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UNIQUENESS OF MASSEY PRODUCTS ON THE
STABLE HOMOTOPY OF SPHERES

STANLEY O. KOCHMAN

1. Introduction. The product on the stable homotopy ring of spheres
7S can be defined by composing, smashing or joining maps. Each of
these three points of view is used in Section 2 to define Massey products
on 5. In fact we define composition and smash Massey products
(%1, ...,%;) where x1,...,%,-1 € m5, x, € 7*(E) and E is a spectrum.
In Theorem 3.2, we prove that these three types of Massey products are
equal. Consequently, a theorem which is easy to prove for one of these
Massey products is also valid for the other two. For example, {3, Theorem
8.1] which relates algebraic Massey products in the Adams spectral
sequence to Massey smash products in my® is now also valid for Massey
composition products in m 5. This paper generalizes to the case of matrix
Massey products. (See [3, § 7].) However, we will not work in that
generality to keep the ideas from becoming lost in a morass of notation.

Our Massey composition product agrees with that of Toda [8] and
Spanier [7]. It is not clear whether it agrees with the higher composition
product of Gershenson [2]. Our Massey smash product agrees with that
of Porter [5] and corresponds under the Pontrjagin Thom isomorphism
to the Massey product of manifolds defined in [3]. In Theorem 3.3 we
prove that our Massey product is a subset of the Toda bracket of J.
Cohen [1]. Moreover, the threefold product and bracket are equal. I
conjecture that for » = 4 the n-fold bracket may be larger than the
n-fold product. These remarks relate to the following problem which
J. Cohen raises at the end of [1, § 4]. Given a Thom spectrum MG, is
there a geometric Toda bracket of stably almost G-manifolds which
corresponds to Cohen’s Toda bracket under the Pontrjagin Thom iso-
morphism? This is a significant question because J. Cohen proves in
[3, Theorem 4.5] that his Toda brackets decompose the elements of the
kernel of the Hurewicz homomorphism of MG.

We will work in the following coordinate free setting inspired by the
one of May (4, Ch. II]. Let #* be the real inner product space with
orthonormal basis & = {by, by, ...}. We consider only finite dimen-
sional subspaces of #® which have a subset of & as a basis. Internal
direct sum is denoted by +, and if W’ is a subspace of W then W'+
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denotes the orthogonal complement of W’ in W. All spaces in this paper
are based CW complexes, all maps are based and all homotopies, cones
and suspensions are reduced. Let S denote one-point compactification.
In particular, S(#") = S*. The isomorphism from V to #%™" which
preserves the ordered standard bases induces a canonical homeo-
morphism from SV to S¥®¥, Thus a map from SV to SW determines an
element of mgmy (SU™W). If 4, < ... < 1, then define D(%b,, + ... +
Rb,,) as

SHby + ...+ Rbi_,) N CS(A);,)
where C() = (I, {1}) A (). If
fSULAN...NSU NX—>SU AN... \NSU, N YV and
l1=sh<...<jx =t

then define C;, .. ;,(f) as the canonical map from X A SU; A ... A
DU, A...ADU,A...ASUto Y ASU,...A DU, A...A DU,
A ... A SU,induced by f. Define an equivalence relation on 07‘-1 by
(ar, ... ,a,—1) ~ (by,...,b,—1) if max (a,...,a,-;1) =1 and max
(b1,...,b;—1) = 1. For t = 3 choose homeomorphisms

RS2 — (1Y) /) ~.
Then the maps T o (k; A 1sy, a... sv,) define homeomorphisms
BSA 2+ Vi+ ...+ V)= ODViAN...NDV,_; NSV,

Here and throughout this paper we let 7" denote a canonical interchange
map. We let e denote the structure map E A S — Eor S A .S — Sof the
appropriate spectrum.

2. Definitions. In 2.1, 2.2 and 2.3 we define the Massey composition,
smash and join products of unstable maps between spheres as subsets of
m«(E). In Corollary 2.5 we show that these Massey products depend only
on the stable homotopy classes of the original maps. Thus there are
induced Massey products which are defined on stable homotopy classes.

Definition 2.1. Let E be a spectrum. Let
i, i3 SViN ... NSV, ANSU-SSViun A .. ANSV, N EU
be given, 1 < ¢ = ¢, such that
ARt Vil...LV,LUE,=Sfor1l<i<t—1land E,=E.

A defining system for (go,1, ..., g:~1,:)0 consists of maps

gi,j:DVH—l AL A DV]'_I AN SV] VAR SVl AN SU—
SVii A ... A SV, A EU
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for0 £1<j—1<t (1,7) # (0, t), such that
g;,,]&(DV,-H Ao A DV]'_I A SV] VANAN SVL AN SU)

=1

= U guf

k=1+1

where g, ;* is the composite map

DVH_l/\ .../\DVk-l/\ SV}C/\DV]H-I/\ e

ADV, i ASV; A ... NSV, A SU Cran,ooi=1 @)
DVigr A ... ADV,a A SV, A ... A SV A SU

By SV A ... A SV, A EU.

If (go1,-. -, gi-1,2)0 is defined then define {go 1, ..., g:w1,:)0 as the set
of homotopy classes of the maps

t—1

B0 = kk_Jlgo,sz(h Alsy) : SR>+ Vi4+...4+ V) A SU—EU

for all defining systems {g; ;} of {(go.1, ..., gi—1,¢)0’. Define

€01y oy &em1,000 = limLw (€01 A Lsw, ..., €0 (Zi—1,e A 1sw) )o'.

Thisdirect limit is taken overall W withW 1L (Z 2+ Vi +... +V,+U).
If W' C W then the map — A 1suw-1) sends a defining system of

(€01 A lswry .., €0 (g1, A Lswr) )
to a defining system of
(801 A Lgwy ...y €0 (gimt,e A Lsw) ).
Definition 2.2. Let E be a spectrum. Let
gim1,0:S8V ANSU,; — E,;U;

be given, 1 <7<t such that #*2 L V, L U, L... LV, 1L U,
E;,=Sforl £7=t—1and E, = E. A defining system for {go 1, . .
Z2i1,1) A" consists of maps

20 DVir ASUir A ... ADV,_i A SU,1 A SV, A SU,
S E(Ugr+ ...+ Uy
for 0 =1<j—1<t (47) # (0,t), such that

L

210D Viga A SUya A ... ADV,ou A SU,_1 A SV; A SU,)
=1

= U gi;

k=1i+1
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where g,/ is the map eoT o (gix A gey). I o1y, gim1,0)A” is
defined, then define (go1,..., g:-1.:) A" as the set of homotopy classes
of the maps

t—1

goi=¢oTo (kglg’s,,) oTo (A lsua..asw):S
X PR+ Vi+...+V)ASULA ... A SU,
—EU+...+U)
for all defining systems {g; ;} of (go.1,..., gw1,.) A". Define
o1y s 81,00 a =limp, . w, (€01 A lsw,,.... €0 (gi—1,0 A Lsw,) ) A"
This direct limit is taken over all Wy, ..., W, with
Wil...L W LA 24+ Vi+Ui+...+ V., + U
If W,/ CW,1Z1=t, then the maps
€00 (= A lswgyva.asw, ' n)oT

send a defining system of (go1 A lswyr, -+, €0 (81,0 A lswi) ) A
to a defining system of (go1 A lswy, ..., €0 (81,0 A lsw, ). If
ACUBCUV, ULV L Rb, then define the join A *, B as the
canonical quotient of the appropriate subspace of U + V + Rby.

Definition 2.3. Let g;—1,;:SV; A SU; = SU,; be given, 1 < 7 = ¢, such
that

R L ViL U L...LV, LU,
A defining system for {(go.1, . . . , £4-1,:)% consists of maps

it DVipr AN SUi)* i1 - - * 105DV A SUZ0)* 145
X (SV; N SU]) _)SUi+1*t+i—1 S ¥ H.j_.;;SUj

for0=1<j—1<t (¢,7) # (0,t), such that
26,i10[(DVigr A SUs)*ipim1 ¥4 5ma(DVia A SU;Z1)* 455

j—1

X (SV; A SUN = U g
k=1+1
where g; ;% is the map g; ¥ —28k,; If (go1,-.., 21,104 is defined

then define (go,1, . - ., 8:—1,:)% as the set of homotopy classes of the maps

-1

%o, = kL__Jlgg.zO To(h A lsopnso) :SE T+ Vit ...+ V)

A SU™ 1 *3,3SU, — SU™ o1 *90-88U,
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for all defining systems {g; ;} of (go.1,. .., gi—1.1)%"- Define
<g0,1, ey e, ) = limy we <g0,1 AN dgwyy ooy g1 N Lswe)s'
This direct limit is taken over all Wy, ..., W, with

Wil... L W, L (@3 4+Vi+U+...4V,+ U.
It W/ C Wy, 1=1=t, then the maps

To (= A lswion.asawin)oT
send a defining system of

(gGoa A lswyry oo oy Bi1a N Lswor s
to a defining system of

(go1 N lswy, o ooy 810 N Lsw, ).

The following theorem will be used to show that the three Massey
products defined above depend only on the stable homotopy classes of
the original ¢ maps.

THEOREM 2.4. Let # denote o, N\ or *, and let {g, ;24— B} be a
given defining system for {go1, ..., g1 )¢ as in 2.1, 2.2 or 2.3. For a
specific 0 S a < B =4, (o,B) #= (0,t), let @ map gog :Aap = Bap be
given. Assume that

gaﬁll aAa,ﬁ = ga,,si CA,,,g
and that
Hypigup =~ gag rel 04, .

Then there is a defining system {g; '} for {go1, . . ., €1m1,1)# which includes
ug Suchthat g, = g ;if a < iorj < 3. Moreover,go,, =~ go., .

Proof. We will define the g; ;/ and a set of homotopies
{Hi,j:I < Ai,j—)Bi'fIO é 1 <a< ,8 éj é tr (’Lv]) # (Or t)}

which includes H, s such that H,; |l D< 04, ; is the union of maps
H; /i<k<jIf#is A or * then H, f is the composite map

1 T
Id< Uit de )22 Ix < it ) S

Hi'k#Hk'j-B GOT‘

(I< Aye) # (ID< Asiy) i * B,; — By,
where eo T" = 1 if #is *. If # is o then
H; #(t,a) = Hy,jlt Crqa,.., j—l(Hi,k)[tr all.

If such H, , can be defined, then [\UZ; H,, /] is a homotopy from g, , to
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%o./. Define ¢g; ;/ and H; ; by inductionon j — 7 = 8 — a. g5 and He g
are given. Inductively, g; /| 04 ; ;and H; ;| D< 04, ;have been defined.
Observe that 04 ;; < A, ; is the inclusion of a sphere in a disc which is
a cofibration. Hence g, ;/ and H, ; exist as required.

Let x € w3, (EU) where dim U = n. Then the stable homotopy class of
x refers to the element of 7 (E) determined by x. The special case of the
following corollary for length three composition Massey products is

given by E. Spanier [6, Theorem 4.4] and H. Toda [8, Proposition 1.3].

COROLLARY 2.5. Let #denote o, N\ or*, and assume that {go.1,...,g1,1)#
is defined. Then {go1, ..., 81, .)# depends only on the stable homotopy
classes of go1y « -y Lim1.10

Proof. 1t suffices to prove the following. Let {g; ;} be a defining system
for (go,1, ..., gw1,0)#, where g;,_1,;:4;— E;B;and E; = S for all 7if #
is *. Let

fi—l,i:Ai /\ SWz—"Ez(Bl + Wi)y 1 é ’L é t,
be given such that W, = ... = W,if # is 0. Let homotopies

€0 (gim1,s N Lsw,) >~ fi1
be given, 1 < ¢ =< ¢ Then there is a defining system {f;;} of
(foy], e ,ft_l';>#l such that

7 N{eo(zo,m 1sw,) if#iso

7 Leo @, A Lswin..asw,) if Fis A or*.
This fact is a consequence of Theorem 2.4 applied ¢ times with (a, 8)
equal to (0, 1), (1,2),..., (¢t — 1,1¢).

3. Equality of the three Massey products. The following lemma
will be used to prove that the join and composition Massey products
are subsets of the smash Massey product. It says that the cofibration
property and the Freudenthal Suspension Theorem can be applied
simultaneously.

LEMMA 3.1. Let dim X £ 2 connectivity 'V, f:SUN X —>SUA Y,
g X—>Yand h:f ~1gy N g. Let F:CSU N X —- SU A Y be an exten-
sion of f. Then there is an extension G:CX— Y of g and a homotopy

H:Ip< CSUNX->SUANY
such that
H:F~1gy AN Gand HID>< SUN X = h.

Proof. We first prove this lemma in the case where f = 155 A g and
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h = f o P,. We will construct an extension G of g and a homotopy
H:F~SGrel SU A X.

Since F extends 1gy A g to the cone of its domain, this suspension of g is
nullhomotopic. Hence g is nullhomotopic by the Freundenthal Suspension
Theorem. Thus there is a homotopy

a:[0,1/3]Dx X = V¥

parameterized on the interval [0, 1/3] with atg =~ *. Let
«:1/3,2/3] < X > ¥

by a'(t,x) = «(2/3 — t,x). Let H: F ~ Fyrel SU A X such that
Filt,u Nx) =fu ANx) =u AN glx)for0 =t < 2/3.

Let Fo: CSU N X —-SU A Y by:

Fit,u Nx) if2/3<t=1
Folt,u Nx) = {u ANo'(t,x) if1/3=¢t=2/3
uNal,x) if0=Zt=1/3.
Then

Fil[0,2/31 < SU A X = 1sy A (g o Ps) and
Fol[0,2/31 < SUA X = 1syg A (@ o).

Let h:1 >< [0,2/3] b< X — Y by:

alt —s/3,x) ifs/3=t=51/3
his, t,x) = {a'(s/3+t,x) if1/3=t=2/3—5s/3
g(x) if0<t=<s/30r2/3 —s/3<1t<2/3.

Thus hia U o’ zgoPg. Isz = (1SU AN h) Y (F10P2) theﬂH2:F1 o~
Forel SUNX. Let (1/3,1) < SUA X denote the image of
[1/3,1] < SU A X in CSU A X. Observe that F, induces a map

Far((1/3,1) < SU A X)/({1/3} X SUA X) > SUA V.

The domain of 7, is homeomorphic to S(SU A X). Hence by the
Freudenthal Suspension Theorem there is a homotopy

E;;:Fz"-) ISU AN Fa.
Define F3:CSU AN X - SU A Y by:

Fot,u ANx) if0<t=1/3

Folt, u A\ ) ={u/\ Ftx) if1/3<t<1.
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Define H3: Fo >~ F3rel SU A X by:

Ft,u ANx) if0=<t=1/3
Hi(s, t,u ANx) if1/3 <t < 1.

Then F3 = 1sy A G where:

H(s, t,u A x) = {

_Jal,x) f0=t=1/3
Gl %) = {Fg(t, ¥) if1/3<t<1

The map G and the homotopy H obtained by pasting together H,, H», H;
demonstrate that the lemma is valid in this special case.

In general H will be defined by pasting together three homotopies H’,
H' and H" as in Figure 1. Figure 1 illustrates the case SU A X = S!
when the triangle in the figure is rotated around the dotted line L.

1

— Iy A g
'2
1

—
lsy N\ g

FiGure 1. The homotopy H
Since {0} X SU A X & CSU A X is a cofibration there is a homotopy
H:ID CSUNX->SUANY

such that H'|I D< {0} X SUA X = h and H'|{0} X CSU A X = F.
Let H” be the homotopy given by the special case of the lemma which we
proved above applied to the map g and the extension H'|{1} X CSU A X
of 1y A g. Let

H'|{1} X CSUA X = 150 AN G".
Let H":{(t,s,u Nx) e ID< CSUANAX|0=s=<1/2 and s =t} —
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SU A Y be defined by:

h(2s,u A x) if2s =t
h(t,u ANx) if2s St

H"({t, s,u A\ x) = {

Define H:I X CSU AN X —>SU A Y by:

H’(2t,—i—}—i,u/\x) fost<it<s
H@, s,u ANx) =SH"(2t —1,2s — 1,u A x)

? fi<t<1,i=<s=g1

H"(t, s, u A\ x) fs<t0=s=<3.

It is routine to check that H is well-defined, H[I > {0} X SUA X =h
and H:F ~ 15y A G where G:CX — Y is given by:

_Jgl) ifO=s
Gls, %) = {G”(Qs —1,x) ifi<s

IIA IA
Pt pOf

Thus H and G meet the requirements of this lemma.

THEOREM 3.2. Let E be a spectrum. Let x; € m5, 1 £ 1=t — 1 and
let x, € my(E). Then the following conditions are equivalent.

(a) (x1,...,%x,)01s defined.
(b) (x1,...,%,) A s defined.
If conditions (a), (b) are true them (xX1,...,%.00 = X1,..., %) A If

E = S then condition (c) s equivalent to (a) and (b).
() (X1, ..., %:)s 1s defined.
If E = S and conditions (a), (b), (c) are true then

<x1,. . ,x,)o = <x1,. . ,x,),\ = <x1,.. . ,x,),.

Proof. We begin by proving that if {(xi,...,%x,)A is defined then
(X1, ... %00 is defined and (xy,...,x, )0 C X1,...,%.)0. Let x €
(%1, ..., %,) A be represented by

Zo,0 € {goty - h 1,00 A

where {g, ,;} is a defining system and
i1, oSV, ANSU, - E,U;,1 210t
Let
G, sSViN . ..ANSV,ANS(Ur+ ...+ Uy
>SSV AN .ASYV,ANE(Ui+ ...+ Uy

be given by
eol o(gi1, i N1)oT.
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ForO0=2:1<j—1<¢ (1,7) # (0,¢), define
Gi;;:DVir A ... ADV,.iASV, A ... ASV, A
SUi+...4U)—>SVu AL..ASTY, A
E,(Ui+...4+ U

as

EOTO(gi’j/\ I)OT.
Then {G;,} is a defining system for (Goa1,...,Gi1.:) and G, ;
represents x;, 1 = 7 = t. Thus (x,, . .., x,)0 is defined. Observe that the

following diagram commutes:

S@E 2+ Vi4+...+V)ASWUi+ ...+ U,)ﬁo‘—’>E(U1 +...+U)

SR+ Vit ...+ V) ASULA . TASU,

Thus Gy, and g, , represent the same element of m (£) and

T DA G €2 P ) T

We prove next that if (x1,...,x,)o is defined, then (x1,...,x,)A is
defined and
@1y ooy X000 C X1y ooy, Xy A
Let x € {x1,...,%,) be represented by go., € (go.1, ..., g:—1,:)0" where

{g: ;] is a defining system and
g1, SViN . .ASV, ANSU-SSV i Ao NSV, AN E;U.
Choose large dimensional subspaces U; of #%,1 <41 <t — 1, such that
Uil ... LU LZ 2+ Vit ..+ TV, + ).

Let U, = U. We construct a defining system {G; ;} for (Go1,...,Go1,:) A
with the following properties:

M For1 21=t—1,Gi1,:SViANSU; —»SU;and G 1, = g41.0
(2) For1 =4 =t — 1, there is a homotopy H;_;,; from

Gio1,i N\ Lsyiginonsvenso 0 70 (gim1, A 1sy) o T
(3a) For0 =7 < j— 1<t —1, there is a homotopy H; ; from
Gi,y N lsy; an..asvinsu to T0 (g4 AN lspiain..asu;) © T
(3b) For1 £ 17 £t — 2, there is a homotopy H;,, from

Giito €0 (24,0 A Lsus sy n..nsvin) O 1.
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(4a) ForO0 €1 <k <j <t HijJ{r} X DVyr A ... NSV AL A
SU is

G'i,k AN (Hk,j“2r} X DV]H,] AL A SU)fOrO é r é

(S

and is

T o (g, N Lsvisin..asus)oT o
((Crgr,osa(Hip){2r — 1} X DVt A0 A SU)
A lsupan..asv] o T
fori =r=1.
(4b) For1 S1 <k <t,H; {r} XDViys A ... ASVe N ... ANSU
is
€0 [Gix N (Hyl{2r} X DVigr A ... ASU)]for0 =7 £ 3

and is

€0 (g« N lsui s a..Osvy) 0T O
[(Crar,o 1 (He){2r — 1} X DVt A ... A SU)

A lsvisin..nsve] o T

We define the G; ;and H; ; by inductiononj — 7 = 1. By the Freuden-
thal Suspension Theorem we can find G_1,; and H,_; ; which satisfy (1)
and (2). Inductively,

Gf.jl fe} (Domain Gi,]’) and
H, JID< d(DVyy A ... ASU)

have been defined. Note that H, ;|{1} X 0DV 41 A ... A SU) extends
to {1} X DVy1 A ... AN SUas

{T 0 (g4,5 N lsvisin.nsv;) 0 T ifj<t
€0 (gi.t AN P /\.../\SUt—l) ol ifj =t

If j < t then we apply Lemma 3.1 to find G;; and H, ; as in (3a) and
(4a). If j =1t then we use the fact that the inclusion map of
DV AN ... ANSU) into DV 1y A ... A SU is a cofibration to find
G;,and H; ,as in (8b) and (4b). Thus {G, ;} is a defining system for
(Go1,.+.,Gi—1,0) A and G,_1,; represents x;, 1 < ¢ < ¢. Observe that
the following diagram homotopy commutes.

S@ V4 VYASU A . ASU——C% LR 4.+ U

T €

S@ =4 Vid ...+ VOASUASULA ... ASU_ Bt D Lsuincasvi 5y A SULA L. A SUL
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Thus Gy, ; and g, , represent the same element of 7, %, and

@1, x)o C Loy, o, X A

Let E = S. Assume that {x1,...,x,)risdefined. Letx € (x;....x,)A
be represented by

Bo: € Loty ooy im1,0) A

where g,_1,::SV; A SU; — SU, represents x; and
R 1L ViL Ui L...LV, LU,

Then the

Gi;=Tolgi; N\ Lscao, bim1FetRY, +j_3)] oT

form a defining system for {(go1,...,g1,:)%- Thus (x1,...,%,)s is
defined. Observe that the following diagram commutes.
Go..
SB =+ Vit o+ V) ASUF . *0ySU ——=—>SU* 1. .. *5SU,
T T

Zo. N1
(SR 4 Vid ...+ VIASULA ... ASUJ L0 (SULA ... A ST
AN S(PRb,y+ ...+ Rbais) ANSERb 1+ ...+ Rbss)

Thus Gy, and g, , represent the same element of =, %, and
@&y ooy X )A C X1y ooy Xo)se

Now assume that (x1,...,x;)s is defined. Let x € (x1,...,%;)x be
represented by

Go,i € (Goty v vy Gioro)v'

in the above notation. By Lemma 3.1 we can assume that each G, ;,
1 <j—1,isa (j — ¢ — 1)-iterated suspension of a map g; ; as above.
In particular

IA

gi1,i=Gi1,51 2128

Thus (x4, ..., x,) A is defined, and
@1 oo %0e C X1, X A

We conclude by proving that our Massey product is a subset of the
Toda bracket {x1, ..., %;:)¢ of J. Cohen [1]. We will use the notation of
[1, § 2] without explanation.

THEOREM 3.3. Let E be a spectrum. Let x; € mSfor1 £ 1 <t — 1and
letx, € me(E). If (%1, ..., %,)01s defined then (x1, . . . , x,)c is defined and

X1, ..., 2000 C (x1, . . . , Xe)oe
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Proof. Let x € (x1, ..., %) be represented by
Zo,0 € (o1 e v vy 1,000
where {g; ,} is a defining system and
g1, SViAN . ...ASYV, ASU-SViu AL NSV N EU
represents x;, 1 <7 < . Define X € {g,2,1,..., g1.2} by

t—1

X = U Domain g,,/~
k=1

where
¥y~ Cpa1(gey) () for 1 =1 <5 <,
yEDVuAN...\NSV;A... ANSUC 0 (Domain g;,) and
Cisr...., i-1(g1,7) () € Domain g; ..

Filter X by
—1
F,X = Image [ U Domaingk,,—ﬁX} for 1=n=<=t—1.
k=t—n
Then
—1
F,X /Fr1X = Domain g,_n,,/ [ U Domain Cya,..., t—l(gz—n,k)]
k=t—n+1

=DV, N ...ASV,ASU/ODV i1 A ... NSV, A SU)
> S-SV, a0 A L. A SV, A SU)
= S5"! Domain g, ——pt1-
The required condition

'Yn—l[Sn_lgt—n,t—rﬁ—l] = g.nX

follows from the following homotopy commutative diagram. In this
diagram the composite of the top map, the right map and the bottom
map is ¥,—1[S"7'g -, i=n+1]-

-1
|—FnX/F _lX—ig—’;—l)—>S"‘1 Domain g,_, (1
g-nX FnXU CFn—lX Sn—lgt—n,t—n+1
’
SF,_1X S*~! Domain g, 41, i—nso

L S (Faca X/ FoaX) <2222 S(S™2 Domain g s, ns2)
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Define g:S~2 Dom g, — X as the composite map

_ . . G
S*?Domain go,1 = Domain go,, — X
where

GIDViAN...ANSVeAN...ANDV, i NSV, ANSU
= Ciy1,..., —1(go.x)-

Define h:X — EU by k|Domain g; , = g.,. It is routine to check that g
and % are well-defined,

hog = go,;, 0x 0 g ~ S*%g,and ko jx = Zi-1,1
Thus x = [Zo,J] € (®1,...,%:)c-
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