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MULTIPLIERS OF FRACTIONAL CAUCHY
TRANSFORMS AND SMOOTHNESS CONDITIONS

DONGHAN LUO AND THOMAS MACGREGOR

ABSTRACT. This paper studies conditions on an analytic function that imply it
belongs to Mã , the set of multipliers of the family of functions given by f (z) ≥
R
jêj≥1

1

(1�êz)ã
dñ(ê) (jzj Ú 1) where ñ is a complex Borel measure on the unit cir-

cle and ã Ù 0. There are two main theorems. The first asserts that if 0 Ú ã Ú 1
and supjêj≥1

R1
0 j f

0(rê)j(1 � r)ã�1 dr Ú 1 then f 2 Mã . The second asserts that if

0 Ú ã � 1, f 2 H1 and supt
Rô
0

j f (ei(t+s))�2f (eit)+f (ei(t�s))j
s2�ã ds Ú 1 then f 2 Mã . The

conditions in these theorems are shown to relate to a number of smoothness conditions
on the unit circle for a function analytic in the open unit disk and continuous in its
closure.

1. Introduction. Let ∆ ≥ fz 2 C : jzj Ú 1g and Γ ≥ fz 2 C : jzj ≥ 1g. Let
M denote the set of complex-valued Borel measures on Γ, and let kñk denote the total
variation of ñ 2 M . For ã Ù 0 let Fã denote the set of functions f for which there exists
ñ 2 M such that

(1) f (z) ≥
Z

Γ

1

(1 � ê̄z)ã
dñ(ê)

for jzj Ú 1. The power function in (1) is the principal branch. Fã is a Banach space with
respect to the norm defined by kfkFã

≥ inf kñk, where ñ varies over the subset of M
for which (1) holds.

A function f is called a multiplier of Fã provided that fg 2 Fã for every g 2 Fã. Let
Mã denote the set of multipliers of Fã. If f 2 Mã then the map Fã 7! Fã defined by
g 7! fg is a bounded linear operator. Mã is a Banach space with the natural norm defined
by

(2) kfkMã

≥ supfkfgkFã

: g 2 Fã, kgkFã

� 1g.

We are interested in conditions on an analytic function which imply the function be-
longs to Mã. The main result in this paper is the following theorem.

THEOREM 1. Let 0 Ú ã Ú 1 and let dA denote two-dimensional Lebesgue measure.
If f 2 H1 and

(3) Iã(f ) � sup
jêj≥1

Z Z
∆

jf 0(z)j(1 � jzj)ã�1

jz � êjã
dA(z) Ú 1
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then f 2 Mã. There is a positive constant A depending only on ã such that

(4) kfkMã

� A
�
Iã(f ) + kfkH1

�

for all such functions f .

Theorem 1 gives a broad sufficient condition for membership in Mã when 0 Ú ã Ú 1.
It implies a number of other results which primarily deal with radial variations and which
relate to Lipschitz and Zygmund types of smoothness on Γ.

For ã Ù 0 each function in Mã has finite radial variations. In fact there is a constant
A depending only on ã such that if f 2 Mã then

(5)
Z 1

0
jf 0(rê)j dr � AkfkMã

for jêj ≥ 1 [4, Theorem 2.6; 7, p. 14]. Since supjêj≥1
R1
0 jf

0(rê)j dr Ú 1 we infer that
f 2 H1 and f (ê) � limr!1� f (rê) exists for all ê 2 Γ.

Theorem 2 is stated below and it shows that the boundedness of a certain weighted
radial variation of f implies f 2 Mã. It holds for 0 Ú ã Ú 1 and will be proved as a
simple consequence of Theorem 1.

THEOREM 2. Let 0 Ú ã Ú 1 and suppose that the function f is analytic in ∆. If

(6) Jã(f ) � sup
jêj≥1

Z 1

0
jf 0(rê)j(1 � r)ã�1 dr Ú 1

then f 2 Mã. There is a positive constant A depending only on ã such that

(7) kfkMã

� A
�
Jã(f ) + kfkH1

�

for all such functions f .

Since (6) implies that supjêj≥1
R1

0 jf
0(rê)j dr Ú 1, the assumptions of Theorem 2 imply

that f 2 H1 and f (ê) exists for all ê 2 Γ. In fact these assumptions imply that f extends
continuously to ∆̄ and on Γ satisfies a Lipschitz condition of order 1�ã. This was proved
by Richard O’Neil in [6]. The result of O’Neil can be stated in the following way. Let
0 Ú å Ú 1 and let F: [�ô,ô] ! C be a periodic function with period 2ô. A necessary
and sufficient condition that F satisfies a Lipschitz condition of order å is that there is a
positive constant A (depending on F) such that ju(r, t)�F(t)j � A(1� r)å for 0 � r Ú 1
and jtj � ô, where u(r, t) is the harmonic extension of F to ∆. O’Neil’s result is applicable
because the assumptions in Theorem 2 imply that jf (reit)� f (eit)j � A(1�r)1�ã for some
constant A.

Theorem 2 directly relates to a number of earlier results about Mã. Theorem A stated
below was proved in [1, 3] and Theorem B was proved in [3].
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THEOREM A. If f (z) ≥
P1

n≥0 anzn and
P1

n≥1 n1�ãjanj Ú 1 for some ã (0 Ú ã Ú 1),
then f 2 Mã.

THEOREM B. Suppose that the function f is analytic in ∆ and continuous in ∆̄. If f (eit)
satisfies a Lipschitz condition of order ã and 0 Ú ã Ú 1 then f 2 Må for å Ù 1� ã.

It is easy to show that the assumptions in Theorem A as well as those in Theorem B
imply (6). Thus Theorem 2 also yields Theorem A and Theorem B. In general the applica-
bility of Theorem 2 derives from the fact that (6) relates to a number of other conditions.

Theorem 3, which is stated below, concerns second differences. For each function
f : Γ ! C and for each pair of real numbers t and s let

(8) D(f ; t, s) ≥ f (ei(t+s)) � 2f (eit) + f (ei(t�s)).

THEOREM 3. Let 0 Ú ã � 1 and suppose that f 2 H1. If

(9) Kã(f ) � sup
t

Z ô

0

jD(f ; t, s)j
s2�ã

ds Ú 1

then f 2 Mã. There is a positive constant A depending only on ã such that

(10) kfkMã

� A
�
Kã(f ) + kfkH1

�
for all such functions f .

When 0 Ú ã Ú 1 Theorem 3 is proved as a consequence of Theorem 2. When ã ≥ 1
our argument depends on using Toeplitz operators.

We recall some facts about Toeplitz operators. Let P denote the orthogonal projection
of L2(Γ) onto H2 defined by P(h) ≥

P1
n≥0 anzn where h(t) ≥

P1
n≥�1 aneint 2 L2(Γ).

For û 2 L1(Γ) the Toeplitz operator with symbol û is the operator on H2 defined by
Tû(g) ≥ P(ûg). The duality between the disk algebra A and M shows that when Tf̄ is
restricted to A it gives the multiplication operator on F1 described earlier. Hence f 2 M1

if and only if Tf̄ is bounded on A. Also we have kfkM1
≥ kTf̄kA ≥ kTf̄kH1 and Tf̄ is

given by

(11) Tf̄ (h)(z) ≥
1

2ôi

Z
Γ

f (ê)h(ê)
ê � z

dê.

Toeplitz operators have been used by authors studying M1, especially in [7].
Theorem 3 extends the following result proved for ã ≥ 1 in [8] and for 0 Ú ã Ú 1

in [3].

THEOREM C. Let 0 Ú ã � 1 and assume that f 2 H1. If

(12) sup
t

Z ô

�ô

jf (ei(t+s)) � f (eit)j
jsj2�ã

ds Ú 1

then f 2 Mã.

We thank Fedor Nazarov for his remarks in [5], where a number of detailed comments
are made about this paper. Nazarov suggested the present formulation of Theorem 1. He

https://doi.org/10.4153/CJM-1998-033-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-033-3


598 DONGHAN LUO AND THOMAS MACGREGOR

gave a different proof of this result beginning with the Cauchy-Green formula and he
showed alternative ways to deduce a number of results about Mã. One of the new facts
which he proved is that if f 2 Mã for some ã (0 Ú ã Ú 1) then Iå(f ) Ú 1 for each å
such that ã Ú å � 1. Nazarov gives credit to E. M. Dynkin for the main ideas described
in [5].

2. Preliminary Lemmas. This section consists of seven lemmas which are used
later on. Lemmas 1–4 are easy to prove but we do not include the arguments here.
Lemma 5 is in [4] and Lemma 6 is in [3]. Lemma 7 is known and a proof depends on the
Banach-Alaoglu theorem.

LEMMA 1. If z ≥ reit, 0 � r Ú 1 and jtj � ô, then j1� zj ½ 1
ô jtj.

LEMMA 2. Let ã Ù 1. There is a positive constant A depending only on ã such that

(13)
Z ô

ß

1
j1 � reitjã

dt �
A

j1 � reißjã�1

for 0 Ú ß Ú ô and 0 � r Ú 1.

Lemma 2 implies the known estimate that

(14)
Z ô

�ô

1
j1 � reitjã

dt �
A

(1� r)ã�1

for 0 � r Ú 1 and ã Ù 1, where the constant A depends only on ã.

LEMMA 3. Let ã Ù 1. There is a positive constant B depending only on ã such that

(15)
Z r

0

1
j1� öeißjã

dö �
B

j1� reißjã�1

for 0 � r Ú 1 and jßj � ô.

LEMMA 4. Let å Ù �1 and let ç ½ å + 1. There is a positive constant C depending
only on å and ç such that

(16) I(å, ç) �
Z 1

0

(1� r)å

j1� reitjç+1
dr �

C
jtjç�å

for 0 Ú jtj � ô.

LEMMA 5. Let ã Ù 0 and assume that the function f is analytic in ∆. Then f 2

Mã if and only if f (z) 1
(1�ê̄z)ã

2 Fã for jêj ≥ 1 and there is a constant A such that

kf (z) 1
(1�ê̄z)ã

kFã
� A for jêj ≥ 1. Moreover, we have kfkMã

≥ supjêj≥1 kf (z) 1
(1�ê̄z)ã

kFã
.

LEMMA 6. Let ã Ù 0 and assume that the function f is analytic in ∆. If

Lã(f ) �
Z 1

0

Z ô

�ô
jf 0(r eit)j(1 � r)ã�1 dt dr Ú 1

then f 2 Fã. There is a constant A depending only on ã such that kfkFã
� jf (0)j+A Lã(f )

for all such functions f .

LEMMA 7. Let ã Ù 0 and suppose that fn 2 Fã for n ≥ 1, 2, . . . and fn(z) ! f (z)
as n ! 1 for each z in ∆. If there exists a constant M Ù 0 such that kfnkFã

� M for
n ≥ 1, 2, . . ., then f 2 Fã and kfkFã

� M.
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3. Proof of Theorem 1. Since f 2 H1 implies the uniform bound jf 0(z)j � kfkH1

1�jzj2

and dA(z) ≥ r dr dt (z ≥ reit), Theorem 1 is equivalent to showing that if f 2 H1 and

(17) IŁã(f ) ≥ sup
jêj≥1

Z 1

0

Z ô

�ô

jf 0(z)j (1 � jzj)ã�1

jz � êjã
dr dt Ú 1

then f 2 Mã and

(18) kfkMã

� A
�
IŁã(f ) + kfkH1

�

where A depends only on ã.
Let 0 Ú ã Ú 1 and suppose that f 2 H1 and (17) holds. By considering the functions

fn(z) ≥ f (rnz) where 0 Ú rn Ú 1 and rn ! 1 as n !1 we can assume that f is analytic
in ∆̄. This is a consequence of Lemmas 5 and 7.

Let jêj ≥ 1. Then

f (z)
1

(1� ê̄z)ã
≥

f (ê)

(1� ê̄z)ã
+ gê(z),

where

(19) gê(z) ≥
f (z) � f (ê)

(1� ê̄z)ã
.

Since k f (ê)
(1�ê̄z)ã

kFã
≥ jf (ê)j � kfk

H1
, Lemma 5 implies that it suffices to show that gê 2

Fã and

(20) kgêkFã
� A

�
IŁã(f ) + kfk

H1

�

for jêj ≥ 1, where A depends only on ã. Because of Lemma 6, this follows if we show
that

(21)
Z 1

0

Z ô

�ô
jg0ê(re

it)j (1 � r)ã�1 dt dr � BIŁã(f )

for jêj ≥ 1, and B depends only on ã.
From (19) we obtain

g0ê(z) ≥
f 0(z)

(1� ê̄z)ã
+ ãê̄

f (z) � f (eit)

(1� ê̄z)ã+1
+ ãê̄

f (eit)� f (ê)

(1� ê̄z)ã+1

where z ≥ reit (0 � r Ú 1, jtj � ô). Hence it suffices to show that

(22) P(ê) �
Z 1

0

Z ô

�ô

jf 0(reit)j

j1 � ê̄reitjã
(1� r)ã�1 dt dr � CIŁã(f ),

(23) Q(ê) �
Z 1

0

Z ô

�ô

jf (reit)� f (eit)j

j1� ê̄reitjã+1
(1� r)ã�1 dt dr � DIŁã(f )
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and

(24) R(ê) �
Z 1

0

Z ô

�ô

jf (eit) � f (ê)j

j1� ê̄reitjã+1
(1� r)ã�1 dt dr � EIŁã(f )

for jêj ≥ 1 and C, D and E depend only on ã.
Clearly we have P(ê) � IŁã(f ) for jêj ≥ 1. To estimate Q(ê) note that jf (reit)� f (eit)j �R1

r jf
0(öeit)j dö. Hence

Q(ê) �
Z 1

0

Z ô

�ô

Z 1

r

jf 0(öeit)j

j1 � ê̄reitjã+1
(1� r)ã�1 dö dt dr

≥
Z ô

�ô

( Z 1

0

Z ö

0

(1 � r)ã�1

j1� ê̄reitjã+1
drjf 0(öeit)j dö

)
dt

�
Z ô

�ô

( Z 1

0

Z ö

0

1

j1� ê̄reitjã+1
dr(1� ö)ã�1jf 0(öeit)j dö

)
dt.

Lemma 3 yields

Q(ê) �
Z ô

�ô

Z 1

0

B

j1 � öê̄eitjã
(1 � ö)ã�1jf 0(öeit)j dö dt,

and hence Q(ê) � BIŁã(f ) for jêj ≥ 1.
Let ê ≥ eië (�ô Ú ë � ô). Using periodicity we can write R(ê) ≥ S(ê) + T(ê), where

(25) S(ê) ≥
Z 1

0

Z ë

ë�ô

jf (eit) � f (eië)j
j1� rei(t�ë)jã+1

(1� r)ã�1 dt dr

and

(26) T(ê) ≥
Z 1

0

Z ë+ô

ë

jf (eit) � f (eië)j
j1� rei(t�ë)jã+1

(1 � r)ã�1 dt dr.

Then T(ê) ≥
R1
0
Rô
0

jf (ei(s+ë))�f (eië)j
j1�reisjã+1 (1 � r)ã�1 ds dr. Since jf (ei(s+ë)) � f (eië)j �Rë+s

ë jf 0(eiß)j dß for 0 Ú s � 2ô this gives

T(ê) �
Z 1

0

Z ô

0

Z ë+s

ë

jf 0(eiß)j (1 � r)ã�1

j1� reisjã+1
dß ds dr

≥
Z 1

0

( Z ë+ô

ë

Z ô

ß�ë

jf 0(eiß)j (1 � r)ã�1

j1� reisjã+1
ds dß

)
dr.

Hence (13) yields

T(ê) �
Z 1

0

Z ë+ô

ë

Ajf 0(eiß)j (1 � r)ã�1

j1� rei(ß�ë)jã
dß dr

� A
Z 1

0

Z ô

�ô

jf 0(eiß)j (1 � r)ã�1

j1� reißê̄jã
dß dr

� A IŁã(f ).

The same estimate also can be obtained for S(ê).
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4. Proof of Theorem 2. Let 0 Ú ã Ú 1 and suppose that the function f is analytic
in ∆ and satisfies (6). As noted earlier this implies f 2 H1.

Let jêj ≥ 1 and set ê ≥ eië. Then

Z 1

0

Z ô

�ô

jf 0(reit)j (1 � r)ã�1

jreit � êjã
dt dr

≥
Z 1

0

Z ë+ô

ë�ô

jf 0(reit)j (1 � r)ã�1

jreit � eiëjã
dt dr

≥
Z 1

0

Z ô

�ô

jf 0(rei(s+ë))j (1 � r)ã�1

j1� reisjã
ds dr.

Hence Lemma 1 implies

Z 1

0

Z ô

�ô

jf 0(reit)j (1 � r)ã�1

jreit � êjã
dt dr

�
Z 1

0

Z ô

�ô

ôã

jsjã
jf 0(rei(s+ë))j (1 � r)ã�1 ds dr

≥ ôã
Z ô

�ô

1
jsjã

( Z 1

0
jf 0(rei(s+ë))j (1 � r)ã�1 dr

)
ds

� ôã
Z ô

�ô

1
jsjã

Jã(f ) ds

≥
2ô

1� ã
Jã(f ).

Thus Iã(f ) � 2ô
1�ãJã(f ) Ú 1. Therefore Theorem 1 implies f 2 Mã. Also (4) yields (7).

5. Proof of Theorem 3. We first prove Theorem 3 when 0 Ú ã Ú 1. Let 0 Ú ã Ú 1
and suppose that f 2 H1 and (9) is satisfied.

Since f 2 H1 the Poisson formula gives

(27) f (reit) ≥
1

2ô

Z ô

�ô
P(r, s � t) f (eis) ds

where

(28) P(r, s) ≥
1� r2

1� 2r cos s + r2

(0 � r Ú 1, jsj � ô). By differentiating (27) with respect to r, we find that

(29) eitf 0(reit) ≥
1
ô

Z ô

�ô
Q(r, s � t) f (eis) ds

where

(30) Q(r, s) ≥
(1� r2) cos s � 2r
(1� 2r cos s + r2)2

.
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Q is an even function of s, has period 2ô and
Rô
0 Q(r, s)ds ≥ 0. Hence (29) implies

eitf 0(reit) ≥
1

2ô

Z ô

�ô
Q(r, s)

n
f (ei(t+s)) � f (ei(t�s))

o
ds

≥
1
ô

Z ô

0
Q(r, s)

n
f (ei(t+s)) � f (ei(t�s))

o
ds

≥
1
ô

Z ô

0
Q(r, s)

n
f (ei(t+s)) � 2f (eit) + f (ei(t�s))

o
ds.

Therefore

(31) jf 0(reit)j �
1
ô

Z ô

0
jQ(r, s)jjD(f ; t, s)j ds.

Since (1 + r2) cos s�2r ≥ (1� r)2�2(1 + r2) sin2 s
2 and 1�2r cos s + r2 ≥ j1� r eisj2,

we have jQ(r, s)j � (1�r)2+s2

j1�reisj4
. Hence (31) yields

Z 1

0
jf 0(reit)j(1 � r)ã�1 dr �

1
ô

Z ô

0
F(s)jD(f ; t, s)j ds +

1
ô

Z ô

0
G(s)jD(f ; t, s)j ds

where

(32) F(s) ≥
Z 1

0

(1� r)ã+1

j1� reisj4
dr

and

(33) G(s) ≥ s2
Z 1

0

(1� r)ã�1

j1� r eisj4
dr.

Lemma 4 implies that F(s) � B
s2�ã and G(s) � C

s2�ã for 0 Ú s � ô, where B and C depend
only on ã. Therefore

Z 1

0
jf 0(reit)j(1 � r)ã�1 dr �

B + C
ô

Z ô

0

jD(f ; t, s)j
s2�ã

ds

Since Kã(f ) Ú 1we conclude that supt
R1

0 jf
0(reit)j(1�r)ã�1 dr Ú 1. Hence Theorem 2

implies f 2 Mã. The argument also yields (10).
Next we prove Theorem 3 in the case ã ≥ 1. Suppose that f 2 H1 and

(34) K1(f ) � sup
t

Z ô

0

jD(f ; t, s)j
s

ds Ú 1.

Let Tf̄ : H1 ! H1 denote the Toeplitz operator. Then

kTf̄kH1 ≥ sup
(

1
2ô

þþþþþ
Z

Γ

f (ê)h(ê)
ê � z

dê

þþþþþ : khkH1 � 1, jzj Ú 1
)

≥ sup
(

1
2ô

þþþþþ
Z

Γ

f (ê)h(ê)
ê � rõ

dê

þþþþþ : khkH1 � 1, 0 � r Ú 1, jõj ≥ 1
)

≥ sup
(

1
2ô

þþþþþ
Z

Γ

f (ê)h(ê)

1� rõê̄

1
ê

dê

þþþþþ : khkH1 � 1, 0 � r Ú 1, jõj ≥ 1
)

≥ sup
(

1
2ô

þþþþþ
Z

Γ

f (õê)h(õê)

1� rê̄

1
ê

dê

þþþþþ : khkH1 � 1, 0 � r Ú 1, jõj ≥ 1
)

.
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By writing f (õê) ≥
h
f (õê)�2f (õ)+ f (õê̄)

i
+2f (õ)� f (õê̄) we see that kTf̄kH1 � I +J +K,

where

I ≥ sup
(

1
2ô

þþþþþ
Z

Γ

f (õê) � 2f (õ) + f (õê̄)

1� rê̄

h(õê)
ê

dê
þþþþþ
)

,

J ≥ sup
(

1
2ô

þþþþþ
Z

Γ

2f (õ)

1� rê̄

h(õê)
ê

dê
)

,

and

K ≥ sup
(

1
2ô

þþþþþ
Z

Γ

f (õê̄)

1� rê̄

h(õê)
ê

dê
)

,

again where khkH1 � 1, 0 � r Ú 1 and jõj ≥ 1.
Let ê ≥ eis and õ ≥ eit. We use Lemma 1 as follows.

I � sup
(

1
2ô

Z ô

�ô

jf (ei(t+s)) � 2f (eit) + f (ei(t�s))j
j1 � re�isj

ds : 0 � r Ú 1, jtj � ô

)

� sup
(

1
ô

Z ô

0

jD(f ; t, s)j
j1 � re�isj

ds : 0 � r Ú 1, jtj � ô

)

� sup
( Z ô

0

jD(f ; t, s)j
s

ds : jtj � ô

)

≥ K1(f )

Also we have

J � 2kfkH1 sup
(

1
2ô

þþþþþ
Z

Γ

h(õê)

(1� rê̄)ê
dê

þþþþþ : khkH1 � 1, 0 � r Ú 1, jõj ≥ 1
)

≥ 2kfkH1 sup
(þþþþþ 1

2ô i

Z
Γ

h(w)
w� rõ

dw

þþþþþ : khkH1 � 1, 0 � r Ú 1, jõj ≥ 1
)

.

Hence Cauchy’s formula implies that

J � 2kfkH1 sup
(
jh(rõ)j : khkH1 � 1, 0 � r Ú 1, jõj ≥ 1

)

≥ 2kfkH1 .

We also use Cauchy’s formula to estimate K as follows. Note that the function g de-
fined by g(w) ≥ f (w̄) for jwj Ú 1 belongs to H1. Hence the change of variables w ≥ ȭê

gives
1

2ôi

Z
Γ

f (õê̄)h(õê)

(1� rê̄)ê
dê ≥

1
2ôi

Z
Γ

g(w)h(õ2w)
w� rȭ

dw

≥ g(rȭ)h(rõ) ≥ f (rõ)h(rõ).

Therefore K � kfkH1 .
Combining the inequalities for I, J and K derived above we obtain kTf̄kH1 � K1(f ) +

3kfkH1 . Hence kfkM1
� K1(f ) + 3kfkH1 Ú 1, and therefore f 2 M1. This completes

the proof of Theorem 3.
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