, some of the trajectories may not be trapped in the set of hierarchical 
states forever; they can leave it, and this proceeds also in a chaotic way. Such a 
behaviuor with transient trapping is different from what is observed in standard 
attractors and indicates one of the special features of three-body chaotic attractor. 
Because almost any three-body system ends its chaotic evolution with the decay, 
the system comes to the attracting set ultimately. 

Note that the dimension of the time series in three-body dynamics proves to be 
near to one for the Lorenz dissipative system, introduced first in meteorology. A low 
dimension (close to 2) of the time series is an important sign of intermuttent chaos 
in nonlinear physics where this is considered as an evidence for low-dimension 
strange attractors that may be behind the time series. 

One of the possible representations of the three-body strange attractor is given in 
a return map (Heinamaki et al. 1998). The object is cone or a piramid-like structure 
which can almost be reduced to a two-dimensional surface, except for the sparce 
loops that appear to avoid self-crossing of the trajectories. 

3. An effective way to study the onset of chaos in dynamical systems involves a 
notion of the phase drop; it can be reformulated for three-body dynamics with the 
use of homology mapping. To quantify the process of deformation and spreading 
of the 'homology' drop in a coarse-grained description, we calculate the average 
exponential growth rate of the area occupied by the drop: it proves to be h = 
0.7 — 1.3 in most of the observed cases of our computer simulations (Heinamaki et 
al 1999). The growth rate h has a close analogue in the Kolmogorov-Sinai entropy, 
defined in a similar manner for the whole phase space. With this values of h, one 
can conclude that the state of developed chaos occurs in about one crossing time, 
in three-body dynamics. 

The 'fine' structure of the homology drop reflects the behaviour of individual 
trajectories. The average growth rate of divergence of the trajectories a in the 
homology mapping which is a close analogue of the Lyapunov first exponent 
defined in the phase space. We finds that a — 0.4 —1.5. On the order of magnitude, 
h and a are close, and the both prove to be close to the inverse time of correlation 
decay, rc, estimated for tree-body chaos by Ivanov et al. (1995). The relation 
h ~ a « l / r c is characteristic for the 'standard' patterns of chaotic behaviour in 
nonlinear physics. 
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