MULTIPLIERS OF FRACTIONAL CAUCHY TRANSFORMS AND SMOOTHNESS CONDITIONS

DONGHAN LUO AND THOMAS MACGREGOR

ABSTRACT. This paper studies conditions on an analytic function that imply it belongs to M_{α} , the set of multipliers of the family of functions given by $f(z) = \int_{|\zeta|=1} \frac{1}{(1-\bar{\zeta}z)^{\alpha}} d\mu(\zeta)$ (|z| < 1) where μ is a complex Borel measure on the unit circle and $\alpha > 0$. There are two main theorems. The first asserts that if $0 < \alpha < 1$ and $\sup_{|\zeta|=1} \int_0^1 |f'(r\zeta)|(1-r)^{\alpha-1} dr < \infty$ then $f \in M_{\alpha}$. The second asserts that if $0 < \alpha < 1$, $f \in H^{\infty}$ and $\sup_{r} \int_0^{\pi} \frac{|f(e^{i(t+s)})-2f(e^{i(t-s)})|}{s^{2-\alpha}} ds < \infty$ then $f \in M_{\alpha}$. The conditions in these theorems are shown to relate to a number of smoothness conditions on the unit circle for a function analytic in the open unit disk and continuous in its closure.

1. Introduction. Let $\Delta = \{z \in \mathbf{C} : |z| < 1\}$ and $\Gamma = \{z \in \mathbf{C} : |z| = 1\}$. Let M denote the set of complex-valued Borel measures on Γ , and let $\|\mu\|$ denote the total variation of $\mu \in M$. For $\alpha > 0$ let F_{α} denote the set of functions f for which there exists $\mu \in M$ such that

(1)
$$f(z) = \int_{\Gamma} \frac{1}{(1 - \bar{\zeta}z)^{\alpha}} d\mu(\zeta)$$

for |z| < 1. The power function in (1) is the principal branch. F_{α} is a Banach space with respect to the norm defined by $||f||_{F_{\alpha}} = \inf ||\mu||$, where μ varies over the subset of M for which (1) holds.

A function f is called a multiplier of F_{α} provided that $fg \in F_{\alpha}$ for every $g \in F_{\alpha}$. Let M_{α} denote the set of multipliers of F_{α} . If $f \in M_{\alpha}$ then the map $F_{\alpha} \mapsto F_{\alpha}$ defined by $g \mapsto fg$ is a bounded linear operator. M_{α} is a Banach space with the natural norm defined by

(2)
$$||f||_{M_{\alpha}} = \sup\{||fg||_{F_{\alpha}} : g \in F_{\alpha}, ||g||_{F_{\alpha}} \le 1\}.$$

We are interested in conditions on an analytic function which imply the function belongs to M_{α} . The main result in this paper is the following theorem.

THEOREM 1. Let $0 < \alpha < 1$ and let dA denote two-dimensional Lebesgue measure. If $f \in H^{\infty}$ and

(3)
$$I_{\alpha}(f) \equiv \sup_{|\zeta|=1} \iint_{\Delta} \frac{|f'(z)|(1-|z|)^{\alpha-1}}{|z-\zeta|^{\alpha}} dA(z) < \infty$$

Received by the editors August 29, 1995.

AMS subject classification: 30E20, 30D50.

© Canadian Mathematical Society 1998.

595

then $f \in M_{\alpha}$. There is a positive constant A depending only on α such that

(4)
$$||f||_{M_{\alpha}} \leq A (I_{\alpha}(f) + ||f||_{H^{\infty}})$$

for all such functions f.

Theorem 1 gives a broad sufficient condition for membership in M_{α} when $0 < \alpha < 1$. It implies a number of other results which primarily deal with radial variations and which relate to Lipschitz and Zygmund types of smoothness on Γ .

For $\alpha > 0$ each function in M_{α} has finite radial variations. In fact there is a constant A depending only on α such that if $f \in M_{\alpha}$ then

(5)
$$\int_0^1 |f'(r\zeta)| \, dr \le A \|f\|_{M_\alpha}$$

for $|\zeta| = 1$ [4, Theorem 2.6; 7, p. 14]. Since $\sup_{|\zeta|=1} \int_0^1 |f'(r\zeta)| dr < \infty$ we infer that $f \in H^\infty$ and $f(\zeta) \equiv \lim_{r \to 1^-} f(r\zeta)$ exists for all $\zeta \in \Gamma$.

Theorem 2 is stated below and it shows that the boundedness of a certain weighted radial variation of f implies $f \in M_{\alpha}$. It holds for $0 < \alpha < 1$ and will be proved as a simple consequence of Theorem 1.

THEOREM 2. Let $0 < \alpha < 1$ and suppose that the function f is analytic in Δ . If

(6)
$$J_{\alpha}(f) \equiv \sup_{|\zeta|=1} \int_{0}^{1} |f'(r\zeta)| (1-r)^{\alpha-1} dr < \infty$$

then $f \in M_{\alpha}$. There is a positive constant A depending only on α such that

(7)
$$\|f\|_{M_{\alpha}} \leq A \left(J_{\alpha}(f) + \|f\|_{H^{\infty}} \right)$$

for all such functions f.

Since (6) implies that $\sup_{|\zeta|=1} \int_0^1 |f'(r\zeta)| dr < \infty$, the assumptions of Theorem 2 imply that $f \in H^\infty$ and $f(\zeta)$ exists for all $\zeta \in \Gamma$. In fact these assumptions imply that f extends continuously to $\overline{\Delta}$ and on Γ satisfies a Lipschitz condition of order $1-\alpha$. This was proved by Richard O'Neil in [6]. The result of O'Neil can be stated in the following way. Let $0 < \beta < 1$ and let $F: [-\pi, \pi] \to \mathbb{C}$ be a periodic function with period 2π . A necessary and sufficient condition that F satisfies a Lipschitz condition of order β is that there is a positive constant A (depending on F) such that $|u(r, t) - F(t)| \le A(1-r)^\beta$ for $0 \le r < 1$ and $|t| \le \pi$, where u(r, t) is the harmonic extension of F to Δ . O'Neil's result is applicable because the assumptions in Theorem 2 imply that $|f(re^{it}) - f(e^{it})| \le A(1-r)^{1-\alpha}$ for some constant A.

Theorem 2 directly relates to a number of earlier results about M_{α} . Theorem A stated below was proved in [1, 3] and Theorem B was proved in [3].

596

THEOREM A. If $f(z) = \sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} n^{1-\alpha} |a_n| < \infty$ for some α ($0 < \alpha < 1$), then $f \in M_{\alpha}$.

THEOREM B. Suppose that the function f is analytic in Δ and continuous in $\overline{\Delta}$. If $f(e^{it})$ satisfies a Lipschitz condition of order α and $0 < \alpha < 1$ then $f \in M_{\beta}$ for $\beta > 1 - \alpha$.

It is easy to show that the assumptions in Theorem A as well as those in Theorem B imply (6). Thus Theorem 2 also yields Theorem A and Theorem B. In general the applicability of Theorem 2 derives from the fact that (6) relates to a number of other conditions.

Theorem 3, which is stated below, concerns second differences. For each function $f: \Gamma \rightarrow \mathbf{C}$ and for each pair of real numbers *t* and *s* let

(8)
$$D(f;t,s) = f(e^{i(t+s)}) - 2f(e^{it}) + f(e^{i(t-s)}).$$

THEOREM 3. Let $0 < \alpha \leq 1$ and suppose that $f \in H^{\infty}$. If

(9)
$$K_{\alpha}(f) \equiv \sup_{t} \int_{0}^{\pi} \frac{|D(f;t,s)|}{s^{2-\alpha}} ds < \infty$$

then $f \in M_{\alpha}$. There is a positive constant A depending only on α such that

(10)
$$\|f\|_{M_{\alpha}} \leq A \left(K_{\alpha}(f) + \|f\|_{H^{\infty}} \right)$$

for all such functions f.

When $0 < \alpha < 1$ Theorem 3 is proved as a consequence of Theorem 2. When $\alpha = 1$ our argument depends on using Toeplitz operators.

We recall some facts about Toeplitz operators. Let P denote the orthogonal projection of $L^2(\Gamma)$ onto H^2 defined by $P(h) = \sum_{n=0}^{\infty} a_n z^n$ where $h(t) = \sum_{n=-\infty}^{\infty} a_n e^{int} \in L^2(\Gamma)$. For $\phi \in L^{\infty}(\Gamma)$ the Toeplitz operator with symbol ϕ is the operator on H^2 defined by $T_{\phi}(g) = P(\phi g)$. The duality between the disk algebra A and M shows that when $T_{\tilde{t}}$ is restricted to A it gives the multiplication operator on F_1 described earlier. Hence $f \in M_1$ if and only if $T_{\bar{f}}$ is bounded on A. Also we have $\|f\|_{M_1} = \|T_{\bar{f}}\|_A = \|T_{\bar{f}}\|_{H^{\infty}}$ and $T_{\bar{f}}$ is given by

(11)
$$T_{\bar{f}}(h)(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\overline{f(\zeta)}h(\zeta)}{\zeta - z} d\zeta.$$

Toeplitz operators have been used by authors studying M_1 , especially in [7].

Theorem 3 extends the following result proved for $\alpha = 1$ in [8] and for $0 < \alpha < 1$ in [3].

THEOREM C. Let $0 < \alpha \leq 1$ and assume that $f \in H^{\infty}$. If

(12)
$$\sup_{t} \int_{-\pi}^{\pi} \frac{|f(e^{i(t+s)}) - f(e^{it})|}{|s|^{2-\alpha}} \, ds < \infty$$

then $f \in M_{\alpha}$.

We thank Fedor Nazarov for his remarks in [5], where a number of detailed comments are made about this paper. Nazarov suggested the present formulation of Theorem 1. He gave a different proof of this result beginning with the Cauchy-Green formula and he showed alternative ways to deduce a number of results about M_{α} . One of the new facts which he proved is that if $f \in M_{\alpha}$ for some α ($0 < \alpha < 1$) then $I_{\beta}(f) < \infty$ for each β such that $\alpha < \beta \leq 1$. Nazarov gives credit to E. M. Dynkin for the main ideas described in [5].

2. **Preliminary Lemmas.** This section consists of seven lemmas which are used later on. Lemmas 1–4 are easy to prove but we do not include the arguments here. Lemma 5 is in [4] and Lemma 6 is in [3]. Lemma 7 is known and a proof depends on the Banach-Alaoglu theorem.

LEMMA 1. If $z = re^{it}$, $0 \le r < 1$ and $|t| \le \pi$, then $|1 - z| \ge \frac{1}{\pi} |t|$.

LEMMA 2. Let $\alpha > 1$. There is a positive constant A depending only on α such that

(13)
$$\int_{\varphi}^{\pi} \frac{1}{|1 - re^{it}|^{\alpha}} dt \leq \frac{A}{|1 - re^{i\varphi}|^{\alpha - 1}}$$
for $0 < \varphi < \pi$ and $0 \leq r < 1$.

Lemma 2 implies the known estimate that

(14)
$$\int_{-\pi}^{\pi} \frac{1}{|1 - re^{it}|^{\alpha}} dt \le \frac{A}{(1 - r)^{\alpha - 1}}$$

for $0 \le r < 1$ and $\alpha > 1$, where the constant *A* depends only on α .

LEMMA 3. Let $\alpha > 1$. There is a positive constant B depending only on α such that

(15)
$$\int_0^r \frac{1}{|1 - \rho e^{i\varphi}|^{\alpha}} d\rho \le \frac{B}{|1 - re^{i\varphi}|^{\alpha-1}}$$

for $0 \leq r < 1$ and $|\varphi| \leq \pi$.

LEMMA 4. Let $\beta > -1$ and let $\gamma \ge \beta + 1$. There is a positive constant C depending only on β and γ such that

(16)
$$I(\beta,\gamma) \equiv \int_0^1 \frac{(1-r)^{\beta}}{|1-re^{it}|^{\gamma+1}} \, dr \le \frac{C}{|t|^{\gamma-\beta}}$$

for $0 < |t| \le \pi$.

LEMMA 5. Let $\alpha > 0$ and assume that the function f is analytic in Δ . Then $f \in M_{\alpha}$ if and only if $f(z)\frac{1}{(1-\overline{\zeta}z)^{\alpha}} \in F_{\alpha}$ for $|\zeta| = 1$ and there is a constant A such that $\|f(z)\frac{1}{(1-\overline{\zeta}z)^{\alpha}}\|_{F_{\alpha}} \leq A$ for $|\zeta| = 1$. Moreover, we have $\|f\|_{M_{\alpha}} = \sup_{|\zeta|=1} \|f(z)\frac{1}{(1-\overline{\zeta}z)^{\alpha}}\|_{F_{\alpha}}$.

LEMMA 6. Let $\alpha > 0$ and assume that the function f is analytic in Δ . If

$$L_{\alpha}(f) \equiv \int_{0}^{1} \int_{-\pi}^{\pi} |f'(r e^{it})| (1-r)^{\alpha-1} dt dr < \infty$$

then $f \in F_{\alpha}$. There is a constant A depending only on α such that $||f||_{F_{\alpha}} \leq |f(0)| + A L_{\alpha}(f)$ for all such functions f.

LEMMA 7. Let $\alpha > 0$ and suppose that $f_n \in F_{\alpha}$ for n = 1, 2, ... and $f_n(z) \to f(z)$ as $n \to \infty$ for each z in Δ . If there exists a constant M > 0 such that $||f_n||_{F_{\alpha}} \leq M$ for n = 1, 2, ..., then $f \in F_{\alpha}$ and $||f||_{F_{\alpha}} \leq M$. 3. **Proof of Theorem 1.** Since $f \in H^{\infty}$ implies the uniform bound $|f'(z)| \leq \frac{|f||_{H^{\infty}}}{1-|z|^2}$ and dA(z) = r dr dt ($z = re^{it}$), Theorem 1 is equivalent to showing that if $f \in H^{\infty}$ and

(17)
$$I_{\alpha}^{*}(f) = \sup_{|\zeta|=1} \int_{0}^{1} \int_{-\pi}^{\pi} \frac{|f'(z)| (1-|z|)^{\alpha-1}}{|z-\zeta|^{\alpha}} dr dt < \infty$$

then $f \in M_{\alpha}$ and

(18)
$$\|f\|_{M_{\alpha}} \leq A (I_{\alpha}^{*}(f) + \|f\|_{H^{\infty}})$$

where A depends only on α .

Let $0 < \alpha < 1$ and suppose that $f \in H^{\infty}$ and (17) holds. By considering the functions $f_n(z) = f(r_n z)$ where $0 < r_n < 1$ and $r_n \to 1$ as $n \to \infty$ we can assume that f is analytic in $\overline{\Delta}$. This is a consequence of Lemmas 5 and 7.

Let $|\zeta| = 1$. Then

$$f(z)\frac{1}{(1-\bar{\zeta}z)^{\alpha}} = \frac{f(\zeta)}{(1-\bar{\zeta}z)^{\alpha}} + g_{\zeta}(z),$$

where

(19)
$$g_{\zeta}(z) = \frac{f(z) - f(\zeta)}{(1 - \bar{\zeta}z)^{\alpha}}.$$

Since $\|\frac{f(\zeta)}{(1-\zeta_z)^{\alpha}}\|_{F_{\alpha}} = |f(\zeta)| \le \|f\|_{H^{\infty}}$, Lemma 5 implies that it suffices to show that $g_{\zeta} \in F_{\alpha}$ and

(20)
$$\left\|g_{\zeta}\right\|_{F_{\alpha}} \leq A\left(I_{\alpha}^{*}(f) + \left\|f\right\|_{H^{\infty}}\right)$$

for $|\zeta| = 1$, where *A* depends only on α . Because of Lemma 6, this follows if we show that

(21)
$$\int_0^1 \int_{-\pi}^{\pi} |g_{\zeta}'(re^{it})| (1-r)^{\alpha-1} dt dr \le BI_{\alpha}^*(f)$$

for $|\zeta| = 1$, and *B* depends only on α .

From (19) we obtain

$$g_{\zeta}'(z) = \frac{f'(z)}{(1 - \bar{\zeta}z)^{\alpha}} + \alpha \bar{\zeta} \frac{f(z) - f(e^{it})}{(1 - \bar{\zeta}z)^{\alpha+1}} + \alpha \bar{\zeta} \frac{f(e^{it}) - f(\zeta)}{(1 - \bar{\zeta}z)^{\alpha+1}}$$

where $z = re^{it}$ ($0 \le r < 1$, $|t| \le \pi$). Hence it suffices to show that

(22)
$$P(\zeta) \equiv \int_0^1 \int_{-\pi}^{\pi} \frac{|f'(re^{it})|}{|1 - \bar{\zeta}re^{it}|^{\alpha}} (1 - r)^{\alpha - 1} dt dr \le C I_{\alpha}^*(f),$$

(23)
$$Q(\zeta) \equiv \int_0^1 \int_{-\pi}^{\pi} \frac{|f(re^{it}) - f(e^{it})|}{|1 - \bar{\zeta}re^{it}|^{\alpha+1}} (1 - r)^{\alpha-1} dt dr \le DI_{\alpha}^*(f)$$

DONGHAN LUO AND THOMAS MACGREGOR

and

600

(24)
$$R(\zeta) \equiv \int_0^1 \int_{-\pi}^{\pi} \frac{|f(e^{it}) - f(\zeta)|}{|1 - \bar{\zeta} r e^{it}|^{\alpha + 1}} (1 - r)^{\alpha - 1} dt dr \le E I_{\alpha}^*(f)$$

for $|\zeta| = 1$ and *C*, *D* and *E* depend only on α .

Clearly we have $P(\zeta) \leq I_{\alpha}^*(f)$ for $|\zeta| = 1$. To estimate $Q(\zeta)$ note that $|f(re^{it}) - f(e^{it})| \leq \int_r^1 |f'(\rho e^{it})| d\rho$. Hence

$$\begin{aligned} \mathcal{Q}(\zeta) &\leq \int_{0}^{1} \int_{-\pi}^{\pi} \int_{r}^{1} \frac{|f'(\rho e^{it})|}{|1 - \bar{\zeta} r e^{it}|^{\alpha + 1}} (1 - r)^{\alpha - 1} \, d\rho \, dt \, dr \\ &= \int_{-\pi}^{\pi} \left\{ \int_{0}^{1} \int_{0}^{\rho} \frac{(1 - r)^{\alpha - 1}}{|1 - \bar{\zeta} r e^{it}|^{\alpha + 1}} \, dr |f'(\rho e^{it})| \, d\rho \right\} dt \\ &\leq \int_{-\pi}^{\pi} \left\{ \int_{0}^{1} \int_{0}^{\rho} \frac{1}{|1 - \bar{\zeta} r e^{it}|^{\alpha + 1}} \, dr (1 - \rho)^{\alpha - 1} |f'(\rho e^{it})| \, d\rho \right\} dt \end{aligned}$$

Lemma 3 yields

$$Q(\zeta) \leq \int_{-\pi}^{\pi} \int_{0}^{1} \frac{B}{|1 - \rho \bar{\zeta} e^{it}|^{\alpha}} (1 - \rho)^{\alpha - 1} |f'(\rho e^{it})| \, d\rho \, dt,$$

and hence $Q(\zeta) \leq BI^*_{\alpha}(f)$ for $|\zeta| = 1$.

Let $\zeta = e^{i\eta}$ ($-\pi < \eta \le \pi$). Using periodicity we can write $R(\zeta) = S(\zeta) + T(\zeta)$, where

(25)
$$S(\zeta) = \int_0^1 \int_{\eta-\pi}^\eta \frac{|f(e^{it}) - f(e^{i\eta})|}{|1 - re^{i(t-\eta)}|^{\alpha+1}} (1-r)^{\alpha-1} dt dr$$

and

(26)
$$T(\zeta) = \int_0^1 \int_{\eta}^{\eta+\pi} \frac{|f(e^{it}) - f(e^{i\eta})|}{|1 - re^{i(t-\eta)}|^{\alpha+1}} (1-r)^{\alpha-1} dt dr$$

Then $T(\zeta) = \int_0^1 \int_0^{\pi} \frac{|f(e^{i(s+\eta)}) - f(e^{i\eta})|}{|1 - re^{is}|^{\alpha+1}} (1 - r)^{\alpha-1} ds dr$. Since $|f(e^{i(s+\eta)}) - f(e^{i\eta})| \leq \int_{\eta}^{\eta+s} |f'(e^{i\varphi})| d\varphi$ for $0 < s \leq 2\pi$ this gives

$$T(\zeta) \leq \int_0^1 \int_0^\pi \int_{\eta}^{\eta+s} \frac{|f'(e^{i\varphi})| (1-r)^{\alpha-1}}{|1-re^{is}|^{\alpha+1}} \, d\varphi \, ds \, dr$$

= $\int_0^1 \left\{ \int_{\eta}^{\eta+\pi} \int_{\varphi-\eta}^\pi \frac{|f'(e^{i\varphi})| (1-r)^{\alpha-1}}{|1-re^{is}|^{\alpha+1}} \, ds \, d\varphi \right\} dr.$

Hence (13) yields

$$T(\zeta) \leq \int_0^1 \int_{\eta}^{\eta+\pi} \frac{A |f'(e^{i\varphi})| (1-r)^{\alpha-1}}{|1-re^{i(\varphi-\eta)}|^{\alpha}} d\varphi dr$$

$$\leq A \int_0^1 \int_{-\pi}^{\pi} \frac{|f'(e^{i\varphi})| (1-r)^{\alpha-1}}{|1-re^{i\varphi}\bar{\zeta}|^{\alpha}} d\varphi dr$$

$$\leq A I_{\alpha}^*(f).$$

The same estimate also can be obtained for $S(\zeta)$.

4. **Proof of Theorem 2.** Let $0 < \alpha < 1$ and suppose that the function *f* is analytic in Δ and satisfies (6). As noted earlier this implies $f \in H^{\infty}$.

Let $|\zeta| = 1$ and set $\zeta = e^{i\eta}$. Then

$$\int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left| f'(re^{it}) \right| (1-r)^{\alpha-1}}{|re^{it} - \zeta|^{\alpha}} dt dr$$

=
$$\int_{0}^{1} \int_{\eta-\pi}^{\eta+\pi} \frac{\left| f'(re^{it}) \right| (1-r)^{\alpha-1}}{|re^{it} - e^{i\eta}|^{\alpha}} dt dr$$

=
$$\int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left| f'(re^{i(s+\eta)}) \right| (1-r)^{\alpha-1}}{|1-re^{is}|^{\alpha}} ds dr$$

Hence Lemma 1 implies

$$\begin{split} &\int_{0}^{1} \int_{-\pi}^{\pi} \frac{\left| f'(re^{it}) \right| (1-r)^{\alpha-1}}{|re^{it}-\zeta|^{\alpha}} \, dt \, dr \\ &\leq \int_{0}^{1} \int_{-\pi}^{\pi} \frac{\pi^{\alpha}}{|s|^{\alpha}} |f'(re^{i(s+\eta)})| \, (1-r)^{\alpha-1} \, ds \, dr \\ &= \pi^{\alpha} \int_{-\pi}^{\pi} \frac{1}{|s|^{\alpha}} \left\{ \int_{0}^{1} |f'(re^{i(s+\eta)})| \, (1-r)^{\alpha-1} \, dr \right\} \, ds \\ &\leq \pi^{\alpha} \int_{-\pi}^{\pi} \frac{1}{|s|^{\alpha}} J_{\alpha}(f) \, ds \\ &= \frac{2\pi}{1-\alpha} J_{\alpha}(f). \end{split}$$

Thus $I_{\alpha}(f) \leq \frac{2\pi}{1-\alpha} J_{\alpha}(f) < \infty$. Therefore Theorem 1 implies $f \in M_{\alpha}$. Also (4) yields (7).

5. **Proof of Theorem 3.** We first prove Theorem 3 when $0 < \alpha < 1$. Let $0 < \alpha < 1$ and suppose that $f \in H^{\infty}$ and (9) is satisfied.

Since $f \in H^{\infty}$ the Poisson formula gives

(27)
$$f(re^{it}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} P(r, s-t) f(e^{is}) ds$$

where

(28)
$$P(r,s) = \frac{1-r^2}{1-2r\cos s + r^2}$$

 $(0 \le r < 1, |s| \le \pi)$. By differentiating (27) with respect to *r*, we find that

(29)
$$e^{it}f'(re^{it}) = \frac{1}{\pi} \int_{-\pi}^{\pi} Q(r, s-t)f(e^{is}) ds$$

where

(30)
$$Q(r,s) = \frac{(1-r^2)\cos s - 2r}{(1-2r\cos s + r^2)^2}.$$

Q is an even function of s, has period 2π and $\int_0^{\pi} Q(r, s) ds = 0$. Hence (29) implies

$$e^{it}f'(re^{it}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} Q(r,s) \{ f(e^{i(t+s)}) - f(e^{i(t-s)}) \} ds$$

= $\frac{1}{\pi} \int_{0}^{\pi} Q(r,s) \{ f(e^{i(t+s)}) - f(e^{i(t-s)}) \} ds$
= $\frac{1}{\pi} \int_{0}^{\pi} Q(r,s) \{ f(e^{i(t+s)}) - 2f(e^{it}) + f(e^{i(t-s)}) \} ds$

Therefore

(31)
$$|f'(re^{it})| \leq \frac{1}{\pi} \int_0^{\pi} |Q(r,s)| |D(f;t,s)| \, ds$$

Since $(1+r^2)\cos s - 2r = (1-r)^2 - 2(1+r^2)\sin^2 \frac{s}{2}$ and $1 - 2r\cos s + r^2 = |1-re^{is}|^2$, we have $|Q(r,s)| \le \frac{(1-r)^2 + s^2}{|1-re^{is}|^4}$. Hence (31) yields

$$\int_0^1 |f'(re^{it})| (1-r)^{\alpha-1} dr \le \frac{1}{\pi} \int_0^\pi F(s) |D(f;t,s)| \, ds + \frac{1}{\pi} \int_0^\pi G(s) |D(f;t,s)| \, ds$$

where

(32)
$$F(s) = \int_0^1 \frac{(1-r)^{\alpha+1}}{|1-re^{is}|^4} dr$$

and

(33)
$$G(s) = s^2 \int_0^1 \frac{(1-r)^{\alpha-1}}{|1-r\,e^{is}|^4} \, dr.$$

Lemma 4 implies that $F(s) \leq \frac{B}{s^{2-\alpha}}$ and $G(s) \leq \frac{C}{s^{2-\alpha}}$ for $0 < s \leq \pi$, where *B* and *C* depend only on α . Therefore

$$\int_0^1 |f'(re^{it})| (1-r)^{\alpha-1} dr \le \frac{B+C}{\pi} \int_0^\pi \frac{|D(f;t,s)|}{s^{2-\alpha}} ds$$

Since $K_{\alpha}(f) < \infty$ we conclude that $\sup_{t} \int_{0}^{1} |f'(re^{it})| (1-r)^{\alpha-1} dr < \infty$. Hence Theorem 2 implies $f \in M_{\alpha}$. The argument also yields (10).

Next we prove Theorem 3 in the case $\alpha = 1$. Suppose that $f \in H^{\infty}$ and

(34)
$$K_1(f) \equiv \sup_t \int_0^{\pi} \frac{|D(f;t,s)|}{s} \, ds < \infty.$$

Let $T_{\overline{f}}: H^{\infty} \longrightarrow H^{\infty}$ denote the Toeplitz operator. Then

$$\begin{split} \|T_{\bar{f}}\|_{H^{\infty}} &= \sup\left\{\frac{1}{2\pi} \left| \int_{\Gamma} \frac{f(\zeta)h(\zeta)}{\zeta - z} \, d\zeta \right| : \|h\|_{H^{\infty}} \le 1, \, |z| < 1\right\} \\ &= \sup\left\{\frac{1}{2\pi} \left| \int_{\Gamma} \frac{\overline{f(\zeta)}h(\zeta)}{\zeta - r\sigma} \, d\zeta \right| : \|h\|_{H^{\infty}} \le 1, \, 0 \le r < 1, \, |\sigma| = 1\right\} \\ &= \sup\left\{\frac{1}{2\pi} \left| \int_{\Gamma} \frac{\overline{f(\zeta)}h(\zeta)}{1 - r\zeta\zeta} \frac{1}{\zeta} \, d\zeta \right| : \|h\|_{H^{\infty}} \le 1, \, 0 \le r < 1, \, |\sigma| = 1\right\} \\ &= \sup\left\{\frac{1}{2\pi} \left| \int_{\Gamma} \frac{\overline{f(\sigma\zeta)}h(\sigma\zeta)}{1 - r\zeta\zeta} \frac{1}{\zeta} \, d\zeta \right| : \|h\|_{H^{\infty}} \le 1, \, 0 \le r < 1, \, |\sigma| = 1\right\} \end{split}$$

602

By writing $\overline{f(\sigma\zeta)} = \left[\overline{f(\sigma\zeta)} - 2\overline{f(\sigma)} + \overline{f(\sigma\overline{\zeta})}\right] + 2\overline{f(\sigma)} - \overline{f(\sigma\overline{\zeta})}$ we see that $||T_{\overline{f}}||_{H^{\infty}} \le I + J + K$, where

$$I = \sup\left\{\frac{1}{2\pi} \left| \int_{\Gamma} \frac{\overline{f(\sigma\zeta)} - 2\overline{f(\sigma)} + f(\sigma\zeta)}{1 - r\zeta} \frac{h(\sigma\zeta)}{\zeta} d\zeta \right| \right\},\$$
$$J = \sup\left\{\frac{1}{2\pi} \left| \int_{\Gamma} \frac{2\overline{f(\sigma)}}{1 - r\zeta} \frac{h(\sigma\zeta)}{\zeta} d\zeta \right\},\$$

and

$$K = \sup\left\{\frac{1}{2\pi}\right| \int_{\Gamma} \frac{\overline{f(\sigma\bar{\zeta})}}{1 - r\bar{\zeta}} \frac{h(\sigma\zeta)}{\zeta} d\zeta\right\},\,$$

again where $||h||_{H^{\infty}} \le 1, 0 \le r < 1$ and $|\sigma| = 1$. Let $\zeta = e^{is}$ and $\sigma = e^{it}$. We use Lemma 1 as follows.

$$I \leq \sup\left\{\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|f(e^{i(t+s)}) - 2f(e^{it}) + f(e^{i(t-s)})|}{|1 - re^{-is}|} \, ds : 0 \leq r < 1, \ |t| \leq \pi\right\}$$

$$\leq \sup\left\{\frac{1}{\pi} \int_{0}^{\pi} \frac{|D(f; t, s)|}{|1 - re^{-is}|} \, ds : 0 \leq r < 1, \ |t| \leq \pi\right\}$$

$$\leq \sup\left\{\int_{0}^{\pi} \frac{|D(f; t, s)|}{s} \, ds : |t| \leq \pi\right\}$$

$$= K_{1}(f)$$

Also we have

$$J \leq 2 \|f\|_{H^{\infty}} \sup\left\{\frac{1}{2\pi} \left| \int_{\Gamma} \frac{h(\sigma\zeta)}{(1-r\zeta)\zeta} d\zeta \right| : \|h\|_{H^{\infty}} \leq 1, \ 0 \leq r < 1, \ |\sigma| = 1 \right\}$$
$$= 2 \|f\|_{H^{\infty}} \sup\left\{ \left| \frac{1}{2\pi i} \int_{\Gamma} \frac{h(w)}{w - r\sigma} dw \right| : \|h\|_{H^{\infty}} \leq 1, \ 0 \leq r < 1, \ |\sigma| = 1 \right\}.$$

Hence Cauchy's formula implies that

$$\begin{split} J &\leq 2 \|f\|_{H^{\infty}} \sup \left\{ |h(r\sigma)| : \|h\|_{H^{\infty}} \leq 1, \ 0 \leq r < 1, \ |\sigma| = 1 \right\} \\ &= 2 \|f\|_{H^{\infty}}. \end{split}$$

We also use Cauchy's formula to estimate *K* as follows. Note that the function *g* defined by $g(w) = \overline{f(\bar{w})}$ for |w| < 1 belongs to H^{∞} . Hence the change of variables $w = \bar{\sigma}\zeta$ gives

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\sigma\bar{\zeta})h(\sigma\zeta)}{(1-r\bar{\zeta})\zeta} d\zeta = \frac{1}{2\pi i} \int_{\Gamma} \frac{g(w)h(\sigma^2 w)}{w - r\bar{\sigma}} dw$$
$$= g(r\bar{\sigma})h(r\sigma) = \overline{f(r\sigma)}h(r\sigma).$$

Therefore $K \leq ||f||_{H^{\infty}}$.

Combining the inequalities for *I*, *J* and *K* derived above we obtain $||T_{\bar{f}}||_{H^{\infty}} \leq K_1(f) + 3||f||_{H^{\infty}}$. Hence $||f||_{M_1} \leq K_1(f) + 3||f||_{H^{\infty}} < \infty$, and therefore $f \in M_1$. This completes the proof of Theorem 3.

DONGHAN LUO AND THOMAS MACGREGOR

References

- 1. A. Dansereau, *General integral families and multipliers*. Doctoral dissertation, State University of New York at Albany, 1992.
- 2. P. L. Duren, *Theory of H^p Spaces*. Academic Press, New York, 1970.
- D. J. Hallenbeck, T. H. MacGregor and K. Samotij, Fractional Cauchy transforms, inner functions and multipliers. Proc. London Math. Soc. (3) 72(1996), 157–187.
- **4.** R. A. Hibschweiler and T. H. MacGregor, *Multipliers of families of Cauchy-Stieltjes transforms*. Trans. Amer. Math. Soc. **331**(1992), 377–394.
- 5. F. Nazarov, *Private communication*.
- 6. R. O'Neil, Private communication.
- 7. S. A. Vinogradov, Properties of multipliers of Cauchy-Stieltjes integrals and some factorization problems for analytic functions. Amer. Math. Soc. Transl. (2) 115(1980), 1–32.
- **8.** S. A. Vinogradov, M. G. Goluzina and V. P. Khavin, *Multipliers and divisors of Cauchy-Stieltjes integrals*. Seminars in Math., V.A. Steklov Math. Inst., Leningrad **19**(1972), 29–42.

Department of Mathematics and Statistics State University of New York Albany, New York USA