MULTIPLIERS OF FRACTIONAL CAUCHY TRANSFORMS AND SMOOTHNESS CONDITIONS

DONGHAN LUO AND THOMAS MACGREGOR

Abstract

This paper studies conditions on an analytic function that imply it belongs to \mathcal{M}_{α}, the set of multipliers of the family of functions given by $f(z)=$ $\int_{|\zeta|=1} \frac{1}{(1-\bar{\zeta} z)^{\alpha}} d \mu(\zeta)(|z|<1)$ where μ is a complex Borel measure on the unit circle and $\alpha>0$. There are two main theorems. The first asserts that if $0<\alpha<1$ and $\sup _{|\zeta|=1} \int_{0}^{1}\left|f^{\prime}(r \zeta)\right|(1-r)^{\alpha-1} d r<\infty$ then $f \in \mathcal{M}_{\alpha}$. The second asserts that if $0<\alpha \leq 1, f \in H^{\infty}$ and $\sup _{t} \int_{0}^{\pi} \frac{\left|f\left(e^{i(t+s)}\right)-2 f\left(e^{i t}\right)+f\left(e^{i(t-s)}\right)\right|}{s^{2-\alpha}} d s<\infty$ then $f \in \mathcal{M}_{\alpha}$. The conditions in these theorems are shown to relate to a number of smoothness conditions on the unit circle for a function analytic in the open unit disk and continuous in its closure.

1. Introduction. Let $\Delta=\{z \in \mathbf{C}:|z|<1\}$ and $\Gamma=\{z \in \mathbf{C}:|z|=1\}$. Let \mathcal{M} denote the set of complex-valued Borel measures on Γ, and let $\|\mu\|$ denote the total variation of $\mu \in \mathcal{M}$. For $\alpha>0$ let \mathcal{F}_{α} denote the set of functions f for which there exists $\mu \in \mathcal{M}$ such that

$$
\begin{equation*}
f(z)=\int_{\Gamma} \frac{1}{(1-\bar{\zeta} z)^{\alpha}} d \mu(\zeta) \tag{1}
\end{equation*}
$$

for $|z|<1$. The power function in (1) is the principal branch. \mathcal{F}_{α} is a Banach space with respect to the norm defined by $\|f\|_{\mathcal{F}_{\alpha}}=\inf \|\mu\|$, where μ varies over the subset of \mathcal{M} for which (1) holds.

A function f is called a multiplier of \mathcal{F}_{α} provided that $f g \in \mathcal{F}_{\alpha}$ for every $g \in \mathcal{F}_{\alpha}$. Let \mathcal{M}_{α} denote the set of multipliers of \mathcal{F}_{α}. If $f \in \mathcal{M}_{\alpha}$ then the map $\mathcal{F}_{\alpha} \mapsto \mathcal{F}_{\alpha}$ defined by $g \longmapsto f g$ is a bounded linear operator. \mathcal{M}_{α} is a Banach space with the natural norm defined by

$$
\begin{equation*}
\|f\|_{\mathcal{M}_{\alpha}}=\sup \left\{\|f g\|_{\mathcal{F}_{\alpha}}: g \in \mathcal{F}_{\alpha},\|g\|_{\mathcal{F}_{\alpha}} \leq 1\right\} \tag{2}
\end{equation*}
$$

We are interested in conditions on an analytic function which imply the function belongs to \mathcal{M}_{α}. The main result in this paper is the following theorem.

THEOREM 1. Let $0<\alpha<1$ and let dA denote two-dimensional Lebesgue measure. Iff $\in H^{\infty}$ and

$$
\begin{equation*}
I_{\alpha}(f) \equiv \sup _{|S|=1} \iint_{\Delta} \frac{\left|f^{\prime}(z)\right|(1-|z|)^{\alpha-1}}{|z-\zeta|^{\alpha}} d A(z)<\infty \tag{3}
\end{equation*}
$$

Received by the editors August 29, 1995.
AMS subject classification: 30E20, 30D50.
(c) Canadian Mathematical Society 1998.
then $f \in \mathcal{M}_{\alpha}$. There is a positive constant A depending only on α such that

$$
\begin{equation*}
\|f\|_{\mathcal{M}_{\alpha}} \leq A\left(I_{\alpha}(f)+\|f\|_{H^{\infty}}\right) \tag{4}
\end{equation*}
$$

for all such functions f.
Theorem 1 gives a broad sufficient condition for membership in \mathcal{M}_{α} when $0<\alpha<1$. It implies a number of other results which primarily deal with radial variations and which relate to Lipschitz and Zygmund types of smoothness on Γ.

For $\alpha>0$ each function in \mathcal{M}_{α} has finite radial variations. In fact there is a constant A depending only on α such that if $f \in \mathcal{M}_{\alpha}$ then

$$
\begin{equation*}
\int_{0}^{1}\left|f^{\prime}(r \zeta)\right| d r \leq A\|f\|_{\mathcal{M}_{\alpha}} \tag{5}
\end{equation*}
$$

for $|\zeta|=1$ [4, Theorem 2.6; 7, p. 14]. Since $\sup _{|\zeta|=1} \int_{0}^{1}\left|f^{\prime}(r \zeta)\right| d r<\infty$ we infer that $f \in H^{\infty}$ and $f(\zeta) \equiv \lim _{r \rightarrow 1-} f(r \zeta)$ exists for all $\zeta \in \Gamma$.

Theorem 2 is stated below and it shows that the boundedness of a certain weighted radial variation of f implies $f \in \mathcal{M}_{\alpha}$. It holds for $0<\alpha<1$ and will be proved as a simple consequence of Theorem 1 .

THEOREM 2. Let $0<\alpha<1$ and suppose that the function f is analytic in Δ. If

$$
\begin{equation*}
J_{\alpha}(f) \equiv \sup _{|\zeta|=1} \int_{0}^{1}\left|f^{\prime}(r \zeta)\right|(1-r)^{\alpha-1} d r<\infty \tag{6}
\end{equation*}
$$

then $f \in \mathcal{M}_{\alpha}$. There is a positive constant A depending only on α such that

$$
\begin{equation*}
\|f\|_{\mathcal{M}_{\alpha}} \leq A\left(J_{\alpha}(f)+\|f\|_{H^{\infty}}\right) \tag{7}
\end{equation*}
$$

for all such functions f.
Since (6) implies that $\sup _{|\zeta|=1} \int_{0}^{1}\left|f^{\prime}(r \zeta)\right| d r<\infty$, the assumptions of Theorem 2 imply that $f \in H^{\infty}$ and $f(\zeta)$ exists for all $\zeta \in \Gamma$. In fact these assumptions imply that f extends continuously to $\bar{\Delta}$ and on Γ satisfies a Lipschitz condition of order $1-\alpha$. This was proved by Richard O'Neil in [6]. The result of O'Neil can be stated in the following way. Let $0<\beta<1$ and let $F:[-\pi, \pi] \longrightarrow \mathbf{C}$ be a periodic function with period 2π. A necessary and sufficient condition that F satisfies a Lipschitz condition of order β is that there is a positive constant A (depending on F) such that $|u(r, t)-F(t)| \leq A(1-r)^{\beta}$ for $0 \leq r<1$ and $|t| \leq \pi$, where $u(r, t)$ is the harmonic extension of F to Δ. O'Neil's result is applicable because the assumptions in Theorem 2 imply that $\left|f\left(r e^{i t}\right)-f\left(e^{i t}\right)\right| \leq A(1-r)^{1-\alpha}$ for some constant A.

Theorem 2 directly relates to a number of earlier results about \mathcal{M}_{α}. Theorem A stated below was proved in [1,3] and Theorem B was proved in [3].

THEOREM A. If $f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}$ and $\sum_{n=1}^{\infty} n^{1-\alpha}\left|a_{n}\right|<\infty$ for some $\alpha(0<\alpha<1)$, then $f \in \mathcal{M}_{\alpha}$.

THEOREM B. Suppose that the functionf is analytic in Δ and continuous in $\bar{\Delta}$. Iff $\left(e^{i t}\right)$ satisfies a Lipschitz condition of order α and $0<\alpha<1$ then $f \in \mathcal{M}_{\beta}$ for $\beta>1-\alpha$.

It is easy to show that the assumptions in Theorem A as well as those in Theorem B imply (6). Thus Theorem 2 also yields Theorem A and Theorem B. In general the applicability of Theorem 2 derives from the fact that (6) relates to a number of other conditions.

Theorem 3, which is stated below, concerns second differences. For each function $f: \Gamma \rightarrow \mathbf{C}$ and for each pair of real numbers t and s let

$$
\begin{equation*}
D(f ; t, s)=f\left(e^{i(t+s)}\right)-2 f\left(e^{i t}\right)+f\left(e^{i(t-s)}\right) \tag{8}
\end{equation*}
$$

THEOREM 3. Let $0<\alpha \leq 1$ and suppose that $f \in H^{\infty}$. If

$$
\begin{equation*}
K_{\alpha}(f) \equiv \sup _{t} \int_{0}^{\pi} \frac{|D(f ; t, s)|}{s^{2-\alpha}} d s<\infty \tag{9}
\end{equation*}
$$

then $f \in \mathcal{M}_{\alpha}$. There is a positive constant A depending only on α such that

$$
\begin{equation*}
\|f\|_{\mathcal{M}_{\alpha}} \leq A\left(K_{\alpha}(f)+\|f\|_{H^{\infty}}\right) \tag{10}
\end{equation*}
$$

for all such functions f.
When $0<\alpha<1$ Theorem 3 is proved as a consequence of Theorem 2. When $\alpha=1$ our argument depends on using Toeplitz operators.

We recall some facts about Toeplitz operators. Let P denote the orthogonal projection of $L^{2}(\Gamma)$ onto H^{2} defined by $P(h)=\sum_{n=0}^{\infty} a_{n} z^{n}$ where $h(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n t} \in L^{2}(\Gamma)$. For $\phi \in L^{\infty}(\Gamma)$ the Toeplitz operator with symbol ϕ is the operator on H^{2} defined by $T_{\phi}(g)=P(\phi g)$. The duality between the disk algebra \mathcal{A} and \mathcal{M} shows that when $T_{\bar{f}}$ is restricted to \mathcal{A} it gives the multiplication operator on \mathcal{F}_{1} described earlier. Hence $f \in \mathcal{M}_{1}$ if and only if $T_{\bar{f}}$ is bounded on \mathcal{A}. Also we have $\|f\|_{\mathcal{M}_{1}}=\left\|T_{\bar{f}}\right\|_{\mathcal{A}}=\left\|T_{\bar{f}}\right\|_{H^{\infty}}$ and $T_{\bar{f}}$ is given by

$$
\begin{equation*}
T_{\bar{f}}(h)(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\overline{f(\zeta)} h(\zeta)}{\zeta-z} d \zeta . \tag{11}
\end{equation*}
$$

Toeplitz operators have been used by authors studying \mathcal{M}_{1}, especially in [7].
Theorem 3 extends the following result proved for $\alpha=1$ in [8] and for $0<\alpha<1$ in [3].

THEOREM C. Let $0<\alpha \leq 1$ and assume that $f \in H^{\infty}$. If

$$
\begin{equation*}
\sup _{t} \int_{-\pi}^{\pi} \frac{\left|f\left(e^{i(t+s)}\right)-f\left(e^{i t}\right)\right|}{|s|^{2-\alpha}} d s<\infty \tag{12}
\end{equation*}
$$

then $f \in \mathcal{M}_{\alpha}$.
We thank Fedor Nazarov for his remarks in [5], where a number of detailed comments are made about this paper. Nazarov suggested the present formulation of Theorem 1. He
gave a different proof of this result beginning with the Cauchy-Green formula and he showed alternative ways to deduce a number of results about \mathcal{M}_{α}. One of the new facts which he proved is that if $f \in \mathcal{M}_{\alpha}$ for some $\alpha(0<\alpha<1)$ then $I_{\beta}(f)<\infty$ for each β such that $\alpha<\beta \leq 1$. Nazarov gives credit to E. M. Dynkin for the main ideas described in [5].
2. Preliminary Lemmas. This section consists of seven lemmas which are used later on. Lemmas 1-4 are easy to prove but we do not include the arguments here. Lemma 5 is in [4] and Lemma 6 is in [3]. Lemma 7 is known and a proof depends on the Banach-Alaoglu theorem.

Lemma 1. If $z=r e^{i t}, 0 \leq r<1$ and $|t| \leq \pi$, then $|1-z| \geq \frac{1}{\pi}|t|$.
Lemma 2. Let $\alpha>1$. There is a positive constant A depending only on α such that

$$
\begin{equation*}
\int_{\varphi}^{\pi} \frac{1}{\left|1-r e^{i t}\right|^{\alpha}} d t \leq \frac{A}{\left|1-r e^{i \varphi}\right|^{\alpha-1}} \tag{13}
\end{equation*}
$$

for $0<\varphi<\pi$ and $0 \leq r<1$.
Lemma 2 implies the known estimate that

$$
\begin{equation*}
\int_{-\pi}^{\pi} \frac{1}{\left|1-r e^{i t}\right|^{\alpha}} d t \leq \frac{A}{(1-r)^{\alpha-1}} \tag{14}
\end{equation*}
$$

for $0 \leq r<1$ and $\alpha>1$, where the constant A depends only on α.
Lemma 3. Let $\alpha>1$. There is a positive constant B depending only on α such that

$$
\begin{equation*}
\int_{0}^{r} \frac{1}{\left|1-\rho e^{i \varphi}\right|^{\alpha}} d \rho \leq \frac{B}{\left|1-r e^{i \varphi}\right|^{\alpha-1}} \tag{15}
\end{equation*}
$$

for $0 \leq r<1$ and $|\varphi| \leq \pi$.
LEMMA 4. Let $\beta>-1$ and let $\gamma \geq \beta+1$. There is a positive constant C depending only on β and γ such that

$$
\begin{equation*}
I(\beta, \gamma) \equiv \int_{0}^{1} \frac{(1-r)^{\beta}}{\left|1-r e^{i t}\right|^{\gamma+1}} d r \leq \frac{C}{|t|^{\gamma-\beta}} \tag{16}
\end{equation*}
$$

for $0<|t| \leq \pi$.
LEMMA 5. Let $\alpha>0$ and assume that the function f is analytic in Δ. Then $f \in$ \mathcal{M}_{α} if and only if $f(z) \frac{1}{(1-\bar{\zeta} z)^{\alpha}} \in \mathcal{F}_{\alpha}$ for $|\zeta|=1$ and there is a constant A such that $\left\|f(z) \frac{1}{(1-\bar{\zeta} z)^{\alpha}}\right\|_{\mathcal{F}_{\alpha}} \leq$ A for $|\zeta|=1$. Moreover, we have $\|f\|_{\mathcal{M}_{\alpha}}=\sup _{|\zeta|=1}\left\|f(z) \frac{1}{(1-\bar{\zeta} z)^{\alpha}}\right\|_{\mathcal{F}_{\alpha}}$.

LEMMA 6. Let $\alpha>0$ and assume that the function f is analytic in Δ. If

$$
L_{\alpha}(f) \equiv \int_{0}^{1} \int_{-\pi}^{\pi}\left|f^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1} d t d r<\infty
$$

then $f \in \mathcal{F}_{\alpha}$. There is a constant A depending only on α such that $\|f\|_{\mathcal{F}_{\alpha}} \leq|f(0)|+A L_{\alpha}(f)$ for all such functions f.

LEMMA 7. Let $\alpha>0$ and suppose that $f_{n} \in \mathcal{F}_{\alpha}$ for $n=1,2, \ldots$ and $f_{n}(z) \longrightarrow f(z)$ as $n \rightarrow \infty$ for each z in Δ. If there exists a constant $M>0$ such that $\left\|f_{n}\right\|_{\mathcal{F}_{\alpha}} \leq M$ for $n=1,2, \ldots$, then $f \in \mathcal{F}_{\alpha}$ and $\|f\|_{\mathcal{F}_{\alpha}} \leq M$.
3. Proof of Theorem 1. Since $f \in H^{\infty}$ implies the uniform bound $\left|f^{\prime}(z)\right| \leq \frac{\|f\|_{H}}{1-|z|^{2}}$ and $d A(z)=r d r d t\left(z=r e^{i t}\right)$, Theorem 1 is equivalent to showing that if $f \in H^{\infty}$ and

$$
\begin{equation*}
I_{\alpha}^{*}(f)=\sup _{|\zeta|=1} \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f^{\prime}(z)\right|(1-|z|)^{\alpha-1}}{|z-\zeta|^{\alpha}} d r d t<\infty \tag{17}
\end{equation*}
$$

then $f \in \mathcal{M}_{\alpha}$ and

$$
\begin{equation*}
\|f\|_{\mathcal{M}_{\alpha}} \leq A\left(I_{\alpha}^{*}(f)+\|f\|_{H^{\infty}}\right) \tag{18}
\end{equation*}
$$

where A depends only on α.
Let $0<\alpha<1$ and suppose that $f \in H^{\infty}$ and (17) holds. By considering the functions $f_{n}(z)=f\left(r_{n} z\right)$ where $0<r_{n}<1$ and $r_{n} \rightarrow 1$ as $n \rightarrow \infty$ we can assume that f is analytic in $\bar{\Delta}$. This is a consequence of Lemmas 5 and 7 .

Let $|\zeta|=1$. Then

$$
f(z) \frac{1}{(1-\bar{\zeta} z)^{\alpha}}=\frac{f(\zeta)}{(1-\bar{\zeta} z)^{\alpha}}+g_{\zeta}(z)
$$

where

$$
\begin{equation*}
g_{\zeta}(z)=\frac{f(z)-f(\zeta)}{(1-\bar{\zeta} z)^{\alpha}} \tag{19}
\end{equation*}
$$

Since $\left\|\frac{f(\zeta)}{(1-\zeta \bar{\zeta})^{\alpha}}\right\|_{\mathcal{F}_{\alpha}}=|f(\zeta)| \leq\|f\|_{H^{\infty}}$, Lemma 5 implies that it suffices to show that $g_{\zeta} \in$ \mathcal{F}_{α} and

$$
\begin{equation*}
\left\|g_{\zeta}\right\|_{\mathcal{F}_{\alpha}} \leq A\left(I_{\alpha}^{*}(f)+\|f\|_{H^{\infty}}\right) \tag{20}
\end{equation*}
$$

for $|\zeta|=1$, where A depends only on α. Because of Lemma 6 , this follows if we show that

$$
\begin{equation*}
\int_{0}^{1} \int_{-\pi}^{\pi}\left|g_{\zeta}^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1} d t d r \leq B I_{\alpha}^{*}(f) \tag{21}
\end{equation*}
$$

for $|\zeta|=1$, and B depends only on α.
From (19) we obtain

$$
g_{\zeta}^{\prime}(z)=\frac{f^{\prime}(z)}{(1-\bar{\zeta} z)^{\alpha}}+\alpha \bar{\zeta} \frac{f(z)-f\left(e^{i t}\right)}{(1-\bar{\zeta} z)^{\alpha+1}}+\alpha \bar{\zeta} \frac{f\left(e^{i t}\right)-f(\zeta)}{(1-\bar{\zeta} z)^{\alpha+1}}
$$

where $z=r e^{i t}(0 \leq r<1,|t| \leq \pi)$. Hence it suffices to show that

$$
\begin{gather*}
P(\zeta) \equiv \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f^{\prime}\left(r e^{i t}\right)\right|}{\left|1-\bar{\zeta} r e^{i t}\right|^{\alpha}}(1-r)^{\alpha-1} d t d r \leq C I_{\alpha}^{*}(f) \tag{22}\\
Q(\zeta) \equiv \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f\left(r e^{i t}\right)-f\left(e^{i t}\right)\right|}{\left|1-\bar{\zeta} r e^{i t}\right|^{\alpha+1}}(1-r)^{\alpha-1} d t d r \leq D I_{\alpha}^{*}(f) \tag{23}
\end{gather*}
$$

and

$$
\begin{equation*}
R(\zeta) \equiv \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f\left(e^{i t}\right)-f(\zeta)\right|}{\left|1-\bar{\zeta} r e^{i t}\right|^{\alpha+1}}(1-r)^{\alpha-1} d t d r \leq E I_{\alpha}^{*}(f) \tag{24}
\end{equation*}
$$

for $|\zeta|=1$ and C, D and E depend only on α.
Clearly we have $P(\zeta) \leq I_{\alpha}^{*}(f)$ for $|\zeta|=1$. To estimate $Q(\zeta)$ note that $\left|f\left(r e^{i t}\right)-f\left(e^{i t}\right)\right| \leq$ $\int_{r}^{1}\left|f^{\prime}\left(\rho e^{i t}\right)\right| d \rho$. Hence

$$
\begin{aligned}
Q(\zeta) & \leq \int_{0}^{1} \int_{-\pi}^{\pi} \int_{r}^{1} \frac{\left|f^{\prime}\left(\rho e^{i t}\right)\right|}{\left|1-\bar{\zeta} r e^{i t}\right|^{\alpha+1}}(1-r)^{\alpha-1} d \rho d t d r \\
& =\int_{-\pi}^{\pi}\left\{\int_{0}^{1} \int_{0}^{\rho} \frac{(1-r)^{\alpha-1}}{\left|1-\bar{\zeta} r e^{i t}\right|^{\alpha+1}} d r\left|f^{\prime}\left(\rho e^{i t}\right)\right| d \rho\right\} d t \\
& \leq \int_{-\pi}^{\pi}\left\{\int_{0}^{1} \int_{0}^{\rho} \frac{1}{\left|1-\bar{\zeta} r e^{i t}\right|^{\alpha+1}} d r(1-\rho)^{\alpha-1}\left|f^{\prime}\left(\rho e^{i t}\right)\right| d \rho\right\} d t .
\end{aligned}
$$

Lemma 3 yields

$$
Q(\zeta) \leq \int_{-\pi}^{\pi} \int_{0}^{1} \frac{B}{\left|1-\rho \bar{\zeta} e^{i t}\right|^{\alpha}}(1-\rho)^{\alpha-1}\left|f^{\prime}\left(\rho e^{i t}\right)\right| d \rho d t
$$

and hence $Q(\zeta) \leq B I_{\alpha}^{*}(f)$ for $|\zeta|=1$.
Let $\zeta=e^{i \eta}(-\pi<\eta \leq \pi)$. Using periodicity we can write $R(\zeta)=S(\zeta)+T(\zeta)$, where

$$
\begin{equation*}
S(\zeta)=\int_{0}^{1} \int_{\eta-\pi}^{\eta} \frac{\left|f\left(e^{i t}\right)-f\left(e^{i \eta}\right)\right|}{\left|1-r e^{i(t-\eta)}\right|^{\alpha+1}}(1-r)^{\alpha-1} d t d r \tag{25}
\end{equation*}
$$

and

$$
\begin{equation*}
T(\zeta)=\int_{0}^{1} \int_{\eta}^{\eta+\pi} \frac{\left|f\left(e^{i t}\right)-f\left(e^{i \eta}\right)\right|}{\left|1-r e^{i(t-\eta)}\right|^{\alpha+1}}(1-r)^{\alpha-1} d t d r \tag{26}
\end{equation*}
$$

Then $T(\zeta)=\int_{0}^{1} \int_{0}^{\pi} \frac{\left|f\left(e^{i(s+\eta)}\right)-f\left(e^{i \eta}\right)\right|}{\mid 1-r e^{i s} \alpha^{\alpha+1}}(1-r)^{\alpha-1} d s d r$. Since $\left|f\left(e^{i(s+\eta)}\right)-f\left(e^{i \eta}\right)\right| \leq$ $\int_{\eta}^{\eta+s}\left|f^{\prime}\left(e^{i \varphi}\right)\right| d \varphi$ for $0<s \leq 2 \pi$ this gives

$$
\begin{aligned}
T(\zeta) & \leq \int_{0}^{1} \int_{0}^{\pi} \int_{\eta}^{\eta+s} \frac{\left|f^{\prime}\left(e^{i \varphi}\right)\right|(1-r)^{\alpha-1}}{\left|1-r e^{i s}\right|^{\alpha+1}} d \varphi d s d r \\
& =\int_{0}^{1}\left\{\int_{\eta}^{\eta+\pi} \int_{\varphi-\eta}^{\pi} \frac{\left|f^{\prime}\left(e^{i \varphi}\right)\right|(1-r)^{\alpha-1}}{\left|1-r e^{i s}\right|^{\alpha+1}} d s d \varphi\right\} d r
\end{aligned}
$$

Hence (13) yields

$$
\begin{aligned}
T(\zeta) & \leq \int_{0}^{1} \int_{\eta}^{\eta+\pi} \frac{A\left|f^{\prime}\left(e^{i \varphi}\right)\right|(1-r)^{\alpha-1}}{\left|1-r e^{i(\varphi-\eta)}\right|^{\alpha}} d \varphi d r \\
& \leq A \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f^{\prime}\left(e^{i \varphi}\right)\right|(1-r)^{\alpha-1}}{\left|1-r e^{i \varphi} \bar{\zeta}\right|^{\alpha}} d \varphi d r \\
& \leq A I_{\alpha}^{*}(f)
\end{aligned}
$$

The same estimate also can be obtained for $S(\zeta)$.
4. Proof of Theorem 2. Let $0<\alpha<1$ and suppose that the function f is analytic in Δ and satisfies (6). As noted earlier this implies $f \in H^{\infty}$.

Let $|\zeta|=1$ and $\operatorname{set} \zeta=e^{i \eta}$. Then

$$
\begin{aligned}
& \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1}}{\left|r e^{i t}-\zeta\right|^{\alpha}} d t d r \\
& =\int_{0}^{1} \int_{\eta-\pi}^{\eta+\pi} \frac{\left|f^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1}}{\left|r e^{i t}-e^{i \eta}\right|^{\alpha}} d t d r \\
& =\int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f^{\prime}\left(r e^{i(s+\eta)}\right)\right|(1-r)^{\alpha-1}}{\left|1-r e^{i s}\right|^{\alpha}} d s d r .
\end{aligned}
$$

Hence Lemma 1 implies

$$
\begin{aligned}
& \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left|f^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1}}{\left|r e^{i t}-\zeta\right|^{\alpha}} d t d r \\
& \leq \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\pi^{\alpha}}{|s|^{\alpha}}\left|f^{\prime}\left(r e^{i(s+\eta)}\right)\right|(1-r)^{\alpha-1} d s d r \\
& =\pi^{\alpha} \int_{-\pi}^{\pi} \frac{1}{|s|^{\alpha}}\left\{\int_{0}^{1}\left|f^{\prime}\left(r e^{i(s+\eta)}\right)\right|(1-r)^{\alpha-1} d r\right\} d s \\
& \leq \pi^{\alpha} \int_{-\pi}^{\pi} \frac{1}{|s|^{\alpha}} J_{\alpha}(f) d s \\
& =\frac{2 \pi}{1-\alpha} J_{\alpha}(f) .
\end{aligned}
$$

Thus $I_{\alpha}(f) \leq \frac{2 \pi}{1-\alpha} J_{\alpha}(f)<\infty$. Therefore Theorem 1 implies $f \in \mathcal{M}_{\alpha}$. Also (4) yields (7).
5. Proof of Theorem 3. We first prove Theorem 3 when $0<\alpha<1$. Let $0<\alpha<1$ and suppose that $f \in H^{\infty}$ and (9) is satisfied.

Since $f \in H^{\infty}$ the Poisson formula gives

$$
\begin{equation*}
f\left(r e^{i t}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} P(r, s-t) f\left(e^{i s}\right) d s \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
P(r, s)=\frac{1-r^{2}}{1-2 r \cos s+r^{2}} \tag{28}
\end{equation*}
$$

($0 \leq r<1,|s| \leq \pi$). By differentiating (27) with respect to r, we find that

$$
\begin{equation*}
e^{i t} f^{\prime}\left(r e^{i t}\right)=\frac{1}{\pi} \int_{-\pi}^{\pi} Q(r, s-t) f\left(e^{i s}\right) d s \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(r, s)=\frac{\left(1-r^{2}\right) \cos s-2 r}{\left(1-2 r \cos s+r^{2}\right)^{2}} \tag{30}
\end{equation*}
$$

Q is an even function of s, has period 2π and $\int_{0}^{\pi} Q(r, s) d s=0$. Hence (29) implies

$$
\begin{aligned}
e^{i t} f^{\prime}\left(r e^{i t}\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} Q(r, s)\left\{f\left(e^{i(t+s)}\right)-f\left(e^{i(t-s)}\right)\right\} d s \\
& =\frac{1}{\pi} \int_{0}^{\pi} Q(r, s)\left\{f\left(e^{i(t+s)}\right)-f\left(e^{i(t-s)}\right)\right\} d s \\
& =\frac{1}{\pi} \int_{0}^{\pi} Q(r, s)\left\{f\left(e^{i(t+s)}\right)-2 f\left(e^{i t}\right)+f\left(e^{i(t-s)}\right)\right\} d s
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left|f^{\prime}\left(r e^{i t}\right)\right| \leq \frac{1}{\pi} \int_{0}^{\pi}|Q(r, s)||D(f ; t, s)| d s \tag{31}
\end{equation*}
$$

Since $\left(1+r^{2}\right) \cos s-2 r=(1-r)^{2}-2\left(1+r^{2}\right) \sin ^{2} \frac{s}{2}$ and $1-2 r \cos s+r^{2}=\left|1-r e^{i s}\right|^{2}$, we have $|Q(r, s)| \leq \frac{(1-r)^{2}+s^{2}}{\left|1-r e^{i s}\right|^{4}}$. Hence (31) yields

$$
\int_{0}^{1}\left|f^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1} d r \leq \frac{1}{\pi} \int_{0}^{\pi} F(s)|D(f ; t, s)| d s+\frac{1}{\pi} \int_{0}^{\pi} G(s)|D(f ; t, s)| d s
$$

where

$$
\begin{equation*}
F(s)=\int_{0}^{1} \frac{(1-r)^{\alpha+1}}{\left|1-r e^{i s}\right|^{4}} d r \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
G(s)=s^{2} \int_{0}^{1} \frac{(1-r)^{\alpha-1}}{\left|1-r e^{i s}\right|^{4}} d r \tag{33}
\end{equation*}
$$

Lemma 4 implies that $F(s) \leq \frac{B}{s^{2-\alpha}}$ and $G(s) \leq \frac{C}{s^{2-\alpha}}$ for $0<s \leq \pi$, where B and C depend only on α. Therefore

$$
\int_{0}^{1}\left|f^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1} d r \leq \frac{B+C}{\pi} \int_{0}^{\pi} \frac{|D(f ; t, s)|}{s^{2-\alpha}} d s
$$

Since $K_{\alpha}(f)<\infty$ we conclude that $\sup _{t} \int_{0}^{1}\left|f^{\prime}\left(r e^{i t}\right)\right|(1-r)^{\alpha-1} d r<\infty$. Hence Theorem 2 implies $f \in \mathcal{M}_{\alpha}$. The argument also yields (10).

Next we prove Theorem 3 in the case $\alpha=1$. Suppose that $f \in H^{\infty}$ and

$$
\begin{equation*}
K_{1}(f) \equiv \sup _{t} \int_{0}^{\pi} \frac{|D(f ; t, s)|}{s} d s<\infty \tag{34}
\end{equation*}
$$

Let $T_{\bar{f}}: H^{\infty} \rightarrow H^{\infty}$ denote the Toeplitz operator. Then

$$
\begin{aligned}
& \left\|T_{\bar{f}}\right\|_{H^{\infty}}=\sup \left\{\frac{1}{2 \pi}\left|\int_{\Gamma} \frac{\overline{f(\zeta)} h(\zeta)}{\zeta-z} d \zeta\right|:\|h\|_{H^{\infty}} \leq 1,|z|<1\right\} \\
& =\sup \left\{\frac{1}{2 \pi}\left|\int_{\Gamma} \frac{\overline{f(\zeta)} h(\zeta)}{\zeta-r \sigma} d \zeta\right|:\|h\|_{H^{\infty}} \leq 1,0 \leq r<1,|\sigma|=1\right\} \\
& =\sup \left\{\frac{1}{2 \pi}\left|\int_{\Gamma} \frac{\overline{f(\zeta)} h(\zeta)}{1-r \sigma \bar{\zeta}} \frac{1}{\zeta} d \zeta\right|:\|h\|_{H^{\infty}} \leq 1,0 \leq r<1,|\sigma|=1\right\} \\
& =\sup \left\{\frac{1}{2 \pi}\left|\int_{\Gamma} \frac{\overline{f(\sigma \zeta)} h(\sigma \zeta)}{1-r \bar{\zeta}} \frac{1}{\zeta} d \zeta\right|:\|h\|_{H^{\infty}} \leq 1,0 \leq r<1,|\sigma|=1\right\}
\end{aligned}
$$

By writing $\overline{f(\sigma \zeta)}=[\overline{f(\sigma \zeta)}-2 \overline{f(\sigma)}+\overline{f(\sigma \bar{\zeta})}]+2 \overline{f(\sigma)}-\overline{f(\sigma \bar{\zeta})}$ we see that $\left\|T_{\bar{f}}\right\|_{H^{\infty}} \leq I+J+K$, where

$$
\begin{gathered}
I=\sup \left\{\frac{1}{2 \pi}\left|\int_{\Gamma} \frac{\overline{f(\sigma \zeta)}-2 \overline{f(\sigma)}+\overline{f(\sigma \bar{\zeta})}}{1-r \bar{\zeta}} \frac{h(\sigma \zeta)}{\zeta} d \zeta\right|\right\} \\
J=\sup \left\{\frac{1}{2 \pi} \left\lvert\, \int_{\Gamma} \frac{2 \overline{f(\sigma)}}{1-r \bar{\zeta}} \frac{h(\sigma \zeta)}{\zeta} d \zeta\right.\right\}
\end{gathered}
$$

and

$$
K=\sup \left\{\frac{1}{2 \pi} \left\lvert\, \int_{\Gamma} \frac{\overline{f(\sigma \bar{\zeta})}}{1-r \bar{\zeta}} \frac{h(\sigma \zeta)}{\zeta} d \zeta\right.\right\}
$$

again where $\|h\|_{H^{\infty}} \leq 1,0 \leq r<1$ and $|\sigma|=1$.
Let $\zeta=e^{i s}$ and $\sigma=e^{i t}$. We use Lemma 1 as follows.

$$
\begin{aligned}
I & \leq \sup \left\{\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left|f\left(e^{i(t+s)}\right)-2 f\left(e^{i t}\right)+f\left(e^{i(t-s)}\right)\right|}{\left|1-r e^{-i s}\right|} d s: 0 \leq r<1,|t| \leq \pi\right\} \\
& \leq \sup \left\{\frac{1}{\pi} \int_{0}^{\pi} \frac{|D(f ; t, s)|}{\mid 1-r e^{-i s \mid}} d s: 0 \leq r<1,|t| \leq \pi\right\} \\
& \leq \sup \left\{\int_{0}^{\pi} \frac{|D(f ; t, s)|}{s} d s:|t| \leq \pi\right\} \\
& =K_{1}(f)
\end{aligned}
$$

Also we have

$$
\begin{aligned}
J & \leq 2\|f\|_{H^{\infty}} \sup \left\{\frac{1}{2 \pi}\left|\int_{\Gamma} \frac{h(\sigma \zeta)}{(1-r \bar{\zeta}) \zeta} d \zeta\right|:\|h\|_{H^{\infty}} \leq 1,0 \leq r<1,|\sigma|=1\right\} \\
& =2\|f\|_{H^{\infty}} \sup \left\{\left|\frac{1}{2 \pi i} \int_{\Gamma} \frac{h(w)}{w-r \sigma} d w\right|:\|h\|_{H^{\infty}} \leq 1,0 \leq r<1,|\sigma|=1\right\}
\end{aligned}
$$

Hence Cauchy's formula implies that

$$
\begin{aligned}
J & \leq 2\|f\|_{H^{\infty}} \sup \left\{|h(r \sigma)|:\|h\|_{H^{\infty}} \leq 1,0 \leq r<1,|\sigma|=1\right\} \\
& =2\|f\|_{H^{\infty}} .
\end{aligned}
$$

We also use Cauchy's formula to estimate K as follows. Note that the function g defined by $g(w)=\overline{f(\bar{w})}$ for $|w|<1$ belongs to H^{∞}. Hence the change of variables $w=\bar{\sigma} \zeta$ gives

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\Gamma} \frac{\overline{f(\sigma \bar{\zeta})} h(\sigma \zeta)}{(1-r \bar{\zeta}) \zeta} d \zeta=\frac{1}{2 \pi i} \int_{\Gamma} \frac{g(w) h\left(\sigma^{2} w\right)}{w-r \bar{\sigma}} d w \\
& =g(r \bar{\sigma}) h(r \sigma)=\overline{f(r \sigma) h(r \sigma) .}
\end{aligned}
$$

Therefore $K \leq\|f\|_{H^{\infty}}$.
Combining the inequalities for I, J and K derived above we obtain $\left\|T_{\bar{f}}\right\|_{H^{\infty}} \leq K_{1}(f)+$ $3\|f\|_{H^{\infty}}$. Hence $\|f\|_{\mathcal{M}_{1}} \leq K_{1}(f)+3\|f\|_{H^{\infty}}<\infty$, and therefore $f \in \mathcal{M}_{1}$. This completes the proof of Theorem 3.

References

1. A. Dansereau, General integral families and multipliers. Doctoral dissertation, State University of New York at Albany, 1992.
2. P. L. Duren, Theory of H^{p} Spaces. Academic Press, New York, 1970.
3. D. J. Hallenbeck, T. H. MacGregor and K. Samotij, Fractional Cauchy transforms, inner functions and multipliers. Proc. London Math. Soc. (3) 72(1996), 157-187.
4. R. A. Hibschweiler and T. H. MacGregor, Multipliers of families of Cauchy-Stieltjes transforms. Trans. Amer. Math. Soc. 331(1992), 377-394.
5. F. Nazarov, Private communication.
6. R. O'Neil, Private communication.
7. S. A. Vinogradov, Properties of multipliers of Cauchy-Stieltjes integrals and some factorization problems for analytic functions. Amer. Math. Soc. Transl. (2) 115(1980), 1-32.
8. S. A. Vinogradov, M. G. Goluzina and V. P. Khavin, Multipliers and divisors of Cauchy-Stieltjes integrals. Seminars in Math., V.A. Steklov Math. Inst., Leningrad 19(1972), 29-42.

Department of Mathematics and Statistics
State University of New York
Albany, New York
USA

