
ARITHMETICAL INVERSION FORMULAS 

ECKFORD COHEN 

1. Introduction. Let n and r be integers, r positive, and define the core 
y(r) of r to be the product of the distinct prime factors of r (Y(1 ) = 1). Let 
f(n,r) be a complex-valued, arithmetical function of n and r. If for all n, 
f{n,r) = f((n,r), r) then f(n, r) is called an even function (mod r), and if 
f(n,r) = f{y{n, r), r) for all n, y(n, r) = y((n, r)), then f(n, r) is said to be 
a primitive function (mod r). Clearly, both classes of functions are subclasses 
of the periodic functions (mod r), while the primitive functions form a sub­
class of the even functions (mod r). 

In a series of three papers (3; 5; 6) the author developed parallel, though 
interrelated, trigonometric and arithmetical theories of the even and primitive 
functions (mod r). It was shown (3, Theorem 3) that/(w, r) is even (mod r) 
if and only if it possesses a representation of the form 

(1-1) / (» , f) = Z F\d, £) , 
d\(n,r) \ A./ 

and tha t / (« , r) is primitive (mod r) if and only if it possesses a representation 
of the form (5, Theorem 8), 

(1.2) j{n,r) = £ G U J ) . 
(d,n) = l 

It is the purpose of the present paper to develop a purely arithmetical theory 
of these two classes of functions, built on the unifying idea of arithmetical 
inversion. 

More precisely, the method of the paper is based on two arithmetical 
inversion principles, the first (Theorem 2.1) relating to the class of all even 
functions (mod r), while the second (Theorem 2.3) is limited to the primitive 
functions (mod r). We remark that the first of these two results becomes 
equivalent (Corollary 2.2) to the ordinary Môbius inversion formula in case 
fin, r) is restricted to the subclass of completely even functions (mod r), that 
is, functions satisfying f(n, r) = f(n', r') for all n, nf, and all positive r, r' 
such that (n, r) = (nf, r'). An analogous result (Corollary 2.5) is proved for 
the completely primitive functions (modr), that is, functions satisfying 
f(n, r) = f(nf, r') for all n, nf and all positive r, r' such that y(r)/y(n, r) = 
y(r')/y(n',r'). 
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The characterizations (1.1) and (1.2) of the even and primitive functions 
(mod r) follow as immediate consequences (Theorems 2.2 and 2.4, respectively) 
of the above-mentioned inversion relations. Moreover, it also follows that the 
functions, F(ri, r2) and G(ri, r2), are uniquely determined, under appropriate 
restrictions on the integral variables r\ and r2. 

Sections 3 and 4 are devoted to proofs of generalizations of three funda­
mental identities in the arithmetical theory of even functions. These identities 
are stated as follows. Let \x(f) denote the Mobius inversion function and <p(r) 
the Euler totient; then 

(1.3) x(n, r) = E dl^) = M = *(„, r), 
d\(n,r) W <PK0) 

where 8 = r/(n, r)\ 

(1.4) </>(f) X) Zu^Al) = /*(')x(",0; 
{d,n)=--l 

K } % *(<*) ~4>(r)(n,r)' 
(d,n) = l 

Formula (1.3) is Holder's relation (7), which asserts the equality between the 
Dedekind-von Sterneck function $(n, r) and Kluyver's function x(^> f)> or 
equivalently, the arithmetical form of Ramanujan's sum. The identity (1.4) 
is due to Brauer and Rademacher (2; 6, § 5), while (1.5) is due in the case 
n = 1 to Landau (8, p. 182); for a proof of the extended form (1.5), we 
mention (4, Theorem 9). In the sequel, these three relations will be referred 
to as the Holder, Brauer-Rademacher, and Landau identities, respectively. 

In Theorem 3.1 we give a new proof of a generalization of the Landau 
identity, proved originally in (5). The proof given in this paper is based on 
the theory of arithmetical inversion. As a consequence of the generalized 
Landau identity, we obtain in Theorem 3.2 a wide extension of the Brauer-
Rademacher identity. 

In Theorem 4.1 we give a new proof, based on arithmetical inversion, of a 
generalization of the Holder relation, due to Anderson and Apostol (1). The 
generalized Landau identity is also used in the proof of Theorem 4.1; more­
over, a second proof of this identity is included in § 4, preceding the statement 
of the extended Holder formula. The results of the paper are illustrated with 
a special case in § 5. 

It is emphasized that the discussion of this paper is independent of the 
theory of even functions previously developed. We also mention that the 
results of the present paper remain valid when the field of values, assumed 
here to be complex, is replaced by an arbitrary field of characteristic 0. 

2. Arithmetical inversion of even functions (mod r). We now prove 
a general inversion principle for the even functions (mod r). 

https://doi.org/10.4153/CJM-1960-034-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-034-3


ARITHMETICAL INVERSION FORMULAS 401 

First we recall the characteristic property of n(r), 

(2.1) E M(d) = 1 or 0 
d\r 

according as r = 1 or r > 1. 

THEOREM 2.1. Le£ ri, r2 denote positive integral variables. 
(A) / / F(riy r2) is an arbitrary function of r%, r2 andf{n, r) is an even function 

(mod r) defined by 

(2.2) /(»,r)= Z F[d,Ù 

2Âew ,F(ri, r2) ^a^ /Ae form, 

(2.3) F(n, r2) = Z i ~ , r) /x(d), r = nr2. 

(B) Conversely, if f(n, r) is an arbitrary even function (mod r) and F(ri, r2) 
is defined by (2.3), then f(n, r) has the form (2.2). 

Proof. (A) Assume first that /(w, r) is defined by (2.2). Then, placing 
r = rir2 and using (2.1), it follows that 

Zf(j,r),(d) = z Mi) Z *{A£) 
d i n w / d\n D\((n/d),r) \ L> / 

= Z F{D, Ù £ M(d) = F(r„ r2). 

Thus (A) is proved. 

(B) Assuming F{rx, r2) to be defined by (2.3), we have, again by (2.1), 

Z *(*,$)= Z D/(|.r)M(2?) 
I (n , r ) \ # / d | ( » , r ) £>|d v L ' / d | ( n , r ) \ " - / d | ( » , r ) D\ 

= Z /(£, 0 niD) = Z /(£, ') Z *{D) = /((», f). '), 
d l ( n . r ) # l ( r c , r ) D\((n,r)/E) 
DE=d 

so that by the definition of an even function (mod r), (B) is proved. 

We are thus led immediately to a characterization of the class of even 
functions (mod r). 

THEOREM 2.2. A function f(n, r) is even (mod r) if and only if it has a repre­
sentation of the form (2.2). Moreover, the function F(ru r2) is uniquely determined 
by (2.3) for positive values of r\ and r2. 

Replacing F(ri, r2) by F(r 1) and/(», r) by g((n, r)), we obtain from Theorem 
2.1, with r2 = 1, the following inversion formula for the completely even 
functions (mod r). 
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COROLLARY 2.1. If F(r) is a function of a positive integral variable r, and 
f(n,r) is a completely even function (mod r) defined by 

(2.4) f(n,r) = g((»,r)) = £ F{d), 
d\(n,r) 

then F{r) has the form 

(2.5) F(r) = £ fV- r) v(d) s £ g U ) M (d) . 
d\r W / d\r \a/ 

Conversely, if f{n, r) = g((w, r)) is completely even (mod r) , and F{r) is defined 
by (2.5), then fitly r) has the form (2.4). 

Replacing (n, r) in (2.4) by r, Corollary 2.1 becomes the ordinary Mobius 
inversion formula. In fact, 

COROLLARY 2.2. The inversion relation of Theorem 2.1 is equivalent to the 
Môbius inversion formula, provided the class of functions f(n, r) is restricted to 
the completely even functions (mod r) . 

We also have by Corollary 2.1, the following analogue of Theorem 2.2 
(cf. 5, Theorem 4) . 

COROLLARY 2.3. A function f(n, r) is completely even (mod r) if and only if it 
is representable in the form (2.4). The function F(r) is uniquely determined by 
(2.5) for r > 0. 

T h e following lemmas are needed in the proof of the inversion theorem for 
the primitive functions (mod r) . 

Definition. An integer r is said to be primitive if r contains no square factors 

> 1. 

L E M M A 2.1. If r = r1r2, e\y{r), and rx is primitive, then 

d\Tr\h(r) U 
(c.r/rf) = l 

10 (e 9* r i ) . 

L E M M A 2.2. If r = rxr2 then 

(2.6) E x(rhd) = r&(r2). 
de=r 

LEMMA 2.3. / f r zs primitive, r2\r, and ri |r2 , 2/ze?z 

E MW = J 
(d,w) = l 

(w,r) 
if fi = (n, r ) , r2 = r, 

s i r'iW)dTr2 1 0 otherwise. 

In view of the multiplicative proper ty of /z(r) and x(w, f) as functions of r, 
it is sufficient to verify the above lemmas in the case t h a t r is the power of a 
prime. T h e details are omit ted. 
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THEOREM 2.3. Let ru r2 represent positive integral variables, rx primitive. 
(A) / / G(ru r2) is an arbitrary function of riy r2 and f(n, r) is a primitive 

function (mod r) defined by 

(2.7) / ( n , r ) = l G ^ U Z GU4 
d\y(r) \ Ci/ d | ( ( 7 ( D ) / ( 7 ( n . r ) ) ) \ » / 
(d,n) = l 

then G(ru r2) has the form, 

(2.8) G ( r i , r i ) = 3 ^ 1 E f(Lr)x(r«d), 
r d i ( ( r n ) / ( 7 ( r ) ) ) W / 

(B) Conversely, if f(n, r) is an arbitrary primitive function (mod r) and 
G(ri, r2) is defined by (2.8), then f(n, r) has the form (2.7). 

Proof. (A) Assume that/(;&, r) is defined by (2.7), and let T(rx, r2) denote 
the right member of (2.8). Then 

TOOA 

r = rxr2. 

fnl Z ( Z c(^))x(r-d) 

(e,(r/d)) = 

^ Z G(«, )̂ Z 

r ( r i , r 2) = r 

( e , ( r /d ) ) = l 

T ( r W " V H - ' 1 \ x(r8 ,d). 
/ (7 ( r ) ) ) 

( e , ( r / d ) ) = l 

Application of Lemma 2.1 yields T(ri, r2) = G(ri, r2), which proves (A). 
(B) Assume G(ri, r2) to be given in the form (2.8) and denote the right 

member of (2.7) by S(n, r). 

S(n,r)-^r) 

r 
(d.ra) = l 

7 ( f ) 

• I7U) e | ( (dr) / r7(7-))) \ £ / V * 
.w) = l 

Z/(0 Z /*(<*) Z DJÙ 
e\r \e / d | 7 U ) Z) | ( ( r /d ) ,6 ) W / 

(d,n) = l 
( ( 7 ( r ) ) / d ) l ( r / e ) 

= ̂  Z / ; , r) Z A 4 ) Z ,W. 
^ e | r \ 0 / D i e W / d5=7( r ) 

(d.w) = l 
d\(r/D).8\(r/e) 

By Lemma 2.3, the innermost sum of the last expression is 0 unless y(r/e) = 
y(n, r), y(r/D) = y{r), and under these conditions it has the value 
v(y(r)/y(n, r)). Moreover, since f(n, r) is primitive (mod r), we must have 
then f(r/e, r) = f(y(r/e), r) = f(y(n, r), r) = f[n, r), and it therefore follows, 
with m = y(r)/y(n, r), that 

y(r)n(m)f(n, r) 
S{n, r) = 

e i r 
y(r/e)=y(n,r) y(r/D)=y(r) 

S. fl4)-
Note that the conditions e\r, y(r/e) = 7(72, r) are equivalent to the conditions, 
e\ (r/y(n, r)), (r/e,y(r)) = y{n,r). Similarly, y(r/D) = 7(f) and D\(r/y{r)) 
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are equivalent conditions for a divisor D of r. Therefore by definition of xin, r), 
one obtains 

v(rMm)f(n,r) ^ (r \ 
r ebJ7h{n.r) \y(r) / 

(5,ra) = l 

Thus by Lemma 2.2, 

This completes the proof. 

As a consequence of Theorem 2.3, we have the following characterization 
of the class of primitive functions (mod r). 

THEOREM 2.4. A function fin, r) is primitive (mod r) if and only if it has a 
representation of the form (2.7). Moreover, the function G{r\, r2) is uniquely 
determined, provided r\ and r2 are positive and r± is primitive. 

Corresponding to Corollaries 2.1, 2.2, and 2.3 in the case of the completely 
even functions (mod r), we deduce from Theorem 2.3 the following analogous 
properties of the completely primitive functions (mod r). 

COROLLARY 2.4. If fin, r) = k(m) is a completely primitive function (mod r), 
m = yir)/yin,r), then 

(2.9) /(», r) = T, G{d)+± G{n) = I / ( J , r) J%) , 
(d,n) = l 

where G(ri) is defined for primitive integers r±. 

Remark. The equivalence in (2.9) is to be interpreted in the same precise 
sense as Theorem 2.3. 

Proof. Place r = fi, r2 = 1 in (2.7) and note that x(l» d) = fi(d). 
Formula (2.9) may be reformulated as 

(2.10) k(m) = £ G(d)^±G(rl) = ^ 4 ( ^ 7 , 
d\m d\n w / 

where r\ is primitive and m is defined as in Corollary 2.4. Hence one obtains 

COROLLARY 2.5. If r is primitive, then the inversion relation of Theorem 2.3 
is equivalent to the Môbius inversion formula, provided f(n, r) is restricted to 
the completely primitive functions (mod r). 

COROLLARY 2.6 (cf. 5, Theorem 10). A function fin, r) is completely primitive 
(mod r) if and only if it is representable in the form (2.7) with G(ri, r2) = G(ri). 
The function G(ri) is uniquely determined for positive, primitive r\. 

3. The generalized Landau and Brauer-Rademacher identities. We 
first introduce some notation. Let gif) and h(r) be functions of r and define 
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(3.1) / (n, r) = E Hd)g\j) M K ) , F(r) = /(0, r). 

Definition. A function/(r) is said to be completely multiplicative i f / ( l ) = 1, 
/(^i^2) = f(ri)f(r2) for all ri, r2. 

We now recall two simple lemmas proved in (5, § 4). 

LEMMA 3.1. If h(r) is completely multiplicative, then 

(3.2) F(r) = h{~^) F(y(r)). 

LEMMA 3.2. If g(f) is multiplicative, h(f) is completely multiplicative, and 
for all primes p, h(p) 9e 0, h(p) ^ g(p), then F(r) 9e 0 for all r. 

We now prove a theorem which generalizes the Landau identity, (1.5). 

THEOREM 3.1 (5, Theorem 9). If g(r) and h{r) satisfy the conditions of Lemma 
3.2, then 

(3.3) £ (^)A*-kJï\iïn'r)l 
dïf \ ^ W ) / F(r)h{(n,r)) 

(d,n)=l 

Remark. Since vir), gM> a n d A(r) are multiplicative, it follows that F(r) 
is also multiplicative. 

Proof. Denote the right member of (3.3) by J(n, r) ; in view of the non-
vanishing of F{r) and h(r),J(n, r) is properly defined. We verify by Lemma 3.1, 
and the multiplicative property of h(r) and F(r), that 

Tf , h(m) 
J(n, r) = 

F(m) \ y(n,r)/ 

Hence J(n, r) is completely primitive (mod r) and we may apply Corollary 
2.4. In particular, we have 

(3.4) J(n,r) = £ G(d), 
d|7(r) 

(d,»)=l 

where, assuming ri primitive, 

(3.5) C(r0_£,(j.n)^)_S4$,(û). 

Hence, by the multiplicativity of n(r) and F(r), and by Lemma 3.2, 

- f £ 4 S *WM<0 E *(D)8(»)/.(8). 
^ l / l j din D8=(ri/d) 
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The complete multiplicativity of h{r) gives, with Dd = E, 

Hence by (2.1), 

(3.6) Gin) - M ^ f e î ) . 

By (3.4) and (3.6) the theorem is proved. 

COROLLARY 3.1 (n = 1). Under the conditions of the Theorem, 

(3.7) S ( ^ ) , . w . ^ l . , ( I , r , 

Next we prove a generalization of the Brauer-Rademacher identity (1.4). 

THEOREM 3.2. Under the conditions of Lemma 3.2, 

(3.8) ^SSi^cl^O. 
dtr rid) w 

(d,n) = l 

Proof. Denote the left member of (3.8) by Q(n, r). Let r\ and r2 be the 
uniquely determined positive integers such that r = rxr2l 7(^2) = T(W, r), 
(fi, 2̂) = 1. Then on the basis of Corollary 3.1 and the multiplicative property 
of MW, 

•»HE^)J:«$!. 
din \d / D\d r{Lf) 

With d = Z)E, one obtains then 

£>ln ^ V ^ J E\(ri/D) \ £L / 

so that by (2.1) and the multiplicative property of n(r) and F(r), 

(3.9) Q(n, r) = F(r2)M(r)M(n)g(ri). 

By definition of F(r) and the multiplicativity of fi(r), g(r), it follows that 

Q(n,r) = »{r)»{n)g(n) £ h{d)g(^)J^) = M(r) £ *(<*)g(j) M Q • 

In view of the presence of the factor /z(r) and the fact that y(r2) = y(n, r), 
one obtains then 

Q(n,r) = ix{r) J2 h(d)Al) Al) = v<(r)f(n,r)-
d\(n,r) VZ/ \U/ 

The theorem is proved. 
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4. The generalized Holder identity and a second proof of the general­
ized Landau identity. In the proof of the generalized Landau identity (3.3), 
we used as starting point the right member J(n, r). This was the natural 
approach, relative to the application of (3.3) in proving Theorem 3.2, because 
it was J(n, r), with m = 1, that arose in the proof of that theorem. We shall 
also use (3.3) in the proof of the generalized Holder theorem below. However, 
in this proof, it is the left member of (3.3) which arises; therefore, it is proper 
to give another proof of the generalized Landau identity, proceeding from 
the left side of (3.3). 

Second proof of the generalized Landau identity, Theorem 3.1. Denote the 
left member of (3.3) by S(n, r). We obtain then by the multiplicative property 
of F(r) and g(r), with m = y(r)/y(e), e = (n, r), 

5(»,r)= E | § = phT, M)FU) 
t i F(d) F(m) Tlii \d / 

- j ^ r E iid) E HD)g(?g) J*f 
r\m) d\m D\m/d) \ D / \ D 

= jfa E HD)h) E M N 5 ) • 
r(m) D\m \U/ d\(m/D) \ d / 

Hence by (2.1) and multiplicativity, 

(41) sin r) = - ^ = KyMlEhlûl 
K ' K' } F{m) F(y(r))h(y(e)) • 

Multiplying both numerator and denominator of the last expression in (4.1) 
by h(r/y(r))h(e/y(e)), one obtains, by the complete multiplicativity of h{r) 
and by 3.2, 

c / . h(r)F(e) , , . . 
5 ( w ' r ) = FWÂW (e=(n,r)), 

which is (3.3). The proof is complete. 
We shall need the following lemma in the proof of the generalized Holder 

identity. 

LEMMA 4.1. Under the conditions of Lemma 3.2, if a and b are positive integers, 
then 

(4.2) F(ab) - — y ^ - ^ . 

Proof. In view of the multiplicative property of the functions concerned, 
it suffices to verify (4.2) in case a = p\ b = ps, p prime, t ^ s > 0. Since 
h(r) is completely multiplicative, it follows that for q > 0, F(pq) = hq~l(p) 
(h(p)—g(p)). Hence by Lemmas 3.1 and 3.2, one deduces, for the above 
values of a and b, 
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F(a)F(b)H(a,b)) F{pl)F{ps)h{ps) „ , . , „ . , . . 

mTW) W) = np ] {p) 

= hs+t-\p)F(p) = F(ps+l) = F(ab). 

By multiplicativity, the lemma follows for arbitrary values of a and b. 
We now prove the following generalizations of Holder's identity (1.3). 

THEOREM 4.1 (1, Theorem 2; 5, Theorem 2). If g(r) and h(r) satisfy the 
conditions of Lemma 3.2, then 

(4.3) / ( « . 0 - F ( f ) f f W (8 = r / ( » , r ) ) , 

where f(n, r) is defined by (3.1). 

Proof. Denote the right member of (4.3) by T(n, r). Evidently T(n, r) is 
even (mod r). Hence by Theorem 2.1, T(n,r) has the representation, 

(4.4) T(n, r) = £ H[d, Ù , 
d\{n,r) \ a/ d\(n,r) 

where, with r = r-ji, 

H(r1}r2) = X) r l j , r ) M 
d i n V* / 

(<*) 

k ; &, ^M) 
But by definition of M W and multiplicativity, it follows that 

(d,r2)=l 

Applying Theorem 3.1 one obtains 

Mr ry = nr)g(rtMrt) h(rQ f'((ri, r•,)) 
«^ l f f , ; F ( f j ) > ( f l ) fe ( ( r 1 , r 2 ) ) ' 

so that by Lemma 4.1, 

(4.5) ff(ri,r2) = J W ^ W M W . 

The theorem follows from (4.4) and (4.5) and the definition of f(n, r). 
Combination of (3.8) and (4.3) yields the following result. 

COROLLARY 4.1. Under the conditions of the Theorem, 

(d,7i)=l 

5. A special case. In this section we illustrate the results of §§ 3 and 4 
with a particular example. Let J(r) = $2 (r) denote the Jordan totient of 
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rank 2. We recall the following identity proved in (5, Corollary 24; / = 2, 
n = 1): 

(5 i ) V »{d)<j>{d) = r<j>(r) 
d\r J(d) J(r) 

Placing h(r) = 1 and g(r) = *(r ) / / ( r ) in (3.3), (3.8), (4.3), and (4.6), 
respectively, one obtains on the basis of (5.1) the following relations. 

(* o\ V ^W = J ^ ((n>r)<l>((n>r))\ . 
1 } i?r d r<Kr)\ J((n,r)) / ' 

(5.3) "77T 2^ ~~~T77JT~ = /Hr) 2^ —FT\— 
J{r) t£r d<t>(d) a\ti,r) J(e) 

(d,n)=l de=r 

(5.4) Z ^ ^ = ̂ 4 ^ M(T^T) ; 
dK^r) J\«) /(r) \(n,r)/ 
de=r 

<fe?r d«(d) r \(n,r)/ 
(d,n) = l 
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