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Abstract

We consider continuous-state branching processes (CB processes) which become extinct
almost surely. First, we tackle the problem of describing the stationary measures on
(0,+∞) for such CB processes. We give a representation of the stationary measure
in terms of scale functions of related Lévy processes. Then we prove that the stationary
measure can be obtained from the vague limit of the potential measure, and, in the critical
case, can also be obtained from the vague limit of a normalized transition probability.
Next, we prove some limit theorems for the CB process conditioned on extinction in a
near future and on extinction at a fixed time. We obtain non-degenerate limit distributions
which are of the size-biased type of the stationary measure in the critical case and of the
Yaglom distribution in the subcritical case. Finally we explore some further properties
of the limit distributions.
Keywords: Continuous-state branching process; stationary measure; vague convergence;
conditional limit theorems; size-biased measure
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1. Introduction

A [0,+∞)-valued strong Markov process Z = (Zt)t≥0, with probabilities {Px : x ≥ 0} and
absorbing state 0, is called a continuous-state branching process (CB process for short) if it
has paths which are right continuous with left limits, Px(Z0 = x) = 1 for every x ≥ 0, and it
employs the following branching property: for any λ≥ 0 and x, y ≥ 0,

Px+y
[
e−λZt

] = Px
[
e−λZt

]
Py

[
e−λZt

]
,

where Px denotes the expectation with respect to the probability Px. We suppose that Z has
branching mechanism ψ , which is specified by the Lévy–Khintchine formula

ψ(λ) = αλ+ 1

2
σ 2λ2 +

∫ +∞

0
(e−λr − 1 + λr)π (dr), λ≥ 0, (1.1)
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2 R. LIU ET AL.

where α ∈R, σ ≥ 0, and π is a positive Radon measure on (0,+∞) such that∫ +∞

0
(r ∧ r2)π (dr)<+∞.

We have Px[Zt] = xe−ψ ′(0+)t for all x, t ≥ 0. Since ψ ′(0 + ) = α, the process (Zt)t≥0 is called
supercritical, critical, and subcritical for α < 0, α = 0, and α > 0, respectively. In this paper we
restrict our attention to the cases when the CB processes hit 0 with probability 1, that is, those
critical or subcritical CB processes with branching mechanism ψ satisfying

∫ +∞ 1/ψ(λ) dλ<
+∞.

We are concerned with the stationary measures of CB processes. Since 0 is an absorbing
state, the unique (up to a constant multiple) stationary measure on the state space [0,+∞) is
the Dirac measure at 0 (see [13, P23–24]). Therefore we shall exclude the state 0, and call a
Radon measure ν on (0,+∞) a stationary measure for (Zt)t≥0 if, for any t> 0 and any Borel
set A ⊂ (0,+∞),

Pν(Zt ∈ A) = ν(A),

where

Pν(Zt ∈ A) =
∫

(0,+∞)
Px(Zt ∈ A)ν(dx).

It is well known that a CB process can be viewed as the analogue of the Galton–Watson process
(GW process) in continuous time and continuous state space. Before we start, let us first review
some classical results concerning stationary measures for GW processes. A standard reference
is Athreya and Ney [4]; see also Asmussen and Hering [3], Hoppe [14], Nakagawa [24], and
Ogura and Shiotani [28] for related discussions for multitype GW processes. Suppose (Yn)n≥0
is a GW process taking values in Z+ = {0, 1, 2, . . .} with offspring distribution (pk)k≥0. Let
m = ∑+∞

j=1 jpj be the reproduction mean and q = P(Yn = 0 eventually |Y0 = 1) be the extinc-
tion probability. Unless p1 = 1, q< 1 if and only if m> 1 (supercritical case). Hence extinction
occurs almost surely in the critical (m = 1, p1 < 1) and subcritical (m< 1) cases. We call
(ηi)i≥1 a stationary measure for (Yn)n≥0 if ηi ≥ 0 for all i ≥ 1, and

ηj =
∞∑

i=1

ηiP(i, j), j ≥ 1,

where (P(i, j))i,j≥0 denote the one-step transition probabilities of (Yn)n≥0. Theorem II.1.2 of
[4] tells us that (ηi)i≥1 is a stationary measure if and only if its generating function U(s) =∑+∞

i=1 ηisi is analytic for |s|< q, and satisfies Abel’s equation

U(f (s)) = U(p0) + U(s), |s|< q,

where f is the generating function of the offspring distribution (pk)k≥0. In the supercritical
case, if q = 0, the only stationary measure is ηi = 0 for all i ≥ 1; otherwise, if q> 0, then the
construction of stationary measures can be handled by reduction to the subcritical case: see
[4, II.2]. Now we focus on the critical and subcritical cases. It is proved in [4] that in the crit-
ical case a (non-trivial) stationary measure exists and is unique (up to a constant multiple),
while in the subcritical case the stationary measure is not unique. In fact, in the critical case,
the stationary measure is determined by the ratio limit of the n-step transition probabilities
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Stationary measures and the continuous-state branching process conditioned on extinction 3

(see [4, Lemma I.7.2 and Theorem II.2.1] and [31]). The continuous-time analogue of this
result is due to [15, Lemma 7]. In the subcritical case, the problem of determining all station-
ary measures is settled by Alsmeyer and Rösler [2], where it is proved that every stationary
measure has a unique integral representation in terms of the Martin entrance boundary and a
finite measure on [0,1).

For a continuous-time GW process with transition functions {pij(t) : t ≥ 0, i, j ∈Z
+}, a

stationary measure is a set of non-negative numbers {νj : j ≥ 1} satisfying

νj =
∑
i≥1

νipij(t), j ≥ 1, t ≥ 0.

In contrast to the discrete-time situation, for the continuous-time GW process a non-trivial sta-
tionary measure exists and is unique (up to a constant multiple) in both critical and subcritical
cases; see [15, Lemma 7] for the critical case and [23, Corollary 8] for the subcritical case.
A similar phenomenon happens for CB processes; see Ogura [25]. Namely, assuming extinc-
tion occurs almost surely, the CB process has a unique non-trivial stationary measure. Indeed,
Ogura has established the functional equation satisfied by the Laplace transform of the station-
ary measure (see [25, Lemma 1.2]), which can be viewed as the continuous counterpart of the
above Abel’s equation.

In this paper we are interested in the description of the stationary measure of the CB pro-
cess from different points of view. We extend Ogura’s results in the following three respects.
First, we establish a representation of the stationary measure for CB processes in terms of the
so-called scale functions of the related Lévy processes (Theorem 2.1). Second, we prove that
the transition probability on (0,+∞) of the CB process, when appropriately normalized, con-
verges vaguely, and we obtain the precise limit measure (Theorem 3.1). We shall see from this
result that, in the critical case, the stationary measure can be obtained from the vague limit of
an appropriately normalized transition probability of the CB process, giving an analogue of
the ratio limit theorem (see [4, Lemma I.7.2]). We remark that more regularity properties of
the transition probabilities were investigated in [9], [26], and [27] for CB processes (with or
without immigration), under additional analytical assumptions on the branching mechanisms.
Finally, we obtain a representation of the potential measure of the CB process in terms of
the scale functions, and we prove that the stationary measure can also be obtained from the
vague limit of the potential measure in both critical and subcritical cases (Theorem 3.2). In the
context of GW processes, a result of this type is obtained in [28] for the critical case (under
additional assumptions on the reproduction law) and in [2] for the subcritical case. Our proof is
based on the relation between CB processes and Lévy processes through the so-called Lamperti
transform (see Section 2.1 below), and is easier than the proofs for the discrete state situation.
Furthermore, we give equivalent conditions, depending on the branching mechanisms, for the
potential measures to be finite (Proposition 3.1).

In this paper we also aim at linking the stationary measure to some conditional limit the-
orems of CB processes. Conditional limit theorems constitute an important part of the limit
theory of branching processes. There has been a lot of work on various conditional limit the-
orems for branching processes; see e.g. [4], [11], and [29] for the discrete state situation, and
[20], [21], [30], and [33] for the continuous state situation. Suppose (Zt)t≥0 is a CB process
which becomes extinct almost surely. It is usual to condition on extinction after some time t.
Let ζ be the extinction time. The asymptotic behavior of Zt conditioned on {ζ > t} is described
in the so-called Yaglom theorem. Namely, in the subcritical case, there is a probability measure
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ρ on (0,+∞), called the Yaglom distribution, such that for any x> 0 and any Borel set
A ⊂ (0,+∞),

lim
t→+∞ Px(Zt ∈ A | ζ > t) = ρ(A). (1.2)

The Yaglom distribution belongs to the family of quasi-stationary distributions of CB pro-
cesses. A brief review of the latter is given at the end of Section 2. By contrast, the critical
case is degenerate since all the limits on the left-hand side of (1.2) are 0. However, by taking
different conditioning instead of conditioning on non-extinction, one may get non-degenerate
results for both critical and subcritical cases. In Section 4, we consider two special conditioning
events: {t ≤ ζ < t + s} and {ζ = t} (t, s> 0). The former is regarded as conditioning on extinc-
tion in the near future [t, t + s) and the latter as conditioning on extinction at time t. When
the extinction time ζ is finite almost surely, the event {t ≤ ζ < t + s} is of positive probability
and this conditioning can be made in the usual sense. But {ζ = t} is of zero probability, and
this conditioning is made by taking the limit of the conditional probability on {t ≤ ζ < t + s}
as s → 0+, or equivalently, by taking a Doob h-transform. The study of the CB process con-
ditioned on {ζ = t} dates back to [1], in which it was shown that the CB process has a spinal
decomposition, called a Williams decomposition, under such a conditional probability. Later,
a similar property for superprocesses was studied in [10] and [32]. For GW processes, simi-
lar conditioning is studied by Esty [11]. We remark that Esty [11] considers only critical GW
processes, while we allow the CB process to be either critical or subcritical.

In this paper we prove some limit theorems for CB processes conditioned on the afore-
mentioned two events. Our two principal results, Theorem 4.1 and Theorem 4.2, show that
the distributions of Zt−q (0< q< t) conditioned on extinction in the near future [t − q, t) and
on extinction at time t are convergent as t goes to infinity, and we also obtain the precise
limit distributions. From these results, we shall see that the limit distributions obtained in
the critical (resp. subcritical) case are of the size-biased type of the stationary measure (resp.
the Yaglom distribution). As a by-product, in the critical case, we prove that the limit distri-
bution of Zt−q (0< q< t) conditioned on {ζ = t} is of the size-biased type of the stationary
measure, giving an analogue of [4, Theorem I.8.2]. Our proofs of the conditional limit the-
orems are based on the asymptotic estimates of the log-Laplace functional of CB process
derived from the integral equations it satisfies. Moreover, we investigate properties of the limit
distribution of Zt−q conditioned on extinction at time t. We show that the limit is infinitely
divisible and give a representation of its Lévy–Khintchine triplet in terms of the scale functions
(Proposition 4.2). In the subcritical case, we prove that it is weakly convergent as q → +∞ to
a non-degenerate distribution under an additional L log L condition (Proposition 4.3). As an
application of these results, we present a new proof of a limit theorem for the CB process
conditioned on non-extinction (Proposition 4.4).

We notice that by conditioning a supercritical CB process to be extinct, we recover a sub-
critical CB process. To be more specific, if γ is the largest root of ψ(λ) = 0, then γ > 0
in the supercritical case, and the supercritical CB process with branching mechanism ψ

conditioned on its extinction turns out to be a subcritical CB process with branching mech-
anism ψ∗(λ) =ψ(λ+ γ ). As a consequence, our conditional limit theorems obtained for the
subcritical case can be applied to supercritical CB processes conditioned to be extinct.

The remainder of this paper is organized as follows. In Section 2 we recall the definition of
CB processes and review some classical results concerning CB processes and Lévy processes.
Then we give a representation of the stationary measure in terms of the scale functions of the
related Lévy process. In Section 3 we prove the vague convergence of the normalized transition
probabilities and potential measures of CB processes. Some examples are given to illustrate
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the results obtained in this section. In Section 4 we study the probabilities of Zt conditioned
on extinction in the near future and on extinction at a fixed time, prove some conditional
limit theorems, and explore some properties of the limit distributions. Some minor statements
needed along the way are proved in the Appendix.

Throughout this paper, we use ‘ := ’ to denote definition. For positive functions f , g on
(0,+∞) and constant c ∈ [0,+∞), we write f (x) ∼ g(x) as x → c if limx→c f (x)/g(x) = 1.
For a measure μ on (0,+∞) and a measurable function f , we write 〈f , μ〉 for the integral∫

(0,+∞) f (x)μ(dx). Suppose νn, ν are measures on (0,+∞); νn, ν can be extended to measures
on the larger space [0,+∞) by setting νn({0}) = ν({0}) = 0. We define the vague convergence
following [6]: νn is said to converge vaguely to ν if∫

[0,+∞)
g(y)νn(dy) →

∫
[0,+∞)

g(y)ν(dy)

for all continuous functions g on [0,+∞) vanishing at infinity. If νn, ν are finite measures and
〈f , νn〉 → 〈f , ν〉 for all bounded continuous functions f on (0,+∞), we say that νn converges
weakly to ν.

2. Preliminaries

2.1. CB processes and Lévy processes

Let ((Zt)t≥0, Px) be the CB process with branching mechanism ψ(λ) given in (1.1) and ini-
tial value x> 0. Following [19], such a process is a time-homogeneous strong Markov process
taking values in [0,+∞) with an absorbing state 0, such that for any λ> 0,

Px
[
e−λZt

] = e−xut(λ), t ≥ 0, (2.1)

where ut(λ) is the solution to the following ordinary differential equation:⎧⎨⎩
∂ut(λ)

∂t
= −ψ(ut(λ)),

u0(λ) = λ.
(2.2)

We assume that ψ( + ∞) = +∞. Thus, by [19, Theorem 12.3]), (Zt)t≥0 is conservative in the
sense that Px(Zt <+∞) = 1 for all x> 0 and t ≥ 0. Chapter 3 of [22] is also a good reference
for continuous state branching processes.

Let ζ := inf{t> 0 : Zt = 0} be the extinction time. It follows by (2.1) that

Px(ζ ≤ t) = Px(Zt = 0) = e−xut(+∞) for all x, t> 0.

Let q(x) := Px(ζ <+∞) for x> 0. It is proved in [12] that q(x)> 0 for some (and then all)
x> 0 if and only if ∫ +∞ 1

ψ(λ)
dλ<+∞. (2.3)

In this case q(x) = e−xγ , where

γ := sup{λ≥ 0 : ψ(λ) = 0}.
We know that ψ is strictly convex and infinitely differentiable on (0,+∞) with ψ(0) = 0,
ψ( + ∞) = +∞ and ψ ′(0 + ) = α. So we have γ > 0 if α < 0 (supercritical case) and γ = 0 if
α ≥ 0 (critical and subcritical cases).
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Assuming (2.3) holds, we can define a strictly decreasing function φ on (γ,+∞) by

φ(λ) :=
∫ +∞

λ

1

ψ(u)
du, λ > γ .

It is easy to see that φ(γ ) = +∞ and φ( + ∞) = 0. Let ϕ be the inverse function of φ, which
is defined on (0,+∞) and takes values in (γ,+∞). From (2.2) we have∫ λ

ut(λ)

1

ψ(u)
du = t, λ, t> 0. (2.4)

By letting λ→ +∞, we have ∫ +∞

ut(+∞)

1

ψ(u)
du = t. (2.5)

Recall that ut( + ∞) = − log P1(ζ ≤ t) ≥ − log P1(ζ <+∞) = γ . By (2.5) we get ut( + ∞) =
ϕ(t) for all t> 0, and consequently

Px(ζ ≤ t) = e−xϕ(t), x, t> 0. (2.6)

In particular, if (Zt)t≥0 is critical or subcritical, then γ = 0 and (2.4) yields that

ut(λ) = ϕ(t + φ(λ)), λ, t> 0. (2.7)

We note that ψ is also the Laplace exponent of a spectrally positive Lévy process (Xt)t≥0.
We let Px denote the law of (Xt)t≥0 started at x ∈R at time 0. Then

Px
[
e−λXt

] = e−λx+ψ(λ)t, λ, t ≥ 0.

Define τ−
0 := inf{t ≥ 0 : Xt < 0} with the convention that inf ∅ = +∞. There is a sample-

path relationship between the CB process (Zt)t≥0 and the Lévy process (Xt)t≥0 stopped at τ−
0 ,

called the Lamperti transform (see [19, Theorem 12.2] or [7]). For t ≥ 0, define

θt := inf

{
s> 0 :

∫ s

0

1

Xu
du> t

}
.

Then
((

Xθt∧τ−
0

)
t≥0, Px

)
is a CB process with branching mechanism ψ and initial value x> 0.

We refer to [19, Chapter 12] for results on the long-term behavior of the CB process based on
the fluctuation theory of spectrally positive Lévy processes.

2.2. Representation of the stationary measure

In what follows and for the remainder of this paper, we assume (Zt)t≥0 is a CB process with
branching mechanism ψ satisfying (2.3) and ψ ′(0 + ) = α ≥ 0. In this subsection we shall
give a representation of the stationary measure of (Zt)t≥0 in terms of the so-called scale func-
tion. Recall that the scale function W is the unique strictly increasing and positive continuous
function on [0,+∞) such that∫ +∞

0
e−λxW(x) dx = 1

ψ(λ)
, λ > 0. (2.8)

We define W(x) = 0 for x< 0. We refer to [5, Chapter VII] and [18] for the general theory of
scale functions.

https://doi.org/10.1017/jpr.2024.75 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.75


Stationary measures and the continuous-state branching process conditioned on extinction 7

We write
∫ +∞

0+ for
∫

(0,+∞) to emphasize that the integral is on (0,+∞). For a measure ν on
(0,+∞), we set

ν̂(λ) :=
∫ +∞

0+
e−λxν(dx) for λ≥ 0

whenever the right-hand side is well-defined.

Theorem 2.1. Set

μ(dx) := W(x)

x
dx for x> 0.

Then μ(dx) is the unique (up to a constant multiple) stationary measure for (Zt)t≥0.

Proof. Due to [25, Lemma 1.2 and Proposition 1.3], for a CB process which satisfies (2.3),
there exists a unique (up to a constant multiple) stationary measure � such that

�̂(λ) = φ(λ), λ > γ .

Recall that the CB process we consider in this theorem is critical or subcritical, and then γ = 0.
For any λ> 0 we have∫ +∞

0+
e−λxμ(dx) =

∫ +∞

0+
μ(dx)

∫ +∞

λ

x e−ux du

=
∫ +∞

0
W(x) dx

∫ +∞

λ

e−ux du

=
∫ +∞

λ

du
∫ +∞

0
W(x) e−ux dx

=
∫ +∞

λ

1

ψ(u)
du

= φ(λ).

Hence μ is the unique (up to a constant multiple) stationary measure. �

Remark 2.1. Suppose (Zt)t≥0 is a supercritical CB process satisfying (2.3) and γ = sup{λ≥
0 : ψ(λ) = 0}> 0. Repeating the calculation in the proof of Theorem 2.1, we can show that,
for μ(dx) = W(x)x−1 dx, ∫ +∞

0+
e−λxμ(dx) = φ(λ), λ > γ .

Hence the result of Theorem 2.1 also holds for this supercritical CB process.

We notice that μ̂(0) = φ(0) = +∞. So μ is an infinite measure on (0,+∞). Theorem 2.1
implies that the CB process has no stationary distributions on (0,+∞). Instead, one may
consider a subinvariant distribution, called the quasi-stationary distribution (QSD). For a CB
process, a QSD is a probability measure ν on (0,+∞) satisfying

Pν(Zt ∈ A | ζ > t) = ν(A) (2.9)

for any Borel set A ⊂ (0,+∞) and t> 0. One can easily show by the Markov property that

Pν(ζ > t + s) = Pν(ζ > t)Pν(ζ > s), t, s ≥ 0.
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Hence the extinction time ζ under Pν is exponentially distributed with some parameter β > 0.
So (2.9) is equivalent to

Pν(Zt ∈ A) = e−βtν(A)

for any Borel set A ⊂ (0,+∞) and t> 0. A discrete state analogue is the so-called λ-invariant
measure, for which we refer to [23]. Lambert [20] has given a complete characterization of
QSDs for CB processes. It is proved in [20] that a subcritical CB process has QSDs while a
critical CB process has no QSD. In fact, for a subcritical CB process with ψ ′(0 + ) = α > 0,
all QSDs form a stochastically decreasing family {νβ} of probabilities indexed by β ∈ (0, α]
satisfying

ν̂β (λ) = 1 − e−βφ(λ), λ > 0.

The probability να is the so-called Yaglom distribution in the sense that

lim
t→+∞ Px(Zt ∈ A | ζ > t) = να(A) (2.10)

for every x> 0 and Borel set A ⊂ (0,+∞). The conditional limit of (2.10) is due to Li [21,
Theorem 4.3], where more general conditioning of the type {ζ > t + r} with r ≥ 0 is consid-
ered. From the theory of Laplace transforms, the QSD νβ can be expressed by the stationary
measure μ as

νβ (dx) = −
+∞∑
n=1

(−β)n

n! μ∗n(dx),

where μ∗n denotes the n-fold convolution of μ. On the other hand, since ν̂β (λ)/β → φ(λ) as
β → 0+ for all λ> 0, we get that 1

β
νβ converges vaguely to μ as β → 0+.

Although there is no QSD in the critical case, convergence results are established for the
rescaled process QtZt conditioned on {ζ > t}, where Qt → 0 as t → +∞. It is proved by [21,
Theorem 5.2] that if the critical CB process has finite variance, i.e. ψ ′′(0 + )<+∞, then Zt/t
conditioned on ζ > t converges in distribution to an exponential distribution random variable
with parameter 2/ψ ′′(0 + ). We refer to [33] for the case allowing infinite variance.

3. Convergence of transition probabilities and potential measures

Let (Pt(x, dy);t ≥ 0, x, y ≥ 0) be the transition probability of the CB process (Zt)t≥0. First,
we shall show that the transition probability Pt(x, dy) on (0,+∞), when appropriately normal-
ized, converges vaguely to a precise measure. For notational simplicity, we still use Pt(x, dy)
to denote the restriction of Pt(x, dy) on (0,+∞).

Lemma 3.1. If α = 0, then

lim
t→+∞

ϕ(t) − ϕ(t + φ(λ))

ψ(ϕ(t))
= φ(λ), λ > 0.

Proof. It follows by the monotone convergence theorem that

ψ ′(λ) = σ 2λ+
∫ +∞

0
(1 − e−λr)rπ (dr) → 0 as λ→ 0+.

We note that (ψ(ϕ(t)))′ = −ψ ′(ϕ(t))ψ(ϕ(t)) for t> 0 and that t �→ ϕ(t) is strictly decreasing
on (0,+∞) with ϕ( + ∞) = 0. Thus, for any s> 0,

ln
ψ(ϕ(t + s))

ψ(ϕ(t))
= −

∫ t+s

t
ψ ′(ϕ(u)) du → 0 as t → +∞.
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It follows that

lim
t→+∞

ψ(ϕ(t + s))

ψ(ϕ(t))
= 1. (3.1)

By the mean value theory, for every t> 0 and λ> 0 there exists �t(φ(λ)) ∈ [0, φ(λ)] such that

ϕ(t) − ϕ(t + φ(λ))

ψ(ϕ(t))
= ψ(ϕ(t +�t(φ(λ))))

ψ(ϕ(t))
φ(λ). (3.2)

Since t �→ψ(ϕ(t)) is strictly decreasing on (0,+∞), we have

ψ(ϕ(t + φ(λ)))

ψ(ϕ(t))
≤ ψ(ϕ(t +�t(φ(λ))))

ψ(ϕ(t))
≤ 1.

By (3.1),

lim
t→+∞

ψ(ϕ(t +�t(φ(λ))))

ψ(ϕ(t))
= 1.

Combining this with (3.2), we get

lim
t→+∞

ϕ(t) − ϕ(t + φ(λ))

ψ(ϕ(t))
= lim

t→+∞
ψ(ϕ(t +�t(φ(λ))))

ψ(ϕ(t))
φ(λ) = φ(λ). �

Theorem 3.1. If α > 0, then for every x> 0,

1

xψ(ϕ(t))
Pt(x, dy)

converges weakly to 1
α
να(dy) as t → +∞. Otherwise, if α = 0, then for every x> 0,

1

xψ(ϕ(t))
Pt(x, dy)

converges vaguely to μ(dy) as t → +∞.

Proof. By Lemma A.1, it suffices to show that for any x> 0,

lim
t→+∞

1

ψ(ϕ(t))

∫ +∞

0+
e−λyPt(x, dy) =

{ x

α
ν̂α(λ) for all λ≥ 0, if α > 0,

xμ̂(λ) for all λ> 0, if α= 0.
(3.3)

For any λ≥ 0, we have∫ +∞

0+
e−λyPt(x, dy) = Px

[
e−λZt , Zt > 0

] = e−xut(λ) − e−xϕ(t).

If α > 0, then ψ(ϕ(t)) ∼ αϕ(t) and Px(ζ > t) = 1 − e−xϕ(t) ∼ xϕ(t) as t → +∞. Consequently,
we have, for λ≥ 0,

1

ψ(ϕ(t))

∫ +∞

0+
e−λyPt(x, dy) ∼ x

α
Px

[
e−λZt | ζ > t

]
as t → +∞.
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Thus, if α > 0 the result (3.3) is a reformulation of the limit (2.10). Now suppose α= 0. By
Lemma 3.1, for any λ> 0 we have

lim
t→+∞

1

ψ(ϕ(t))

∫ +∞

0+
e−λyPt(x, dy) = lim

t→+∞
e−xϕ(t+φ(λ)) − e−xϕ(t)

ψ(ϕ(t))

= lim
t→+∞

x(ϕ(t) − ϕ(t + φ(λ)))

ψ(ϕ(t))

= xφ(λ)

= xμ̂(λ).

Hence we prove (3.3). �

Theorem 3.1 implies that the transition probability Pt(x, dy) constrained on (0,∞) is
vaguely convergent with rate xψ(ϕ(t)) as t → +∞. In the following we shall give concrete
examples to illustrate the result of Theorem 3.1.

Example 3.1. Suppose (Zt)t≥0 is a subcritical CB process with ψ ′(0 + ) = α > 0. Let � be a
positive random variable whose distribution is equal to the Yaglom distribution να . By [20,
Lemma 2.1], E[�]<+∞ if and only if∫ +∞

r ln rπ (dr)<+∞, (3.4)

and in this case ϕ(t) ∼ E[�]−1 e−αt as t → +∞. Thus

ψ(ϕ(t)) ∼ψ ′(0 + )ϕ(t) ∼ α

E[�]
e−αt as t → +∞.

Theorem 3.1 yields that for every x> 0, restricted on (0,+∞),

eαtPt(x, dy) converges weakly to
x

E[�]
να(dy) as t → +∞.

Otherwise, if (3.4) fails, then ϕ(t) = o(e−αt) and thus ψ(ϕ(t)) = o(e−αt). Hence eαtPt(x, dy)
converges weakly to the null measure.

Example 3.2. Suppose (Zt)t≥0 is a critical CB process with branching mechanism ψ given by

ψ(λ) = λ1+pL(1/λ), λ > 0,

where 0< p ≤ 1 and L is a slowly varying function at +∞. For a slowly varying function l, it
is known (see [8, Theorem 1.5.13]) that there exists a unique (up to asymptotic equivalence)
slowly varying function l# such that l(x)l#(xl(x)) → 1 and l#(x)l(xl#(x)) → 1 as x → +∞. l# is
called the de Bruijn conjugate of l.

For z> 0, let

g(z) := φ(1/z) =
∫ +∞

1/z

1

ψ(λ)
dλ=

∫ z

0

up−1

L(u)
du.

Since p − 1>−1, by Karamata’s theorem (see [8, Theorem 1.5.11]),

g(z) ∼ zp

pL(z)
as z → +∞.
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Stationary measures and the continuous-state branching process conditioned on extinction 11

Note that g is a strictly increasing function on (0,+∞). Let g−1 be its inverse. It follows by
[8, Proposition 1.5.15] that

g−1(z) ∼ pz1/pL♦(z1/p)1/p as z → +∞,

where L♦ is the de Bruijn conjugate of 1/L. Recall that ϕ(t) = φ−1(t) = 1/g−1(t). We get

ϕ(t) ∼ 1

p
t−1/pL♦(t1/p)−1/p as t → +∞.

We note that

ϕ(t) = −
∫ +∞

t
ϕ′(s) ds =

∫ +∞

t
ψ(ϕ(s)) ds.

We also note thatψ(ϕ(s)) is a strictly decreasing function on (0,+∞). Hence, by the monotone
density theorem (see [8, Theorem 1.7.2]),

ψ(ϕ(t)) ∼ 1

p2
t−(1/p+1)L♦(t1/p)−1/p as t → +∞.

Therefore Theorem 3.1 yields that for every x> 0,

p2

x
t1/p+1L♦(t1/p)1/pPt(x, dy) converges vaguely to μ(dy) as t → +∞.

For every x> 0 and Borel set A ⊂ (0,+∞), we put

G(x, A) :=
∫ +∞

0
Px(Zt ∈ A) dt ∈ [0,+∞],

and call the corresponding measure G(x, dy) on (0,+∞) the potential measure of (Zt)t≥0.
Equation (3.3) yields that, if α ≥ 0 (subcritical or critical case), for every x> 0 and λ> 0,∫ +∞

0+
e−λyPt(x, dy) ∼ cλxψ(ϕ(t)) as t → +∞, (3.5)

for some positive constant cλ depending on λ. We note that ϕ′(t) = −ψ(ϕ(t)). Thus∫ +∞

1
ψ(ϕ(t)) dt = ϕ(1) − ϕ(∞) = ϕ(1)<+∞.

Hence we deduce by (3.5) that∫ +∞

0+
e−λyG(x, dy) =

∫ +∞

0

∫ +∞

0+
e−λyPt(x, dy) dt<+∞ for every x> 0.

This implies that G(x, B)<+∞ for every compact subset B ⊂ (0,+∞). Thus the potential
measure for the CB process (Zt)t≥0 is a locally finite measure on (0,+∞).

Theorem 3.2. The potential measure G(x, dy) of (Zt)t≥0 has a density with respect to the
Lebesgue measure given by

g(x, y) = W(y) − W(y − x)

y
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for x, y> 0. Moreover, G(x, dy) converges vaguely to the stationary measure μ(dy) as
x → +∞.

Proof. Suppose (Xt)t≥0 is the spectrally positive Lévy process associated with the CB
process (Zt)t≥0 through the Lamperti transform. Then, for x> 0 and λ> 0, we have∫ +∞

0+
e−λyG(x, dy) = Px

[∫ ζ

0
e−λZt dt

]
= Px

[∫ τ−
0

0
e−λXs

1

Xs
ds

]
. (3.6)

The final equality follows from a change of variables. Let U(x, dy) be the potential measure of
X killed on exiting [0,+∞) when issued from x> 0, that is,

U(x, dy) =
∫ +∞

0
Px

(
Xt ∈ dy, t< τ−

0

)
dt for y> 0.

It follows by (3.6) that

G(x, dy) = 1

y
U(x, dy) for x, y> 0. (3.7)

It is proved in [18, Theorem 2.7] that U(x, dy) has a potential density with respect to the
Lebesgue measure given by

u(x, y) = e−γ xW(y) − W(y − x), x, y> 0. (3.8)

Here γ = 0 since ψ ′(0 + ) ≥ 0. Putting this back to (3.7), we prove the first assertion.

We note that for λ> 0,∫ +∞

0+
e−λyG(x, dy) =

∫ +∞

0
e−λy W(y) − W(y − x)

y
dy

=
∫ +∞

0+
e−λyμ(dy) −

∫ +∞

x
e−λy W(y − x)

y
dy.

By a change of variables, the second integral in the right-hand side equals

e−λx
∫ +∞

0
e−λz W(z)

x + z
dz,

which converges to 0 as x → +∞. Hence we get

lim
x→+∞

∫ +∞

0+
e−λyG(x, dy) = μ̂(λ)

for all λ> 0. Hence we prove the second assertion. �
Remark 3.1. We remark that (3.8) indeed holds for γ ≥ 0. Thus, for a supercritical CB process,
applying a similar argument with minor modifications, we can show that the potential density
function exists and is given by

g(x, y) = e−γ x W(y)

y
− W(y − x)

y

for x, y> 0.
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A natural question is under what condition G(x, dy) is a finite measure on (0,+∞). We give
the following equivalent statements.

Proposition 3.1. The following statements are equivalent:

(i) G(x, dy) is a finite measure on (0,+∞) for some (and then all) x> 0,

(ii) Px[ζ ]<+∞ for some (and then all) x> 0,

(iii) the branching mechanism ψ satisfies∫
0+

u

ψ(u)
du<+∞. (3.9)

Proof. (i)⇐⇒(ii) By Fubini’s theorem, for every x> 0 we have∫ +∞

0+
G(x, dy) =

∫ +∞

0
dt

∫ +∞

0+
Pt(x, dy) =

∫ +∞

0
Px(ζ > t) dt = Px[ζ ].

Hence (i) and (ii) are equivalent.
(i)⇐⇒(iii) For every x> 0 we have∫ +∞

0+
G(x, dy) =

∫ +∞

0
Px(ζ > t) dt =

∫ +∞

0

(
1 − e−xϕ(t)) dt.

Since ϕ(t) → 0 as t → +∞, we have 1 − e−xϕ(t) ∼ xϕ(t) as t → +∞. Hence the final integral
is finite if and only if

∫ +∞
ϕ(t) dt<+∞. Substituting t with φ(s) in the integral

∫ +∞
ϕ(t) dt,

we can deduce that
∫ +∞

ϕ(t) dt<+∞ if and only if

−
∫

0+
s dφ(s) =

∫
0+

s

ψ(s)
ds<+∞. �

We will also classify the finiteness of G(x, dy) through the Lévy measure π.

Corollary 3.1. If α > 0, then G(x, dy) is a finite measure on (0,+∞) for every x> 0. If α = 0,
then G(x, dy) is finite on (0,+∞) for some (then all) x> 0 if and only if∫ +∞ 1

s
∫ s

0
¯̄π (r) dr

ds<+∞, (3.10)

where for r ≥ 0, π̄ (r) := ∫ +∞
r π (dy) and ¯̄π (r) := ∫ +∞

r π̄ (y) dy, or equivalently,∫ +∞ 1

s
∫ s

0 r2π (dr) + s2
∫ +∞

s rπ (dr)
ds<+∞. (3.11)

Proof. If α > 0, then u/ψ(u) ∼ 1/α as u → 0, and (3.9) holds immediately. Now we suppose
α = 0. In this case

ψ(λ)

λ
= 1

2
σ 2λ+ 1

λ

∫ +∞

0
(e−λr − 1 + λr)π (dr)

= 1

2
σ 2λ+

∫ +∞

0
(1 − e−λr)π̄ (r) dr
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for λ> 0. Obviously ψ(λ)/λ is the Laplace exponent of a Lévy subordinator. Thus, by
[5, Proposition III.1],

ψ(λ)

λ
� λ

(
1

2
σ 2 +

∫ 1/λ

0

¯̄π (r) dr

)
.

Consequently we have ∫
0+

u

ψ(u)
du �

∫
0+

1

u
· 1

1
2σ

2 + ∫ 1/u
0

¯̄π (r) dr
du.

By a change of variables, the integral on the right-hand side equals∫ +∞ 1

s
( 1

2σ
2 + ∫ s

0
¯̄π (r) dr

) ds.

If
∫ +∞

0
¯̄π (r) dr<+∞, then the latter integral equals +∞ and (3.9) fails. Otherwise, if∫ +∞

0
¯̄π (r) dr = +∞, then

1
1
2σ

2 + ∫ s
0

¯̄π (r) dr
∼ 1∫ s

0
¯̄π (r) dr

as s → +∞,

and (3.9) holds if and only if (3.10) holds. Next, we prove the equivalence of (3.10) and (3.11).
For any s> 0, by exchanging the order of integration, we obtain∫ s

0

¯̄π (r) dr =
∫ +∞

0
π (dr)

∫ r

0
(u ∧ s) du

= 1

2

∫ s

0
r2π (dr) + s

∫ +∞

s
rπ (dr) − s2

2
π̄ (s).

Note that

0 ≤ π̄ (s) ≤
∫ +∞

s rπ (dr)

s
.

These deduce the following inequalities:

1

2

∫ s

0
r2π (dr) + s

2

∫ +∞

s
rπ (dr) ≤

∫ s

0

¯̄π (r) dr ≤ 1

2

∫ s

0
r2π (dr) + s

∫ +∞

s
rπ (dr).

Or it can be expressed as∫ s

0

¯̄π (r) dr �
∫ s

0
r2π (dr) + s

∫ +∞

s
rπ (dr).

And the equivalence of (3.10) and (3.11) is obtained. �

From this result, we can see that if the critical CB process has finite variance, that is,∫ +∞

1
r2π (dr)<+∞,

then Px[ζ ] = +∞ for every x> 0, though Px(ζ <+∞) = 1. However, if the right tail of the
Lévy measure π of the critical CB process is heavy enough, e.g. π (dr) = r−(2+p) dr for some
p ∈ (0, 1), then the expectation of ζ is finite.
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4. CB process conditioned on extinction

4.1. Existence of conditional limits

Lemma 4.1. For any s> 0, set

μs(dx) := e−ϕ(s)x W(x)

sx
dx (4.1)

for x> 0. Then μs is a probability measure on (0,+∞) with

μ̂s(λ) = φ(λ+ ϕ(s))

s
, λ > 0.

Moreover, μs is the size-biased stationary measure given by

μs(dx) = e−ϕ(s)xμ(dx)∫ +∞
0 e−ϕ(s)rμ(dr)

.

Proof. By (2.8) and Fubini’s theorem, for λ≥ 0 we have

φ(λ+ ϕ(s)) =
∫ +∞

λ+ϕ(s)

1

ψ(u)
du

=
∫ +∞

λ+ϕ(s)
du

∫ +∞

0
e−uxW(x) dx

=
∫ +∞

0
W(x) dx

∫ +∞

λ+ϕ(s)
e−ux du

=
∫ +∞

0
e−(λ+ϕ(s))x W(x)

x
dx

= s
∫ +∞

0
e−λxμs(dx).

In particular, if λ= 0, ∫ +∞

0
μs(dx) = φ(ϕ(s))/s = 1.

It follows that μs(dx) is a probability measure on (0,+∞). The second assertion follows
immediately by observing that

∫ +∞
0 e−ϕ(s)xμ(dx) = s. �

Recall that � is a random variable distributed as Yaglom distribution να . Then its Laplace
function is given by

E
[
e−λ�] = 1 − e−αφ(λ), λ > 0. (4.2)

The following result establishes the limit distribution of CB process conditioned on extinction
in the near future.

Theorem 4.1. For any s> 0, there is a positive random variable Ws such that for any λ, x> 0,

lim
t→+∞ Px

[
e−λZt | t ≤ ζ < t + s

] = E
(
e−λWs

) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 − e−αφ(λ+ϕ(s))

1 − e−αs
, α > 0,

φ(λ+ ϕ(s))

s
, α= 0.
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In particular, if α= 0, then Ws has the distribution P(Ws ∈ dr) =μs(dr), where μs is the size-
biased stationary measure defined in (4.1). Otherwise, if α > 0, then Ws has the size-biased
Yaglom distribution

P(Ws ∈ dr) = e−ϕ(s)rP(� ∈ dr)

E[e−ϕ(s)�]
. (4.3)

Proof. It follows from the Markov property of (Zt)t≥0 that

Px
[
e−λZt | t ≤ ζ < t + s

] = Px
[
e−λZt I{ζ≥t}PZt (ζ < s)

]
Px(ζ < s + t) − Px(ζ < t)

.

Making use of (2.6) and (2.7), we obtain

Px
[
e−λZt | t ≤ ζ < t + s

] = Px
[
e−(λ+ϕ(s))Zt I{ζ≥t}

]
e−xϕ(t+s) − e−xϕ(t)

= e−xϕ(t+φ(λ+ϕ(s))) − e−xϕ(t)

e−xϕ(t+s) − e−xϕ(t)
. (4.4)

When α = 0, since limt→+∞ ϕ(t) = 0 and ϕ′(λ) = −ψ(ϕ(λ)), by the integral mean value
theorem,

lim
t→+∞ Px

[
e−λZt | t ≤ ζ < t + s

]
= lim

t→+∞

∫ φ(λ+ϕ(s))
0 e−xϕ(t+u)ψ(ϕ(t + u)) du∫ s

0 e−xϕ(t+u)ψ(ϕ(t + u)) du

= lim
t→+∞

e−xϕ(t+ξt,φ(λ+ϕ(s)))ψ(ϕ(t + ξt,φ(λ+ϕ(s))))

e−xϕ(t+ξt,s)ψ(ϕ(t + ξt,s))

φ(λ+ ϕ(s))

s
,

where 0< ξt,φ(λ+ϕ(s)) <φ(λ+ ϕ(s)) and 0< ξt,s < s. Applying (3.1), we obtain

lim
t→+∞

ψ(ϕ(t + ξt,φ(λ+ϕ(s))))

ψ(ϕ(t + ξt,s))
= 1.

So from Lemma 4.1, for all λ> 0,

lim
t→+∞ Px

[
e−λZt | t ≤ ζ < t + s

] = φ(λ+ ϕ(s))

s
= μ̂s(λ).

When α > 0, by [20, Lemma 2.1], for any s ≥ 0 we have

lim
t→+∞

ϕ(t + s)

ϕ(t)
= e−αs. (4.5)

Thus, taking limits in (4.4), we get

lim
t→+∞ Px

[
e−λZt | t ≤ ζ < t + s

] = lim
t→+∞

ϕ(t) − ϕ(t + φ(λ+ ϕ(s)))

ϕ(t) − ϕ(t + s)
= 1 − e−αφ(λ+ϕ(s))

1 − e−αs
.

By (4.2), for λ> 0 we have∫ +∞

0+
e−λr−ϕ(s)rP(� ∈ dr) = E

[
e−(λ+ϕ(s))�] = 1 − e−αφ(λ+ϕ(s)).
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In particular, E
[
e−ϕ(s)�

] = 1 − e−αφ(ϕ(s)) = 1 − e−αs. Consequently, we get

lim
t→+∞ Px

[
e−λZt | t ≤ ζ < t + s

] = E
[
e−λWs

]
,

where the distribution of Ws is given by (4.3). �

Next we shall define the distribution of Zt−q (0< q< t) conditioned on extinction at a fixed
time t by taking the limit of Px(Zt−q ∈ · | t ≤ ζ < t + s) as s → 0+. Recall that

Px(ζ ≤ t) = e−xϕ(t), t ≥ 0.

Since ϕ′(t) = −ψ(ϕ(t)), conditioned on Z0 = x> 0, the distribution of ζ has a density function
given by

fζ |Z0 (t|x) = xe−xϕ(t)ψ(ϕ(t)), t> 0. (4.6)

For any s> 0, 0< q< t, and λ> 0,

Px
[
e−λZt−q | t ≤ ζ < t + s

] = Px
[
e−λZt−q I{t≤ζ<t+s}

]
Px(t ≤ ζ < t + s)

= Px
[
e−λZt−qPZt−q(q ≤ ζ < q + s)

]
Px(t ≤ ζ < t + s)

= Px
[
e−λZt−q

∫ q+s
q fζ |Z0 (r|Zt−q) dr

]∫ t+s
t fζ |Z0 (r|x) dr

→ Px
[
Zt−q e−(λ+ϕ(q))Zt−q

]
ψ(ϕ(q))

xe−xϕ(t)ψ(ϕ(t))
(4.7)

as s → 0+. We note that for λ≥ 0,

Px
[
Zt−q e−(λ+ϕ(q))Zt−q

] = xe−xϕ(t−q+φ(s)) ∂

∂s
ut−q(s) |s=λ+ϕ(q)

= xe−xϕ(t−q+φ(λ+ϕ(q)))ψ(ϕ(t − q + φ(λ+ ϕ(q))))

ψ(λ+ ϕ(q))
. (4.8)

In particular,

Px
[
Zt−q e−ϕ(q)Zt−q

] = xe−xϕ(t) ψ(ϕ(t))

ψ(ϕ(q))
. (4.9)

We can rewrite the limit in (4.7) as

lim
s→0+ Px

[
e−λZt−q | t ≤ ζ < t + s

] = Px
[
e−λZt−q · Zt−q e−ϕ(q)Zt−q

]
Px

[
Zt−q e−ϕ(q)Zt−q

] .

The term on the right is a Laplace transform of a probability measure on (0,+∞). For 0< q<
t, we denote this probability by

Px(Zt−q ∈ · | ζ = t) := lim
s→0+ Px

[
Zt−q ∈ · | t ≤ ζ < t + s

] = Px
[
Zt−q e−ϕ(q)Zt−q ;Zt−q ∈ ·]
Px

[
Zt−q e−ϕ(q)Zt−q

] .

(4.10)
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Remark 4.1. (Conditioning on extinction vs. conditioning on non-extinction.) The above argu-
ment justifies the definition of the conditional law Px(Zt−q ∈ · | ζ = t) for 0< q< t and x> 0.
In fact, applying a similar argument, one can show that the limit

Px(A | ζ = t) := lim
s→0+ Px(A | t ≤ ζ > t + s)

exists for any x> 0, 0< q< t, and A ∈ Ft−q. On the other hand, one can also condition the CB
process to be extinct at a fixed time in the sense of h-transforms. Given t> 0, let

M(t)
s := Zs e−ϕ(t−s)Zsψ(ϕ(t − s)) for all 0 ≤ s< t.

It is known (see [32, Lemma 4.2]) that (M(t)
s )0≤s<t is a non-negative (Fs)s<t-martingale.

Moreover, it is proved in [32] that the distribution of (Zs)s<t under the conditional probability
Px(· | ζ = t) is the h-transform of Px based on this martingale. That is, for any 0 ≤ s< t and
A ∈ Fs,

Px(A | ζ = t) = Px

[
M(t)

s

M(t)
0

; A

]
. (4.11)

A closely related conditioning for the CB process is conditioning the process on non-extinction.
The latter is defined by Lambert [20] in the sense of h-transforms. More precisely, it is shown
in [20] that for any x, t> 0 and A ∈ Ft,

lim
s→+∞ Px(A | ζ > t + s) = P

↑
x (A),

where P↑
x is the h-transform of Px based on the non-negative (Ft)-martingale Mt := Zt eαt, that

is,
dP↑

x

dPx

∣∣∣∣
Ft

= Mt

M0
for all t ≥ 0. (4.12)

The process conditioned on non-extinction is denoted by Z↑, and called the Q-process. It is
proved in [20] that Z↑ is distributed as a CB process with immigration (CBI process). In the
remaining of this remark we shall show that for any x, t> 0 and A ∈ Ft,

lim
s→+∞ Px(A | ζ = t + s) = P

↑
x (A). (4.13)

This implies that the CB process conditioned to be extinct at time t + s, as s → +∞, has the
same law as the Q-process Z↑. To prove (4.13), we note that for any t, x> 0 and s> 0,

M(t+s)
t

M(t+s)
0

= Zt e−ϕ(s)Ztψ(ϕ(s))

Z0 e−ϕ(t+s)Z0ψ(ϕ(t + s))
.

By (3.1), we have lims→+∞ ψ(ϕ(s))/ψ(ϕ(t + s)) = eαt. It follows that

lim
s→+∞

M(t+s)
t

M(t+s)
0

= Zt eαt

x
= Mt

x
, Px-a.s.

Hence, by the dominated convergence theorem, we get

lim
s→+∞ Px(A | ζ = t + s) = Px

(
Mt

x
;A

)
= P

↑
x (A).
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In the next result we obtain the distribution of the CB process conditioned to be extinct at a
fixed time in the limit of large times.

Theorem 4.2. For any q> 0, there is a positive random variable Vq such that for any λ, x> 0,

lim
t→+∞ Px

[
e−λZt−q | ζ = t

] = E
[
e−λVq

] = e−α(φ(λ+ϕ(q))−q) ψ(ϕ(q))

ψ(λ+ ϕ(q))
. (4.14)

Moreover, the distribution of Vq satisfies that

P(Vq ∈ dr) = rP(Wq ∈ dr)

E[Wq]
, (4.15)

where Wq is defined in Theorem 4.1.

Proof. Combining (4.7) and (4.8), for all λ> 0 we have

Px
[
e−λZt−q | ζ = t

] = e−x(ϕ(t−q+φ(λ+ϕ(q)))−ϕ(t))ψ(ϕ(t − q + φ(λ+ ϕ(q))))

ψ(ϕ(t))

ψ(ϕ(q))

ψ(λ+ ϕ(q))
.

(4.16)
If α > 0, then by (4.5) as t → +∞,

ψ(ϕ(t − q + φ(λ+ ϕ(q))))

ψ(ϕ(t))
∼ αϕ(t − q + φ(λ+ ϕ(q)))

αϕ(t)
→ e−α(φ(λ+ϕ(q))−q).

Otherwise, if α = 0, by (3.1), we have

lim
t→+∞

ψ(ϕ(t − q + φ(λ+ ϕ(q))))

ψ(ϕ(t))
= 1.

In either case, we have

lim
t→+∞

ψ(ϕ(t − q + φ(λ+ ϕ(q))))

ψ(ϕ(t))
= e−α(φ(λ+ϕ(q))−q).

Hence we get (4.14) by letting t → +∞ in (4.16). It follows by the first conclusion of
Theorem 4.1 that for any λ> 0

E
[
Wqe−λWq

] = − d

dλ
e
[
e−λWq

] =

⎧⎪⎨⎪⎩
α

1 − e−αq

1

ψ(λ+ ϕ(q))
e−αφ(λ+ϕ(q)), α > 0,

1

qψ(λ+ ϕ(q))
, α = 0.

By letting λ→ 0+, we have

E[Wq] =

⎧⎪⎨⎪⎩
α

eαq − 1

1

ψ(ϕ(q))
, α > 0,

1

qψ(ϕ(q))
, α= 0.

Thus we get

1

E[Wq]

∫ +∞

0
e−λrrP(Wq ∈ dr) = E

[
Wqe−λWq

]
E[Wq]

= e−α(φ(λ+ϕ(q))−q) ψ(ϕ(q))

ψ(λ+ ϕ(q))
.

This yields (4.15). �
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There is another way to obtain the distribution of Vq for the critical CB process by reversing
the process from the extinction time ζ .

Proposition 4.1. Suppose (Zt)t≥0 is a critical CB process. For any q> 0, under Px, Zζ−qI{ζ>q}
converges in distribution to Vq as x → +∞.

Proof. For any λ> 0, by the total probability formula,

Px
[
e−λZζ−q I{ζ>q}

] =
∫ +∞

q
fη|Z0 (t|x)Px

[
e−λZζ−q | ζ = t

]
dt.

Here fη|Z0 (t|x) is the probability density function of ζ given that Z0 = x. By (4.6), (4.9), and
(4.10), we get

Px
[
e−λZζ−q I{ζ>q}

] =ψ(ϕ(q))
∫ +∞

q
Px

[
Zt−q e−(λ+ϕ(q))Zt−q

]
dt

=ψ(ϕ(q))
∫ +∞

0
Px

[
Zt e−(λ+ϕ(q))Zt

]
dt

=ψ(ϕ(q))
∫ +∞

0+
y e−(λ+ϕ(q))yG(x, dy).

It follows from Theorem 3.2 that

lim
x→+∞ Px

[
e−λZζ−q I{ζ>q}

] =ψ(ϕ(q)) lim
x→+∞

∫ +∞

0+
y e−(λ+ϕ(q))yG(x, dy)

=ψ(ϕ(q))
∫ +∞

0+
y e−(λ+ϕ(q))yμ(dy)

=ψ(ϕ(q))
∫ +∞

0+
e−(λ+ϕ(q))yW(y) dy

= ψ(ϕ(q))

ψ(λ+ ϕ(q))

= E
[
e−λVq

]
.

We observe that
lim

x→+∞ Px(ζ ≤ q) = lim
x→+∞ 1 − e−xϕ(q) = 0.

Thus, for every λ> 0,

Px
[
e−λZζ−qI{ζ>q}] = Px

[
e−λZζ−q I{ζ>q}

] + Px(ζ ≤ q) → E
[
e−λVq

]
as x → +∞.

We complete the proof. �

Finally, we give some examples to illustrate the results obtained in this subsection.

Example 4.1. Suppose (Zt)t≥0 is a critical CB process with branching mechanism ψ(λ) = λβ

(1<β ≤ 2). Then the corresponding scale function W(x) = xβ−1/�(β) for x> 0, and ϕ(t) =
((β − 1)t)−1/(β−1) for t> 0. So the stationary measure on (0,+∞) is given by

μ(dx) = xβ−2

�(β)
dx for x> 0.
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By Theorem 4.1, for any q> 0, conditioned on {t − q ≤ ζ < t}, Zt−q converges
in distribution to a positive random variable Wq as t → +∞, where Wq has a
Gamma([q(β − 1)]−1/(β−1), β − 1)-distribution with the probability density function given by

gq(x) = xβ−2

q�(β)
exp

{
− x

[q(β − 1)]1/(β−1)

}
, x> 0.

By Theorem 4.2, for any q> 0, conditioned on {ζ = t}, Zt−q converges in distribution to
a positive random variable Vq as t → +∞, where Vq has a Gamma([q(β − 1)]−1/(β−1), β)-
distribution with the probability density function given by

pq(x) = xβ−1

�(β)[q(β − 1)]β/(β−1)
exp

{
− x

[q(β − 1)]1/(β−1)

}
, x> 0.

In particular, when β = 2, Wq is distributed according to the exponential distribution with
parameter 1/q, and Vq is distributed according to Gamma distribution with parameter (1/q, 2).

Example 4.2. Suppose (Zt)t≥0 is a subcritical CB process with branching mechanism ψ(λ) =
λ+ λ2. Then, by elementary calculation, we get W(x) = 1 − e−x for x> 0, φ(λ) = ln (1 + λ−1)
for λ> 0 and ϕ(t) = (et − 1)−1 for t> 0. The Laplace transform of the Yaglom distribution
ν1(dx) is given by

ν̂1(λ) = 1 − e−φ(λ) = 1

λ+ 1
for all λ> 0.

So the corresponding Yaglom distribution is the exponential distribution with parameter 1.
It follows by Theorem 4.1 that for any q> 0, conditioned on {t − q ≤ ζ < t}, Zt−q converges
in distribution to a positive random variable Wq as t → +∞, where Wq is exponentially dis-
tributed with parameter 1 + (eq − 1)−1. Moreover, by Theorem 4.2, for any q> 0, conditioned
on {ζ = t}, Zt−q converges in distribution to a positive random variable Vq as t → +∞, where
Vq is distributed according to the Gamma distribution with parameter (1 + (eq − 1)−1, 2).

4.2. Further properties of the limiting distributions

In this subsection we will investigate properties of the distribution of Vq obtained in
Theorem 4.2. We show that it is infinitely divisible, and give a representation of its Lévy–
Khintchine triplet. Then we show that the distribution of Vq is weakly convergent as q → +∞,
and give a necessary and sufficient condition for the limit distribution to be non-degenerate.

Recall that (Xt)t≥0 is a spectrally positive Lévy process with Laplace exponent ψ and W is a
corresponding scale function. Under the assumption (2.3), X has unbounded variation. Hence
by [18, Lemma 3.1], W(0) = 0. Moreover, by [19, Lemma 8.2] (and the reference therein), the
restriction of W to (0,+∞) is continuously differentiable.

Proposition 4.2. For any q> 0, the distribution of Vq is infinitely divisible and its Laplace
exponent lq(λ) := − ln E[e−λVq ] is given by

lq(λ) =
∫ λ+ϕ(q)

ϕ(q)

ψ
′
(s) − α

ψ(s)
ds, λ > 0. (4.17)

Moreover, lq(λ) has the Lévy–Khintchine decomposition

lq(λ) = bqλ+
∫ +∞

0
(1 − e−λx)

vq(x)

x
dx,
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where bq = 0,

vq(x) = e−ϕ(q)x
[
σ 2W ′(x) +

∫
(0,+∞)

(W(x) − W(x − r))rπ (dr)

]
, x> 0, (4.18)

and W’(x) denotes the derivative of W(x).

Proof. By Theorem 4.2, we have

lq(λ) = ln
ψ(λ+ ϕ(q))

ψ(ϕ(q))
+ α(φ(λ+ ϕ(q)) − q).

Consequently

l′q(λ) = ψ ′(λ+ ϕ(q)) − α

ψ(λ+ ϕ(q))
for all λ> 0.

Thus (4.17) follows by taking integrals on both sides of the above equation. Note that lq(λ) → 0
as λ→ 0+. So to show that the distribution of Vq is infinitely divisible, it suffices to show
that lq(λ) is a Bernstein function, or equivalently, the first derivative of la(λ) is completely

monotone, i.e. ( − 1)nl(n+1)
q (λ) ≥ 0 for all λ> 0 and n = 0, 1, 2, . . . .

We note that

ψ ′(u) − α= σ 2u +
∫

(0,+∞)
(1 − e−ur)rπ (dr) for all u> 0

is the Laplace exponent of a Lévy subordinator. Applying [17, (3.15), (3.16)] by taking F(u) =
ψ ′(u) − α and R(u) = −ψ(u) (and correspondingly b = σ 2 and m(dr) = rπ (dr)), we get

F(u)

ψ(u)
= σ 2W(0) + σ 2

∫ +∞

0
e−uxW ′(x) dx

+
∫ +∞

0
e−ux

[∫
(0,+∞)

(W(x) − W(x − r))rπ (dr)

]
dx for all u> 0.

It follows that for λ> 0,

l′q(λ) = F(λ+ ϕ(q))

ψ(λ+ ϕ(q))

= σ 2W(0) + σ 2
∫ +∞

0
e−λx(e−ϕ(q)xW ′(x)) dx

+
∫ +∞

0
e−λx

[
e−ϕ(q)x

∫
(0,+∞)

(W(x) − W(x − r))rπ (dr)

]
dx. (4.19)

One can easily show by the above identity that l′q(λ) is completely monotone. Suppose the
Lévy–Khintchine decomposition of lq(λ) is given by

lq(λ) = bqλ+
∫

(0,+∞)
(1 − e−λx)�q(dx), λ > 0,

where bq ≥ 0 and �q is a measure on (0,+∞) such that
∫

(0,+∞) (1 ∧ x)�q(dx)<+∞. Then

l′q(λ) = bq +
∫

(0,+∞)
e−λxx�q(dx).
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Comparing the right-hand side with that of (4.19), we deduce that bq = σ 2W(0) = 0 and
�q(dx) = vq(x)x−1 dx, with vq(x) being given by (4.18). �
Proposition 4.3. If

α > 0 and
∫ +∞

r ln rπ (dr)<+∞, (4.20)

then Vq converges in distribution as q → +∞ to a positive random variable V∞. The
distribution of V∞ has the following properties:

(i) it is of the size-biased Yaglom distribution

P(V∞ ∈ dr) = rP(� ∈ dr)

E[�]
,

(ii) it is infinitely divisible,

(iii) its Laplace exponent l∞(λ) := − ln E
[
e−λV∞]

is given by

l∞(λ) =
∫ λ

0

ψ ′(s) − α

ψ(s)
ds, λ > 0,

(iv) l∞(λ) has the Lévy–Khintchine decomposition

l∞(λ) = b∞λ+
∫ +∞

0
(1 − e−λx)

v∞(x)

x
dx,

where b∞ = 0, and

v∞(x) = σ 2W ′(x) +
∫ +∞

0
(W(x) − W(x − r))rπ (dr), x> 0.

Otherwise, if (4.20) fails, then Vq converges in probability as q → +∞ to infinity.

Proof. First we claim that (4.20) holds if and only if∫
0+
ψ ′(s) − α

ψ(s)
ds<+∞.

In fact, if α= 0, then ∫
0+
ψ ′(s)/ψ(s) ds =

∫
0+

d lnψ(s) = +∞.

On the other hand, if α > 0, we have

sψ ′(s)

ψ(s)
= α+ σ 2s + ∫

(0,+∞) (1 − e−sr)rπ (dr)

α + 1
2σ

2s + ∫
(0,+∞)

( e−sr−1+sr
sr

)
rπ (dr)

→ 1 as s → 0+.

Hence ψ ′(s)/ψ(s) ∼ 1/s as s → 0+. This implies further that∫
0+
ψ ′(s)

ψ(s)
− α

ψ(s)
ds<+∞ if and only if

∫
0+

1

s
− α

ψ(s)
ds<+∞.
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By [20, Lemma 2.1], the latter holds if and only if (4.20) holds. Hence we prove the claim.
Let lq(λ) be the Laplace exponent of Vq. It follows by (4.17) and the above claim that

lim
q→+∞ lq(λ) = lim

q→+∞

∫ λ+ϕ(q)

ϕ(q)

ψ ′(s) − α

ψ(s)
ds =

⎧⎨⎩
∫ λ

0
ψ ′(s) − α

ψ(s)
ds if (4.20) holds,

+∞ otherwise.

So Vq converges in distribution as q → +∞ to some random variable V∞ if (4.20) holds, and
Vq converges in probability to infinity if (4.20) fails. When (4.20) holds, it follows by (4.15)
and (4.3) that

P(Vq ∈ dr) = re−ϕ(q)rP(� ∈ dr)

E[�e−ϕ(q)�]
.

Hence (i) follows by letting q → +∞. The statements (ii)–(iv) follow directly from
Proposition 4.2. �

Recall that (Z↑
t )t≥0 is the Q-process defined in Remark 4.1. The next result shows that Z↑

t
converges in distribution as t → +∞, and its limit distribution is equal to that of Vq as q →
+∞. Since (Z↑

t )t≥0 is a CBI process, criteria for convergence in distribution and properties of
the limiting distribution can readily be found in [17], but since they follow very easily from
Theorem 4.2 and then Proposition 4.3, we present the proof here for the sake of being more
self-contained.

Proposition 4.4. If (4.20) holds, then Z↑
t converges in distribution as t → +∞ to a posi-

tive random variable Z↑∞ which is equal in distribution to V∞ defined in Proposition 4.3.
Otherwise, if (4.20) fails, Z↑

t converges in probability as t → +∞ to infinity.

Proof. Fix an arbitrary x> 0. We shall prove the following. For all λ> 0,

lim
t→+∞ P

↑
x

[
e−λZ↑

t
] =

{
E[e−λV∞ ] if (4.20) holds,

0 otherwise.
(4.21)

Fix λ> 0. Suppose s> 0 is sufficiently large such that ϕ(s)<λ. Suppose t ∈ (s,+∞).
Recall the definitions of the martingales (M(t)

r )0≤r<t and (Mr)r≥0 given in (4.11) and (4.12)
respectively. It is easy to see that for t> s,

Mt−s

M0
= ψ(ϕ(t))

ψ(ϕ(s))
eα(t−s)+ϕ(s)Zt−s−ϕ(t)x M(t)

t−s

M(t)
0

, Px-a.s.

Thus we have for t> s

P
↑
x

[
e−λZ↑

t−s
] = Px

[
Mt−s

M0
e−λZt−s

]
= ψ(ϕ(t))

ψ(ϕ(s))
eα(t−s)−ϕ(t)x

Px

[
M(t)

t−s

M(t)
0

e−(λ−ϕ(s))Zt−s

]
= I(α, t, s) × II(λ, t, s), (4.22)

where

I(α, t, s) := ψ(ϕ(t))

ψ(ϕ(s))
eα(t−s)−ϕ(t)x and II(λ, t, s) := Px

[
e−(λ−ϕ(s))Zt−s | ζ = t

]
.

https://doi.org/10.1017/jpr.2024.75 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2024.75


Stationary measures and the continuous-state branching process conditioned on extinction 25

If α = 0, we have
lim

r→0+ψ(r) eαφ(r) = lim
r→0+ψ(r) = 0. (4.23)

Otherwise, if α > 0, we note that by (4.2)

E[�e−r�] = −αφ′(r) e−αφ(r) = α

ψ(r) eαφ(r)
for all r> 0.

Consequently we have

lim
r→0+ψ(r) eαφ(r) = lim

r→0+
α

E
[
�e−r�

] =
⎧⎨⎩

α

E[�]
if (4.20) holds,

0 if α > 0 and
∫ +∞ r log rπ (dr) = +∞.

(4.24)
Combining (4.23), (4.24) with the fact that limt→+∞ ϕ(t) = 0, we get

lim
t→+∞ψ(ϕ(t)) eαt = lim

t→+∞ψ(ϕ(t)) eαφ(ϕ(t)) =
⎧⎨⎩

α

E[�]
if (4.20) holds,

0 otherwise.

It follows that

lim
t→+∞ I(α, t, s) =

⎧⎨⎩
α

E[�]ψ(ϕ(s))
e−αs if (4.20) holds,

0 otherwise.
(4.25)

On the other hand, by Theorem 4.2,

lim
t→+∞ II(λ, t, s) = E

[
e−(λ−ϕ(s))Vs

]
. (4.26)

Combining (4.22), (4.25), and (4.26), we have

lim
t→+∞ P

↑
x

[
e−λZ↑

t
] =

⎧⎨⎩
α

E[�]ψ(ϕ(s))
e−αs e

[
e−(λ−ϕ(s))Vs

]
if (4.20) holds,

0 otherwise.

Hence (4.21) follows by letting s → +∞, and we prove the first assertion. If (4.20) fails, we

have limt→+∞ P
↑
x
[
e−λZ↑

t
] = 0 for all λ> 0. Thus, for any M > 0,

P
↑
x

(
Z↑

t ≤ M
) = P

↑
x

(
e−Z↑

t ≥ e−M) ≤ eM
P

↑
x

[
e−Z↑

t
] → 0

as t → +∞. Consequently limt→+∞ P
↑
x (Z↑

t >M) = 1 for all M> 0, and so Z↑
t converges to

infinity in probability. Hence we prove the second assertion. �

One can see from Proposition 4.4 and Theorem 4.2 that the two double limits coincide:

lim
s→+∞ lim

t→+∞ Px(Zt ∈ A | ζ = t + s) = lim
t→+∞ lim

s→+∞ Px(Zt ∈ A | ζ = t + s)

for any Borel set A ⊂ (0,+∞) with P(V∞ ∈ ∂A) = 0, and any x> 0. Moreover, the limit is
non-degenerate if and only if (4.20) holds.
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Appendix

Lemma A.1. (1) Suppose νn, ν are finite measures on (0,+∞) with ν̂(0)> 0. Then νn

converges weakly to ν if, for all λ≥ 0,

ν̂(λ)<+∞ and ν̂n(λ) → ν̂(λ) as n → +∞. (A.1)

(2) Suppose νn, ν are measures on (0,+∞) with 0< ν̂(β)<+∞ for some β > 0. Then νn

converges vaguely to ν if (A.1) holds for all λ≥ β.

Proof. (1) Without loss of generality we assume ν̂n(0)> 0 for every n ≥ 1. Let ρn(·) :=
νn(·)/ν̂n(0) and ρ(·) := ν(·)/̂ν(0). Then ρn and ρ are probability measures on (0,+∞) with
ρ̂n(λ) = ν̂n(λ)/ν̂n(0) and ρ̂(λ) = ν̂(λ)/̂ν(0) for all λ≥ 0. (A.1) implies that ρn converges weakly
to ρ. The weak convergence of νn follows from the weak convergence of ρn immediately.

(2) Since νn and ν can be viewed as measures on [0,+∞) by setting νn({0}) = ν({0}) = 0,
this assertion is a direct result of [6, Theorem 8.5.a]. �
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