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UNIQUENESS OF MASSEY PRODUCTS ON THE 
STABLE HOMOTOPY OF SPHERES 

STANLEY O. KOCHMAN 

1. Introduction. The product on the stable homotopy ring of spheres 
w*s can be defined by composing, smashing or joining maps. Each of 
these three points of view is used in Section 2 to define Massey products 
on 7T*5. In fact we define composition and smash Massey products 
(xi, . . . , xt) where Xi, . . . , xt-i Ç TT*5, xt £ TT*(£) and £ is a spectrum. 
In Theorem 3.2, we prove that these three types of Massey products are 
equal. Consequently, a theorem which is easy to prove for one of these 
Massey products is also valid for the other two. For example, [3, Theorem 
8.1] which relates algebraic Massey products in the Adams spectral 
sequence to Massey smash products in 71* s is now also valid for Massey 
composition products in 7r* s. This paper generalizes to the case of matrix 
Massey products. (See [3, § 7].) However, we will not work in that 
generality to keep the ideas from becoming lost in a morass of notation. 

Our Massey composition product agrees with that of Toda [8] and 
Spanier [7]. It is not clear whether it agrees with the higher composition 
product of Gershenson [2]. Our Massey smash product agrees with that 
of Porter [5] and corresponds under the Pontrjagin Thorn isomorphism 
to the Massey product of manifolds defined in [3]. In Theorem 3.3 we 
prove that our Massey product is a subset of the Toda bracket of J. 
Cohen [1]. Moreover, the threefold product and bracket are equal. I 
conjecture that for n ^ 4 the w-fold bracket may be larger than the 
w-fold product. These remarks relate to the following problem which 
J. Cohen raises at the end of [1, § 4]. Given a Thorn spectrum MG, is 
there a geometric Toda bracket of stably almost G-manifolds which 
corresponds to Cohen's Toda bracket under the Pontrjagin Thorn iso­
morphism? This is a significant question because J. Cohen proves in 
[3, Theorem 4.5] that his Toda brackets decompose the elements of the 
kernel of the Hurewicz homomorphism of MG. 

We will work in the following coordinate free setting inspired by the 
one of May [4, Ch. II]. Let ^ ° ° be the real inner product space with 
orthonormal basis 3! = {&i, b2j . . .}. We consider only finite dimen­
sional subspaces of 3?œ which have a subset of 31 as a basis. Internal 
direct sum is denoted by + , and if W is a subspace of W then Wf± 
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MASSEY PRODUCTS 577 

denotes the orthogonal complement of W in W. All spaces in this paper 
are based CW complexes, all maps are based and all homotopies, cones 
and suspensions are reduced. Let 5 denote one-point compactification. 
In particular, S(3%n) = Sn. The isomorphism from V to ^? d I m F which 
preserves the ordered standard bases induces a canonical homeo-
morphism from 5 V to 5d l m F . Thus a map from S V to SW determines an 
element of wùlmV(Sû[mW). If ix < . . . < iu then define D(&bn + . . . + 
mit) as 

s(mh +... + mu-ù A cs(mit) 
where C( ) = (J, {1}) A ( ). If 

f'.SUi A . . . A SUt A X -* SU! A . . . A SUt A F and 

lûji< ... <j*£t 

then define Cjlt...jk(f) as the canonical map from X A SU\ A . . . A 
DUh A . . . A DUJk A ...A SUttoYASUi...A DUh A . . . A DUh 

A . . . A SUt induced by / . Define an equivalence relation on d / ' - 1 by 
(ai, . . . , a^_i) ^ (6i, . . . , fr*_i) if max (ai, . . . , a*_i) = 1 and max 
(6i, . . . , 6 «—i) = 1. For t ^ 3 choose homeomorphisms 

htlS*-2-* (àP-1)/ ~. 

Then the maps T o (ht A 1SV1A...ASV1) define homeomorphisms 

h:S(^l~2 + Vi + . . . + Vt) -> à[DV! A . . . A Z ) F M A 57 , ] . 

Here and throughout this paper we let T denote a canonical interchange 
map. We let e denote the structure map E A S -^ E or S A S —» S of the 
appropriate spectrum. 

2. Definitions. In 2.1, 2.2 and 2.3 we define the Massey composition, 
smash and join products of unstable maps between spheres as subsets of 
7T*(JE). In Corollary 2.5 we show that these Massey products depend only 
on the stable homotopy classes of the original maps. Thus there are 
induced Massey products which are defined on stable homotopy classes. 

Definition 2.1. Let £ be a spectrum. Let 

gi-i.t'.SVi A . . . A SVt A SU->SVi+1 A . . . A SVt A EtU 

be given, 1 ^ i rg /, such that 

&1-2 ± Vx ± . . . ± Vt ± U, Et = Sîor 1 £i ^ t - l a n d £ , = £ . 

A defining system for (g0,i, • . • , gt-i,t)o' consists of maps 

gttj:DVi+1 A . . . A B 7 M A SVj A . . . A SVt A SU-> 

SVj+1 A . . . A SVt A EjU 
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578 STANLEY O. KOCHMAN 

for 0 ^ i < j - 1 < t, (ij) 7* (0, 0 , such that 

gitj\d(DVi+1 A . . . A DVj-i A SVj A . . . A SVt A SU) 

= U gj 
k=i+l 

where gtij
k is the composite map 

DVi+i A . . . A DVk-i A SVk A I > ^ + 1 A . . . 

A DVi-i A SVj A . . . A SV, A SE/C*+1 j-l(g<'fc), 

-E>n+1 A . . . A D F H A 5 7 , A . . . A 5 7 , A SU 

!H SVj+i A . . . A 5 7 , A £,£/. 

If (go,i, • • • , g<-i,«)o' is defined then define (g0,i, • • • , gt-i.t)o as the set 
of homotopy classes of the maps 

go,, = U go.,*o(A A 1SC;) : S&-2 + Vx + . . . + Vt) A SU-^ EU 

for all defining systems {g^} of (go.i, • • • , gt-i,t)of- Define 

(go.i, . . . ,gt-i,t)o = lim^w <go,i A 1,^ , . . . , eo (gt-i,t A lSf r))o'. 

This direct limit is taken over all W with IF _L (^<~2 + 7i + . . . + Vt + U). 
If W C W^then the map — A \s{w'±) sends a defining system of 

(go.l A lsTT', • • • , € O (gt-l,t A l S T r O } o ' 

to a defining system of 

<go,i A lsw, . . . , e o (g*_M A 1SW))Q. 

Definition 2.2. Let £ be a spectrum. Let 

gir.i,ï-SVi/\SUi->EiUi 

be given, 1 g i g /, such that ^ ' ~ 2 _L 7i _L £/i J_ . . . JL 7 t _L i/f, 
Ei: = 5 for 1 < i ^ / — 1 and Et = E. A defining system for (g0,i, • • . , 
gt-i1t) A' consists of maps 

gt§j:DVi+1 A SUi+1 A . . . A C 7 M A 5t/;-_i A S F , A SE7, 

for 0 ^ i < j - l < t , (i,j) ^ (0, t), such that 

g M | * ( ^ * n A SU HI A . . . A DF3_i A S£/,_i A SVj A Stf,) 

= U g\ti 
k=i+l 
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where gitj
k is the map eo T o (gi>îc A gKj). If (g0,i, . . . , gt-i,t) A i s 

defined, then define (g0,i, • • • » g*-i,z) A' a s the set of homotopy classes 
of the maps 

lo.i = €0 To y\J .go, i J 0T0 (h A lsuiA-ASm) : 5 

X (^'~2 + 7i + . . . + 7,) A SUx A . . . A SUt 

-+E(Ui+... + Ut) 

for all defining systems [gitj] of (g0,i, . . . , gt-i,t) A - Define 

(go.i,... ,g<-i,«>A = lim^,. . . ,^, (g0)i A W l f . . . ,€0'(g,_i, , A W , ) ) / . 

This direct limit is taken over all Wu . . . yWt with 

Wi±...±Wt± (^l-2 +V1+U1 + ...+ Vt+ Ut). 

If Wi CWi,l^iSt, then the maps 

eoTo(— A ls(wi+i'±)A-..AS(Wj'±)) o T 

send a defining system of (g0,i A W i ' , . . . , eo (g«_i,£ A W , > ) ) A ' 

to a defining system of (g0,i A lSWl, . . . , eo (g*_i,, A l8Wt))A'. If 
-4 C U, B C F, £/ JL V ± Rbk then define the join A *k B as the 
canonical quotient of the appropriate subspace of U + V + î fr*. 

Definition 2.3. Let g*_i,*:5F* A 5f/< —> SUt be given, 1 :§ i ^ £, such 
that 

é?u~* JL Vx ± Ux ± . . . ± Vt _L Ut. 

A defining system for (go,i, . . . , gt-i,tW consists of maps 

giJ: (DVi+1 A SUt+1)*t+t^i • • • *H.j-t(DVJ-1 A 5f/,_1)*,+J_3 

X (SVj A 5 ^ ) ->5C/ i + 1* l + i_1 • • • * t+j-zSUj 

for 0 ^ i < j - 1 < t, (i,j) ^ (0, 0 , such that 

gitj\d[(DVi+1 A 517^.1)*i+i-i ' * • * I + H P ^ I A 5^_1)*,+i_3 

X (57, A Sf/,)j = U £</ 

where g*,/ is the map g ^ V ^ g * , , . If <go,i, • • . , g*-i,*)*' is defined 
then define (go.i, . . • , gt-i,t)*' as the set of homotopy classes of the maps 

t-i 

go,* s U go,to To (ft A laaiA...ASut) ' S ( ^ ' ~ 2 +Vt + ...+ Vt) 

A S t f iV i • * ' *2t-zSUt -> SUfp-i * • • *MSUt 
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for all defining systems [gitj] of (g0,i, • • • , gt-i,t)*- Define 

(go,i, • • • > g«-i,i>* = Jimiri TF«<go,i A l8Wl, . . . , g t_i f t A lswt)*'-

This direct limit is taken over all W\y . . . , Wt with 

^ l . . . i ^ l (^ 2<~ 3 + Fi + £/i + . . . + F t + Ut). 

If W7 C Wi, 1 ^ i ^ *, then the maps 

To (— A U(}fi+i)A...AS(Tfj )) o T 

send a defining system of 

(go.i A lswi'y • • • > g*-i,* A I S T T * ' ) * ' 

to a defining system of 

(go,] A IsTFi» • • • > gt-l,t A l ^ W i ) * • 

T h e following theorem will be used to show t h a t the three Massey 
products defined above depend only on the stable homotopy classes of 
the original t maps. 

T H E O R E M 2.4. Let # denote o, A or *, and let {gi,j'*Aitj ~> Bitj] be a 
given defining system for (go.i, • • • » gt-i,t)#' as ^n 2 .1, 2.2 or 2.3. For a 
specific 0 ^ a < 13 ^ t, (a, (3) 9e (0, / ) , let a map gaJ'.Aa,& -* Ba£ be 
given. Assume that 

ga,fl'\àAatfl = gatp\àAa,fi 

and that 

Hay.gatfi c^LgaJ rel ôi4a,^. 

77ze?z //^re is a defining system {git/\ for (go.i, • • • , gt-i,t)#f which includes 
gatp such that git/ = gijifa <iorj</3. Moreover, gQtt ~ g 0 f / . 

Proof. We will define the git/ and a set of homotopies 

{ i f M : / X Atj-^BtjlO S i < a < $ S j ^ t , (i,j) * (0 , / )} 

which includes Ha,p such t ha t Hitj\I t x b i f i J - is the union of maps 
Hi,jfc> i < fe < J. If # is A or * then if*,/ is the composite m a p 

IX (A ttk # 4*,,) ^ U ( / X / ) X (4, ,* # Aktj) - £ 

(lXAt,k)# (lXAkJ)
Hi'k#Hk'i>Bi,k#Bk>j

e-^Bi,j 

where e o T = 1 if # is *. If # is o then 

HitJ*(t,a) = ffw[^i+i M ( ^ , * ) [ U ] ] . 

If such i7 f j- can be defined, then [ U t î # o , **] is a homotopy fromf0>* to 
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go,/- Define git/ and Hiyj by induction on j — i ^ & — a. gaJ and Ha^ 
are given. Inductively, git/\ àA itj and Hij\I IX àA itj have been defined. 
Observe that à A itj <—• A itj is the inclusion of a sphere in a disc which is 
a cofibration. Hence git/ and i7 i ; i exist as required. 

Let x £ irk+n(EU) where dim U — n. Then the s/afr/e homotopy class of 
x refers to the element of rk(E) determined by x. The special case of the 
following corollary for length three composition Massey products is 
given by E. Spanier [6, Theorem 4.4] and H. Toda [8, Proposition 1.3]. 

COROLLARY 2.5. Let # denote o, A or*, and assume that (g0,i,. . • ,gt-i,t)# 
is defined. Then (go,i, . . . , g*-i,*)# depends only on the stable homotopy 
classes of gQtl, . . . , gt-i,t-

Proof. It suffices to prove the following. Let {gtj} be a defining system 
for (g0,i , . . • , gt-i,t)#

f, where gi-U1\At -* EiBt and E{ = S for all i if # 
is *. Let 

/f_if<:^< A 5 t T i - > £ i ( 5 < + Wt), l ^ i ^ t , 

be given such that W\ — . . . = PF* if # is o. Let homotopies 

e O (gi-i,i A l S T r . ) ^ / < _ M 

be given, 1 ^ i ^ I. Then there is a defining system {/*,./} of 
(fo,u • • • »/«-i.*)#' such that 

? ^ i 6 0
 (2O,Ï A W i ) if # is o 

°''~~~ l e o (go,* A W ] A . . . A > S ^ ) if # is A or*. 

This fact is a consequence of Theorem 2.4 applied / times with (a, 0) 
equal to (0, 1), (1, 2), . . . , ( / - 1,0-

3. Equality of the three Massey products. The following lemma 
will be used to prove that the join and composition Massey products 
are subsets of the smash Massey product. It says that the cofibration 
property and the Freudenthal Suspension Theorem can be applied 
simultaneously. 

LEMMA 3.1. Let dim X g 2 connectivity Y, f:SU A X -> SU A F, 
g:X -> Y andh:f ~ lSu A g. Let F:CSU A I - ^ 5 [ / A Y be an exten­
sion off. Then there is an extension G:CX—> Y of g and a homotopy 

H:IX CSU A X->SU A Y 

such that 

H: F ~ lsu A G and H\I X SU A X = h. 

Proof. We first prove this lemma in the case where f = lsu A g and 
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h = f o P2. We will construct an extension G of g and a homotopy 

H:F~SGre\SU A X. 

Since F̂ extends ISL/ A g to the cone of its domain, this suspension of g is 
nullhomotopic. Hence g is nullhomotopic by the Freundenthal Suspension 
Theorem. Thus there is a homotopy 

a:[0,1/3] X X-* Y 

parameterized on the interval [0, 1/3] with a\g on*. Let 

a ' : [1/3, 2/3] X.X-+Y 

by «'(*, x) = a(2/3 - /, x). Let Hx:F ~ Fi rel SU A X such that 

^i(/, w A x) = /(w A x) = w A g(x) for 0 g / ^ 2/3. 

Let F2:CSU A X-+SU A F b y : 

lFi(t,u Ax) if 2/3 S t ^ 1 
F2(/, w A x) = Jw A «'(/, x) if 1/3 S t ^ 2/3 

(w A a(t,x) if 0 g t g 1/3. 
Then 

FiltO, 2/3] X , S [ / A I = l S [ / A f e o P2) and 

F2|[0, 2/3] X 5C/ A X = Uu A ( o U a ') . 

Let A:/ IX [0, 2/3] X X -> F by: 

(a(* - 5/3, x) if 5/3 ^ t ^ 1/3 
A(5, *, x) = a '(s/3 + *, x) if 1/3 ^ t £ 2/3 - 5/3 

U(x) ifO ^ / ^ 5/3 or 2/3 - 5 / 3 ^ / g 2/3. 

T h u s k ' . a U a ' - g o P 2 . If if2 = ( W A / j ) U (F1oP2) then H2: Fr ~ 
F2 rel 5C7 A X. Let (1/3, 1) X SU A X denote the image of 
[1/3, 1] X SU A X in CSU A X. Observe that F2 induces a map 

F2:((l/3, 1) X SE/ A X) / ({ l /3} X SU A X)->SU A Y. 

The domain of F2 is homeomorphic to S(SU A X). Hence by the 
Freudenthal Suspension Theorem there is a homotopy 

Hz'.F2 —•> lsu A F3. 

Define F 3 : CSU A X -> SU A Y by: 

j? s* A >> h\{t,uAx) i f O S * g l / 3 
% W A ^ ) = i A ^ , ) if 1/3^ A 
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Define HZ:F>~ Fz rel SU A X by: 

A x ) ifO ^ t g 1/3 
w A *) if 1/3 ^ / ^ 1. 

Then F$ = lsu A G where: 

G(t,x) 
_ ia(/, x) 
~ \Fz(t,x 

c) i f O ^ / ^ 1 / 3 
,*) i f l / 3 ^ / ^ 1 . 

The map G and the homotopy H obtained by pasting together H\, H2, H% 
demonstrate that the lemma is valid in this special case. 

In general H will be defined by pasting together three homotopies H'', 
H" and H'" as in Figure 1. Figure 1 illustrates the case SU A X = S1 

when the triangle in the figure is rotated around the dotted line L. 

I su A g 

A 

FIGURE 1. The homotopy H 

Since {0} X SU A X £-* CSU A X is a cofibration there is a homotopy 

Hf:lX CSU A X-+SU A F 

such that # ' | 7 X ( 0 ) X 5 [ / A I = ^ and H'\[0] X CS£/ A X = F. 
Let i J " be the homotopy given by the special case of the lemma which we 
proved above applied to the map g and the extension / / 'Kl} X CSU A X 
of lsu A g. Let 

H"\\l) X CSU A X = lsu A G". 

Let H'":{(t,s,u A x) e I tx CSU A X\0 <: s ^ 1/2 and 5 g *} -» 
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SUA F be defined by: 

(h(t, u A x) if 25 g t. 

Define H:I X CSU A X-*SU A F by: 

s, u A x) = vff"(2* - 1, 25 - 1, u A x) 

\H'"(t,s, 

Hit, s, 
if I g * ^ 1, I ^ 5 g l 

M A X ) if 5 g t, 0 g 5 g \ . 

It is routine to check that H is well-defined, H\I > {Oj X 5(7 A X = ft 
and H:F c^ lSu A G where G: CX —> F is given by: 

G(sx)=hM HO^s^i 
UK,X) \G"(2s-l,x) i f j ^ 5 ^ 1 . 

Thus H and G meet the requirements of this lemma. 

THEOREM 3.2. Let E be a spectrum. Let x{ £ 7r*5, 1 ^ i ^ t — 1 and 
/e£ xf G 7r*(£). r ^ w the following conditions are equivalent. 

(a) (xi, . . . , xf)o is defined. 
(b) (xi, . . . , xt) A is defined. 

If conditions (a), (b) are true then (xi, . . . , xt)Q = (xu • . . , xt) A. / / 
E = S then condition (c) is equivalent to (a) and (b). 

(c) (xi, . . . , xt)* is defined. 
If E = S and conditions (a), (b), (c) are true then 

\X i , . . . , Xt)o = \X i , . . . , Xt) A ~ \xli • • • » #* /* • 

Proof. We begin by proving that if (xi, . . . ,xt)A is defined then 
(xi, . . . , X;)o is defined and (xi, . . . , xt) A C (xi, • • • , %t)o- Let x £ 
(xi, . . . , xt) A be represented by 

gO,t G (go . l , . • • , gt-l,t) A 

where \gij\ is a defining system and 

gt-i.i'.SVt A SUi-^EtUi, l ^ i ^ t . 

Let 

C - i . r . S F , A . . . A SVt A 5(C/i + . . . + Ut) 

-+SVi+1 A . . . A SVt A £<(£/! + . . . + [/,) 

be given by 

eo T o (gi-i,t A 1) o T. 
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For 0 ^ i < j - 1 < /, (i,j) j* (0, /), define 

GitJ:DVt+1 A . . . A DVj-i A SVj A . . . A 5 7 , A 

S(Ui + . . . + Ut)-*SVj+1 A . . . A SVt A 

£,(#! + . . . + [/) 
as 

eo T o (gitj A 1) o T. 

Then {G*,y} is a defining system for (Go,i, . . . ,Gt-i!t)o
f and G<_iff 

represents xt-, 1 ^ i ^ /. Thus (xi, . . . , x*)o is defined. Observe that the 
following diagram commutes: 

S(^<-2 + 7i + . . . + Vt) A 5(t/x + . . . + Ut)-£^E(Ul + ...+ Ut) 

S(0$1-2 + 7i + . . . + 7,) A 5 f t A , .<ASUt 

Thus Go, « and g0> * represent the same element of 7r* (£) and 

(Xi, . . . , X , ) A C (Xi, . . . , X, ) 0 . 

We prove next that if (xi, . . . , xt)o is defined, then (xi, . . . , xt) A is 
defined and 

(Xi, . . . , Xt)o C \Xi, • • • , Xt) A-

Let x G (xi, . . . , xt)0 be represented by g0,« G (go,i, . . . , g«-i,«)o' where 
{g*,;} is a defining system and 

gt-i.i'.SVt A . . . A SVt A 5 C / - > 5 7 i + i A . . . A 5 7 , A £,£/. 

Choose large dimensional subspaces Ut of ^°° , 1 ^ i ^ t — 1, such that 

17i ± . . . J_ C7t-! ± ( ^ f - 2 + Fx + . . . + Vt + U). 

Let [/* = U. We construct a defining system {Gitj} for (Go,i,. . . ,Gt-itt)A' 
with the following properties: 

(1) F o r i rg i£ t - hGi-i.iiSVt A SU2;-> SU, and G^i.i = £,_,,,. 
(2) For 1 ^ i g / ~ 1, there is a homotopy Hi-iti from 

Gi_i,< A I s F i + i A... ASVt ASU tO T O (gf-i .f A lsui) ° 3". 

(3a) For 0 ^ i < j — 1 < t — 1, there is a homotopy i^ i 7 from 

Gitj A lSFy +1 A... ASVt Asu to T o ( g ^ A lsui+iA-..ASUj) ° ^-

(3b) For 1 ^ i ^ t — 2, there is a homotopy i7 f ) , from 

G M to eo (gM A 1 S ^ + I A . . . A S ^ I - I ) o T. 
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(4a) ForO ^i<k <j < t,Hitj\[r) X DVi+1 A . . . A 57» A . . . A 
SU is 

G,,* A (Hktj\{2r\ X DVk+l A . . . A SU) for O g r ^ i 

and is 

^ O (gkj A l s t / i +1 A...ASVj) O T O 

[(C*+! ,_!(#*,*) I {2r - 1} X DVi+1 A . . . A SU) 

A 1-SUk + 1 A--- ASUj] O T 

for | g r ^ 1. 
(4b) For 1 ^ i < k < t, Hitt\{r] X DVi+l A ... A SVk A ... A SU 

is 

e o [Guk A (Hkjt\{2r} X DVk+l A . . . A 5C/)] for 0 ^ r ^ * 

and is 

eo (gktt A lsui+iA...Osut-i) oT o 
[(C*+i....ff-i(fl

r
<ift)|{2r - 1} X D F i + i A . . . A SU) 

A IsUk + 1 A--- ASUt - J ° ^ 

for i ^ f g 1. 

We define the Gitj and H^- by induction on j - i ^ 1. By the Freuden-
thal Suspension Theorem we can find Gi-iyi and Hi-iti which satisfy (1) 
and (2). Inductively, 

Gij\ à (Domain Gitj) and 

<ff, t i |JlX à(DVi+1 A . . . A SU) 

have been defined. Note that Hitj\{l} X à ( D F i + i A . . . A SU) extends 
to {1} X DVt+i A . . . A SU as 

T o (gitj A lsui+iA-..ASUj) oT iîj<t 
eo (gitt A lsui+iA...ASut-i) ° T if J = t. 

If j < t then we apply Lemma 3.1 to find Gitj and Htij as in (3a) and 
(4a). If j = t then we use the fact that the inclusion map of 
à(DVi+i A . . . A SU) into DVi+1 A . . . A 5U is a cofibration to find 
Gitt and Hitt as in (3b) and (4b). Thus {Gitj\ is a defining system for 
(Go.i, • • • , Gt-i,t) A and Gi-iti represents xt, I ^ i ^ t. Observe that 
the following diagram homotopy commutes. 

S(@'-2 + \\ + . . . + V,) A SUi A . . . A SUt ^ >E(UX + . . . + Ut) 

W 

S(@'-> + Vx + • • • + I7,) A S [ / A 5 [ / , A . . . A SE/- , g(M A ^ ^ ' A - A ^ , - , ^ ^ A 5 J 7 l A . . . A 5^/^j 
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Thus Go,t and g0tt represent the same element of T*S, and 

<Xi, . . . , Xt)o C (Xi, . . . , Xt)A. 

Let £ = S. Assume that (xi, . . . , xt) A is defined. Letx 6 (xi . . . . xt) A 
be represented by 

go,* £ (go.i, • • • , £*-I,*)A' 

where gi-i,ùSVi A SUi—^SUi represents xt and 

Then the 

Gtj = To [gitj A ls(®i>t+i_l+...+&i>t+j_3)] o r 

form a defining system for (go.i, • . . ,gt-i,t)*- Thus (xi, . . . ,xt)+ is 
defined. Observe that the following diagram commutes. 

S(^<- 2 + V, + . . . + Vt) A S ÇA*,.! . . . *U-zSUt — • S£V<_1 . . . *2,_3S£/, 

\T \T 

[5 (^ ' " 2 + 7i + . . . + Vt) A SU, A • • . A SUt]
 g ° ' ' A 1 »($£/! A . . . A SÏ/,) 

A S ( ^ V i + . . . + ^621-3) A S(&bt-i + • • • + ^621-8) 

Thus Cro.t and g0t< represent the same element of ir*s, and 

\Xi, . . . ,xt)/\ C \#i> • • • >#*/*• 

Now assume that (xi, . . . , x*)* is defined. Let x G (xi, . . . , xt)* be 
represented by 

Goit G (Go,i, . . . , Gt~i,tW 

in the above notation. By Lemma 3.1 we can assume that each Gitj, 
i < j — 1, is a (j — i — 1)-iterated suspension of a map gifj as above. 
In particular 

gt-iti = Gi-i,u 1 g i g /. 

Thus (xi, . . . , x*)A is defined, and 

(Xi, . . . , Xt)* G (#1* • • • » xt) A-

We conclude by proving that our Massey product is a subset of the 
Toda bracket (xi, . . . , xt)c of J. Cohen [1]. We will use the notation of 
[1, § 2] without explanation. 

THEOREM 3.3. Let E be a spectrum. Let xt '£ TT*S for 1 ^ i ^ / — 1 and 
letxt Ç TT*(£). If (xi, . . . ,xt)o is defined then (xi, . . . , xt)cis defined and 

(x i , . . . , X/)o C_ \# i , • • • , %t)c-
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Proof. Let x Ç (xi, .-. . , xt)o be represented by 

go,« € (go.i, • • • » gt-i,t)o 

where fg^-} is a defining system and 

gt-i.iiSVt A . . . . A 5 7 , A S E / - * S 7 , + 1 A . . . A SVt A £ ,£ / 

represents xu I ^ i ^ t. Define X € {g,_2,*-i, . . . , £1.2} by 

t-i 

X = U Domain g*,*/^ 
A ; = l 

where 

y ~ C,
y+i,...ft_i(gi>i)(y) for 1 ^ i <j < t, 

y G DVt+i A ... A SVj A ... A SU C à (Domain gitt) and 

Cj+i,...,t-i(gij)(y) 6 Domain g,,,. 

Filter X by 

/^X = Image U Domain gktt ->X 
Jc= t—n 

for l g « ^ - l . 

Then 

FnX/Fn-iX ^ Domain g *—n, « / U Domain Cfc+i,...f«-i(g«-n,*) 
k=t—n+l 

= DVt-n+1 A . . . A SVt A SU/à(DVt-n+i A . . . A SVt A SU) 
^st^t-n+i)^SVt_n+i A . . . A SVt A SU) 

= S"-1 Domain gt-n -t-n+i-
The required condition 

yn-l[Sn~1gt-n,t-n+l] = ÇnX 

follows from the following homotopy commutative diagram. In this 
diagram the composite of the top map, the right map and the bottom 
map is yn-i[Sn~1gt-n>t-n+1]. 

r 
FnX/Fn^X fe^) ' >Sn-1 D o m a i n g(_n ,_n+1 

S*X FnX\J CFn^X 

SFn-iX 

" £ t-n,l-n+1 

S"-1 Domain g,_ n+l.t-n+2 

^S(Fn^X/Fn_2X) < 5 g T 2 S(S"-* Domain g /^+ 1 , ,_ . , . , ) 
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Define g:Sl~2 Dom g0,i —» X as the composite map 

S l~2 Domain go, 1 == Domain go, * —> X 

where 

G|Z)Fi A . . . A 5 7 , A . . . A £>F,_i A 5 7 , A SU 

Define h:X —> EU by h\Domain gkit = gktt. It is routine to check that g 
and h are well-defined, 

hog = go,f, o x o g ^5<- 2g 0 , i and hojx = gt-i,t-

Thus x = [go, J G (xi , . . . , # , ) c . 
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