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FLEXURE OF A FLOATING ICE TONGUE*

By G. HoLpswoRTHT
(Institute of Polar Studies, Ohio State University, Columbus, Ohio 43210, U.5.A.)

ApstracT. Several analyses are given for the flexure of a floating polar ice tongue with the general
dimensions of several kilometers wide by 200 m in thickness. The lengths considered are from 2 km to in
excess of 10 km which is referred to as a long slab. The analyses are made under the separate assumptions
that ice behaves as (1) an elastic material, (2) an elastic-plastic material, and (3) a fully plastic material, when
reacting to flexure due to changes in sea-level. The elastic analysis shows that hinge-line stresses could become
very high (of the order of 15 bar) for slab lengths up to about 3.5 km reacting to sea-level changes of the
order of - 50 cm. For slab lengths greater than this, the stresses at the hinge, as well as being significantly
less than before, become independent of the length of the slab, dependent only on the slab thickness and the
amount of deflection of sea-level. In the elastic-plastic analysis, the hinge-line stress cannot exceed a value of
about 2 bar. This vield value is reached when sea-level departs about 50 em from the mean. The fully
plastic analysis requires more accurate knowledge of the constants in the How law and their variation with
density, temperature and salinity within the ice. However, the theory may be tested by measuring the diurnal
change in strain-rate across the hinge-line zone. The process of calving of large tabular icebergs from such
glacier tongues may demand sea-level changes of more than + 1 m, or bending about more than one axis
of the shelf.

Resume., Flexion d'une langue glaciaire flotiante. On denne pour la flexion d’une langue glaciaire polaire
plusieurs analyses avee les dimensions générales de plusieurs kilométres de large ct 200 m d’épaisseur. Les
longueurs considérées sont de 2 km a 10 km ce que Pon considére comme une longue plaque. Les analyses
sont faites sous les hypotheses diverses que la glace se comporte comme une matiére élastique (1), une matiére
plastique-élastique (2), et une mati¢re plastique (3) lorsqu’elle réagit a la flexion due aux variations du
niveau de la mer. L’analyse élastique montre que les contraintes & la ligne de flexion peuvent s'élever
considérablement (de I'ordre de 15 bar) pour des longueurs de plaque allant jusqu'a 3.5 km réagissant a la
variation du niveau de la mer de 50 em. Pour des plaques plus grandes, les contraintes a la ligne de flexion,
méme si elles sont plus faibles, deviennent indépendantes de la longueur de la plaque et dependant seulement
de 'épaisseur et de la variation du niveau de la mer. Dans Panalyse plastique-élastique, la contrainte a la
ligne de flexion ne peut dépasser une valeur de 2 bar. Cette valeur d’élongation est atteinte lorsque le niveau
de la mer s'écarte de 50 em du niveau moyen. L’analyse entiérement plastique demande plus de
connaissance préeise quant aux constantes des lois d'écoulement et leurs variations avec la densité, la
température et la salinité de la glace. Cependant la théorie peut étre testée en mesurant la variation diurne
de la vitesse de déformation a travers la zone de ligne de flexion.

ZUSAMMENFASSUNG. Biegung einer schwimmenden Eiszunge. Fir die Biegung (Flexur) einer schwimmenden
Polarciszunge von cinigen Kilometern Breite und 200 m Dicke werden verschiedene Analysen angestellt,
Die Linge der Zunge wird von 2 km bis tiber 1o km varitert, womit sich der Fall einer langen Platte ergibt.
Die Analysen werden unter den getrennten Annahmen durchgefiihrt, dass sich Fis bei Biegung infolge von
Meeresspiegelschwankungen verhiilt wie (1) ein elastisches, (2) ein elastisch-plastisches und (3) cin rein
plastisches Material. Die Elastizitéitsanalyse zeigt, dass fiir Platten bis zu 5.5 km Lange bei der Reaktion auf
Meeresspiegelschwankungen von + 50 cm die Spannung an der Auflagelinie schr hoch werden kann (in der
Grassenordnung von 15 bar). Bei lingeren Platten wird die Spannung am Auflager bedeutend geringer als
zuvor und unabhiingig von der Plattenliinge; sie bleibt abhingig nur von der Plattendicke und dem Ausmass
der Meeresspiegelinderung. Bei der Analyse als elastisch-plastisches Material kann die Spannung an der
Auflagelinic einen Wert von etwa 2 bar nicht iberschreiten. Dieser Hiochstwert wird bei Abweichungen des
Meeresspiegels um etwa 50 em vom Mittel erveicht. Die Analyse als rein plastisches Material erfordert eine
genauere Kenntnis der Konstanten des Fliessgesetzes und ihrer Verdnderung mit Dichte, Temperatur und
Salzgehalt des Eises. Die Theorie kann jedoch durch Messung der tiglichen Anderung der Dehnungs-
geschwindigkeit innerhalb der Zone lings der Auflagelinic gepraft werden.

List oF SymBoLs Usep
x,¥, 2 coordinate axes; x longitudinal, y transverse, z vertical (Fig. 4).
gy 1,j =X, z; 1 =j: normal stress. ¢ # j: shear stress.
oy stress deviator.
ozz(2z) normal stress in the x direction, at distance z from the neutral axis.
gox(—Hh) normal stress in the x direction at x = o, on the surface of the slab.
€y 1,j =x,7, z; strain-rate.
* Contribution No. 122, Institute of Polar Studies, Ohio State University, Columbus, Ohio, U.S.A.
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€r2(z) strain-rate in the x direction at z from the neutral axis.
w”(x) curvature of the neutral axis, in the xz plane at a distance x from the origin.
w'(x) slope of the neutral axis, in the xz plane at a distance x from the origin.
w(x) vertical deflection of the neutral axis at a distance x from the origin.

w, vertical deflection of the neutral axis as x tends to large values—see text.

wg depression or elevation of sea-level from mean sea-level.

pw density of sea-water. 1.028 Mg m3.

h

pi mean density of the ice slab = ' pi(z) dz/2h.
=1
e exponential factor.
A damping factor per unit distance.
g acceleration due to gravity. 9.81 m s
h half thickness of the ice slab. (4 is taken as 100 m in all calculations.)
K yield stress in pure shear for elastic-plastic analysis, Value taken as 1 bar = 10
Nm~ (see Nye, 1951).
L length of ice slab when not semi-infinite.
£y Young’s modulus of ice in bending (see Tabata, 1967, p. 493).

2

I second moment of area of the section (= 243) per unit width.
Poisson’s ratio for ice, taken as 0.3 (Dorsey, 1940).
M(x) bending moment at a section distance x from the origin.
x* distance from the origin to point where the plastic region disappears (elastic-plastic
analysis only).
¢ distance from the neutral axis to elastic-plastic boundary.
n  exponent in the power flow law for ice (for calculations n is taken as 3).
A constant in the flow law (steady-state creep) but strongly dependent on tempera-
ture, density, etc.
t  time.
dot over a symbol denotes differentiation with respect to time.

1. INTRODUGTION

Surrounding the Antarctic continent are several large ice shelves, many smaller ice shelves
and floating ice tongues. It is from these features that most icebergs are generated. With
increasing activity in the polar regions within the last decade, it has become necessary to
understand better the mechanical behavior of a floating ice mass because:

(1) scientific bases have been constructed on them,

(2) shipping lanes in these waters are often governed by the presence of enormous tabular
icebergs which calve off from the shelves periodically, and

(3) certain hypotheses (viz. Wilson, 1964) concerning the dynamics of continental ice
sheets feeding such shelves, demand a knowledge of the subsequent behavior of the
floating ice masses once they have been formed.

Figure 1 shows three relatively small ice tongues. The Erebus Glacier Tongue (a) on Ross
Island is known, from gravimeter measurements (Holdsworth, unpublished data in 1966) to
be oscillating as far inland as approximately the section vy’. From altimetry the central ice
thickness is estimated as being up to 200 m, assuming a mean ice density of 0.88 Mg m—3.
The width is 1.5 to 2 km and the length 8.5 km.

The Suvorov Ice Tongue (Oates Coast), Figure 1(b), is substantially larger, and unlike
the Erebus Glacier Tongue, its length is about equal to its width, assuming a hinge line in the
position marked. It is particularly amenable, therefore, to the kind of analysis which follows,
under the specific set of assumptions that are made.
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Fig. 1. Floating ice tongues in Antarctica.

https://doi.org/10.3189/50022143000026976 Published online by Cambridge University Press

387


https://doi.org/10.3189/S0022143000026976

388 JOURNAL OF GLACGIOLOGY

In recent years the positions of the ice fronts have been mapped by the U.S. Coast Guard
icebreakers, and it has subsequently been deduced that sections, if not all, of a particular ice
tongue have broken off at some time within a known year (for example, the Nordenskjold
Ice Tongue (Fig. 1(c)) probably broke off some time in 1964).

2. DErFLECTION OF A FLOATING IcE MaAss

Several components are involved in producing the vertical oscillation of a floating ice
tongue (or a major ice shelf ), namely, oscillations due to:

(1) wave motion (small amplitude of slab movement in millimeters; short period, generally
less than 1 min, e.g. Erebus Glacier Tongue, =~ 165);

(2) diurnal tidal motion (medium amplitude, 1 to § m, period 12 to 24 h, sec Thiel and
others, 1960);

(3) astronomical tides of medium to large amplitude, with periods from several weeks to
19 years. Included here are the well known “spring tides™ (Stewart, [1963]):

(4) catastrophic impulses, e.g. tsunamis, earthquakes, violent storms, abnormal ocean
currents, etc.;

(5) miscellaneous influences, e.g. differential changes in atmospheric pressure over the
shelf surface, differential accumulation or ablation on the surface of the shelf, forced
wind oscillations, all of which are probably insignificant compared with the preceding
influences.

One method of detecting vertical displacements of an ice shelf at any point, has been
described by Weinman (1958) and Thiel and others (1960).
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Fig. 2. Profile of ice thickness of part of the Ross Ice Shelf, Antarctica, after Thiel and Ostenso (1961, p. 824).

3. THE PROBLEM

From the foregoing discussion and consideration of Figure 2, which is taken from Thiel and
Ostenso (1961), it is apparent that the system being studied might be represented by a
simplified model, to be discussed in detail later. Certain assumptions are made, viz.:

(1) The width y is considered to be much greater than the thickness 2/ of the slab which
is of length L. measured horizontally from the effective hinge (x = o). The order of magni-
tude of L is discussed later. A “long” or semi-infinite slab is considered to be one exceeding
about 4 km in length with an average thickness of 200 m. Plane strain conditions are assumed
to exist and beam theory is used for simplicity of analysis. However, for very wide tongues
(where L is also large), secondary bending in the yz plane may become significant. In the
present analysis this will be neglected.
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(2) For large values of x the ice mass may be treated as a freely floating slab of uniform
thickness and density, responding to changes in sea-level. If & = h(x) is known then this
could be used, but it greatly increases the difficulty of solution of the differential equations.
Similarly the assumption of uniform density simplifies the solution.

(3) The horizontal displacement of the slab is neglected; i.e. the slab is assumed constant
in length over the period of time involved in a cycle of flexure.

(4) Inertia effects are neglected, as all vertical movements are relatively slow. The prob-
lem is treated as one in statics.

(53) The bending effect produced by the imbalance of ice pressure and hydrostatic pressure
at the immediate ice front, as well as at the edges of an unconfined slab, is a local (though very
significant) effect (Rech, 1968), but it is the concern of this paper to investigate the bending
in the much larger zone from the hinge line to within a few hundred meters from the terminal
cliff and lateral margins. Thus the edge boundary condition of hydrostatic pressure is avoided.

According to Rech’s analysis, icebergs produced by his mechanism would tend to be
strongly prismatic, whereas many of the Antarctic icebergs are strongly tabular with both
horizontal dimensions measured in kilometers or tens of kilometers, and with thicknesses of
200 to 400 m. Consequently it is evidently necessary to investigate the stresses due to bending
along the entire length of the slab. It may also be noted that Reeh (1968, p. 225 26) has
provided time estimates for his proposed calving mechanism. These indicate that, for typical
Antarctic ice masses, a deflection rate at the edge, of about 2 mm per 12 h period is likely to
occur (assuming ice to have a constant viscosity). This is seen to be very small compared with
the tidal (6 to 12 h) deflections of several meters, with which this analysis is primarily
concerned.

The flexural analysis will be considered separately according to elastic-plastic and steady-
state creep theories. It will be tacitly assumed that the bending function moment M(x) for a
long ice slab has the same form in all cases. Plastic deformation due to bending is presumed
to be of the same order of magnitude as a corresponding elastic deformation, because of the
cyclical variation from tensile to compressive strains.

Finally, it is to be expected that the shorter the period of oscillation of the slab, the more
the response would tend to be an elastic one (see section 2(1) and (2)).
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Fig. 3. Hetényi model (vertical scale exaggerated).

4. Erasrtic ANaLysis

It is necessary now to discuss in detail, the model used for the present analysis. For this it is
convenient to use the analogue of the system in which a semi-infinite elastic beam, resting on a
horizontal elastic foundation, is depressed at its center by a point load. This classical problem
has been solved by Hetényi (1946). By inverting this system, eliminating the half to the left
of the center of symmetry, and shifting the origin to the neutral axis of the slab in the line of
the point load, a model, which will be called the Hetényi model, is formed (Fig. 3), in which
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for large values of x the deflection tends to a constant value along the slab. The unbent
position corresponds to mean sea-level. Consider first a depression of sea-level. It is assumed
that at large values of x the ice is freely floating, thus w = w, = ws. In accordance with
the assumptions made by Hetényi, for the foundation reaction, it will be initially assumed here
that the distributed load acting vertically downward on the displaced parts of the slab, is
directly proportional to the vertical distance wy—w(x) (Fig. 4). This turns out to be correct
because the ice in this region remains above its equilibrium floating position for the new sea-
level, corresponding to (b) in Figure 4, and the downward-acting distributed load acting on a
strip of width dx at distance x from the origin, is exactly pyg(w,—w(x)) dx.

HINGELINE
L UNBENT POSITION Wa ws
T & DEPRESSED POSITION T
N S W T = RO W Y E— ” _______:::‘_—_‘—SI;,L-(“’
0,0 t2h ~—s- "‘4__." g el |
(0 " NEUTRAC AXIS_ _ _ _ _ ICE , 7; 2h 4L .
x____; w
P SEA WATER , fP
ROCK w
THRESHOLD
y

Fig. 4. Model ice tongue (developed from the Hetényi model), distorted vertical scale.

The force P acting upward at the origin may be identified with the “reaction™ or vertical
shear force at the hinge.

Considering inertial effects of this system to be minimal it is sufficient to treat the problem
as one in statics. Starting from the well known equation for a beam in bending,

w"(x) = 7%;11(;(), (4.0)

where M(x) is the bending moment at x, Ep is Young’s modulus in bending, /, is the moment
of inertia of the section per unit width, and w is Poisson’s ratio, it may be shown that

W () =~ gy () (4.0
Ehlu S
for the present problem. The solution turns out to be:
w(x) = wy(1—e ¥ (cos Ax--sin Ax)) (4.2)
. _ Peg(1—#)
where A= it

A is known as the damping factor. The significant quantity is 1/A, whose value in the present

case is approximately goo m, taking the following values: py = 1.028 Mgm=, p =o0.3,

Ey = 2.7 x10% bar (Dorsey, 1940, p. 445; Tabata, 1967, p. 493), Ja = $#* where & = 100 m.
The specified boundary conditions for Equation (4.2) are

w(0) =0,  w(x—>00) = z,
w'(0) = o, w' (x—00) = o.
gr 77w 1w (gn—1) 7

w(x) has the value w, when x = v ZX’ 4—)‘, o=

Between these points the deflection curve follows a flat wave trajectory of decreasing amplitude
with distance x.

https://doi.org/10.3189/50022143000026976 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000026976

FLEXURE OF A FLOATING ICE TONGUE 391

Differentiating Equation (4.2) twice,
w'(x) = 2wyA e ¥ sin Ax, (4-4)
w”(x) = 2wyA* =47 (cos Ax—sin Ax), (4-5)
and using Equation (4.0),
Pwllly
M(x) = — %
T 57 9w (4gn—3) =
4__A! ﬁ, 4), vy T-
Of greatest interest is the stress o, generated at the hinge-line position (x = o). The
maximum tensile stress produced by a downward deflection —:w, will obviously occur at the

€A% (cos Ax —sin Ax), (4.6)

M(x) = o, when x =

surface z = —h. Using beam theory and Equation (4.6)
ghuw; , ‘
orz(—h) = —}—% e~ (cos Ax—sin Ax), (4-7)

75T (4n—3) =
ﬁ, ﬂ, — 4_A .
 pughvy
TTaL A

used values of py, A, I, and A are used, this reduces to

ozz(—h) = o when x =

Now goz(—h) = where the positive sign denotes tension. If the previously

dgox(—Hh) = 6.7 X 10w, bar.
For a downward deflection of + 50 cm the surface stress is about

+3.3 bar.
m g (2n—1) m
2X 2 7 2
and compression along the slab surface.

The case where the slab is elevated above the mean position is taken to be the mirror
image of the depressed case, assuming that the ice at the hinge does not lift off the bottom, a
situation requiring the basal ice to be resting on a sharp rise or rock threshold, or where the
thickness of the ice necks down rapidly to the hinge (Fig. 2). Thus, if w(x—>o0) = —w,,
the signs of the stress at these points are all reversed. The stresses at 7/2A and gw/2A are
respectively less than 41 bar and +o.1 bar for w, = 450 em. Equation (4.7) gives values of
bending stresses on the surface of the slab produced by various values of w,. If fracture is to
occur it will first be manifest at the hinge line, then at a distance of approximately 1.4 km
from the hinge line.

At this point it would be convenient to investigate the effect of the length of the slab on
the bending behavior. So far, only long slabs have been considered, i.e. where L » 5m/4A,
or about 3.5 km. “Intermediate length” slabs, where . & 4 km, could also be treated in a
similar way to a first approximation, but for short slabs where L < ¢. 3.5 km, the problem
will have to be treated somewhat differently.

Assume that the deflection curve of the top surface is parallel to the deflection curve of
the neutral axis. Suppose that sea-level is depressed an amount wg but that the end of the
slab deflects only wy. The necessary condition is that wy, < ws.

In the absence of prior knowledge about the form of the deflection curve, ultimately to
be derived, the approximation is now made that the distributed load due to ice above its
equilibrium position varies linearly along the slab, from pygws dx to pyg(ws—wy) dx at
the end. This is not such a severe assumption if wy, is small compared with L which is the
condition of the present case. Consequently the bending moment at any point x is given by

M(x) = pwg(L—x)*(3ws—2mp—w0(x). (4.8)

At values of x = o, . |ozze(—h)| maximizes, alternating between tension
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Using Equations (4.0) and (4.8),

w”(x) = a(l—x)*(B—w(x)), (4-9)
where e —M;‘;—f:-)ﬁ, B = gws—2wjy.

The boundary conditions for Equation (4.9) are

w(o) = w'(0) = o,
A solution of this equation is

=k L( NI L 5\ |4k i K[ (—a)/?(L—x)]*k
w(x)—B+A(L—x)Z( 2 ["imz ff 2 +BZ( D [imié !
k=0 k=0

where the constants may be found from the boundary conditions.

Without some simplification this equation turns out to be very ponderous and will not be
pursued, except to mention that the initial approximation is justified by it. What is more
important to the present problem is the dependence of the hinge-line stress on the length of
the slab and the end deflection.

Using Equations (4.0) and (4.9), in which x =0, w(0o) =0 and the relationship
coz(—h) = M(0) h/l,, it may be shown that:
_ pwg
T
where the limits of L are approximately given by

aox(—Hh)

(gis—2wy) L? (4.10)

o< L < 3.5 km.

If the limiting case wy, — w; is taken, Equation (4.10) may be rewritten
Gox(—h) = wslec

where ¢ has the value 0.251 N m—.

For ws = 450 cm and L = 3.5 km, the hinge stress is +15.4 bars, which is of the order
of the bending strength of ice at about —20°C with a density above 0.85 Mg m— (Tabata,
1967, p. 488-89). For values of L greater than this, but leaving w. unchanged, there is,
according to this composite analysis, a reduction of the hinge stress to about } of its maximum
value.

Due to surface hinge-line stresses of several bars indicated in the case of an elastic slab
(eliminating temporarily the horizontal steady-state creep, which is always tensile) it might
be supposed that this is the region where plastic yield due to bending only would be likely to
occur first. Consequently it is thought appropriate to present an elastic-plastic analysis of
the same problem.

5 ELASTIC-PLASTIC ANALYSIS

Again, only flexure in the xz plane of the slab is admitted. The stresses considered are the
result of the bending moment only. The other component of stress in the x direction is
Weertman’s steady-state creep stress (Weertman, 1957) which can only be tensile in the
upper layers.

All the assumptions of sections 3 and 4 are again made. Further it is assumed that the
bending contributes nothing to o, oyy and oy,. Consequently the only non-vanishing
stresses produced by bending are oz, o4y and og..

The stress deviators are
o, i#]

crfij - ag—%SUUM where 353‘ — . i 7]
- =
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and Okk — E G'”,i =j, hence

. 5

L7 7 %Urm_%"'yys
”

Tyy = Eoyy_':f"'xr:
’

Oz = 3%z 304y"

But for plane strain ¢}, must be zero, thercefore:
lozz| = 2[oyy|-
Using the von Mises yield criterion:
Fig 3 ra 2 | % 2 R )
'%(‘J'xx"_ayy +022) + Opy T Oyz T 0z = k
where £ is the yield stress in pure shear, the relationship
0'.:r.7: AE 4-‘7;"2 = -1';‘-
is obtained. It may be shown (Prager and Hodge, 1951, p. 44-53) that within the framework
of beam theory o,; < 0, and in the plastic regions o, actually vanishes. Indeed on the upper
and lower surface o, = 0, always. Accordingly the yield condition may be sufficiently
written :
‘0'1;_1:‘ - 2/{.
If the vertical displacement w(x) < 2k and the usual assumptions of the bending of beams
are adopted then to a reasonable approximation
(X —p%) Ogy = —Epzie"(x) (5.1)
at all points where the material behaves elastically.
If the section in Figure 5 is considered, then the upper plastic region is specified by
£ < z < h, the elastic region by —¢ << z < £, and the lower plastic region by —h < z << —¢,
then the stresses in these regions are respectively

O == 25 (tension if clockwise bending moment),
oxx = 2kz[€ (5.2)
and orr = —2k when the yield stress has been reached in the outer parts of the
section.
=
N\
|—x ;—)I — j&— UNIT WIDTH
L —h
N _$_3"_(Z
$ NEUTRAL
0,0 T > X 2 AXIS it
S 2 W - _{
W A
Zy SECTION Z, Zz
+z +Z

Fig. 5. Elastic-plastic regions of the slab at the hinge region, for a fully plastic section x = o.

h
The bending moment M(x) = 2 f as2(2) 2 dz bearing in mind that the stresses due

to bending only are considered.

2 FEphd w" (x)

For an elastic section M(x) = — > (5.3)

) 3(1—p?) &
For an elastic-plastic section M(x) = ek(l?—3£%). (5-4)
For an entirely plastic section M(x) = akh?. (5-5)
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Assuming that M(x) takes the same form for all sections as discussed earlier, the form of
Equation (4.6) will be used, namely:
M(x) = M(o) e 2% (cos Ax—sin Ax). (5.6)

The solution of Equation (5.3) has already been worked out in section 4.
For the elastic-plastic section, from Equation (5.1):

") 2k(1—p’)
wil) =——.
Ené
Equating Equation (5.4) with Equation (5.6), and using this last expression, the curvature
becomes:
2k(1—p? M —1y2
w”(x) = L 3&2—3 (©) e A7 (cos Ax—sin Ax) . (5.7)
Eh ok

The deflection curve is given by

2k(1—p?) M(o) e 5 = o
w(x) ff B [ —ragi (cos Ax—sin Ax) dx dx (5.8)

under the boundary conditions w(o) = w'(0) = o.
The solution to Equation (5.8) can be rewritten in the form

(1—7) . dr

[1—a e 227 (cos AxT—sin Ax7)]" 2

where 4 = 2k/+/gEvh and o = M(o )/lez'. 7is a dummy variable. This curve is valid only over
a distance 0 <C x << x*, where x* is a solution of the equation

3 (cos Ax*—sin Ax*) = 2 exp (Ax*).

The value of x* & 7/16A & 180 m, or approximately the thickness of the slab, so for practical
purposes Equation (5.8) or its equivalent is of little use.
Of specific interest is the stress generated at the hinge, which by hypothesis cannot be
greater than |2k| or about 2 bar. This corresponds to a bending moment of 2kh* at an
kh* A*
PwE
of about 1 m, which is about the average for the Ross Sea (Thiel and others, 1960, p. 633).

approximate value of w, & ~ 49 cm, This is then equivalent to a full tidal range

6. STEADY-STATE CREEP ANALYSIS

An analysis based on creep bending requires a number of severe assumptions in addition
to those already outlined in section 3. These are that:

(1) Plane sections remain approximately planar after flexure and the strain-rate €, is
proportional to the distance z from the neutral axis, which is assumed to be at mid-thickness
of the slab (due to temperature and density variations with depth it is bound to be slightly
displaced).

(2) An average flow law can be assigned to the full section to take account of varying
density and temperature of the ice with depth.

(3) The steady-state creep law holds for both tension and compression induced by the
influence of bending.

(4) The stresses due to bending are cyclical and may be analysed separately from those
due to other causes.

Using assumption (1) €xz(2) = €épr(h) z/h. (6.1)
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Using assumptions (2) and (3) the steady-state creep law may be written

es(2)] = A|oza(2)]%, (6.2)
h: | h/n
therefore M(x) = ;’;I o omsla). (6.3)

Assuming small displacements:

d i X .:527 h A : n+ "
D) el :I(%h_ll) M(x)n. (6.4)

For simplicity of analysis the bending moment will be assumed to be a function of the rate of
deflection but not of the actual time. Thus if the rate of deflection is assumed roughly con-
stant, the right-hand side of Equation (6.4) can be assumed to be independent of time, so

w"(x) = ¢ e 3 (cos Ax—sin Ax)? (6.5)

where n has been put equal to 3 (Glen, 1955, p. 528 29) and

At{7\3
¢ = $(t, M(o)) = hf(%) M(o)3.

In solving Equation (6.5) it must be realized that although the resulting deflection w/(x)
turns out to be an increasing function of time as well as x, it has to have very definite limits
which are in this case controlled by sea-level.

The boundary conditions that must be satisfied are:

w(o) =0 and w'(00) = o,
which enable a complete solution for Equation (6.5) to be written
w(x) = —L Z)iﬁ W (0)3[3—e31%(3 cos Ax+29 sin Ax)] (6.6)
T 1500 RT\6) b, _ A 9 ; '

This equation gives the deflection curve for given values of w, and @, at the far end of the slab.

If 74 is the rate of change of sea-level and f, is the rate of vertical movement of the slab
for large x, then if 7oy > 2, the movement of the slab would lag behind the sea-level change.
On the other hand, if @ # @, then the deflection rate of the slab can only be exactly equal
to 2s. This last case is the one considered to apply to diurnal tidal movements.

Placing w(o0) = wy, 0 <y = ws = W
where W is the full departure of sea-level from mean sea-level it may be shown that:
M(0) = 3.42h7/5 N3 4113 gy 3 (6.7)

The value of M(o) is thus dependent on i, but is rather insensitive to changes in this quantity.
Suppose the value of @ = 20, is known, then Equations (6.3) and (6.7) give, at x = o,

ox(—h) = 3.68X3 A-1/5 B3 g /3 (6.8)

However A = 4 (pi, temperature, salinity, etc.) is not well known, therefore rewriting
Equation (6.8) in terms of strain-rate,
€oz(—h) = 50A° habg. (6.9)
By using a sensitive strain measuring device such as a network of electro-tapes installed at
the estimated hinge-line position, a value of €oz(—#h) might be found, bearing in mind that
this value will actually be the change in strain-rate at this point over the appropriate time
interval. This is because of the horizontal steady-state creep of the slab (Weertman, 1957).

The measured value could then be compared with the calculated value in order to test the
theory.
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Taking a typical value of %, = x~ 2.9x10°ms* for the Ross Sea,
€ox(—h) = 1.4 x107757", which is well above the general range for fracturing of ice (Holds-
worth, 1965); therefore at least a tide crack should form, and indeed these are generally
visible.

7. Discussion

Before being able to predict any failure criterion, it is necessary to have a knowledge of the
bending strength of ice. Tabata (1967, p. 486) indicates that at stress rates below 0.1 bar s=*
the bending strength increases with decreasing stress rate, but the data are not extended to
the stress rates generally dealt with in the present analysis. Although Tabata’s values for the
bending strength cannot be used directly here, because a different type of ice was used, it is
expected that the same order of bending strengths (913 bar) would probably apply in the
present case. Additional information comes from tables in Mantis (1951) which indicate
values of the bending strength of unspecified ice as being up to 244 1b in—* (17.5 bar). These
miscellaneous model tests suffer from the well-known “notch effect”—so in all probability the
bending strength of polar glacier ice is at least as great as 15 bar and probably greater,
because if the elastic analysis is valid, ice tongues such as the Erebus Glacier Tongue must have
passed through the critical length 5m/4A without breaking off completely under 15 bar
tension,

The map of Antarctica (e.g. that published by the American Geographical Society,
I : 5000 000, in 1965) discloses the fact that in the Weddell Sea, ice tongues of the type found
in the Ross Sea are not found. A reason for this may be provided by the tidal data which
show (Thiel and others, 1960) a tidal range in the Weddell Sea about three times greater
than the Ross Sea. Consequently hinge bending stresses in a similar slab there would be three
times as great as in the latter place, so total failure might be expected.

The present discussion has dealt with tidally induced stresses with half periods from 6 to
12 h (Weddell and Ross Seas respectively). Oscillations of the slab due to wave action (or
swell) with half periods of less than g0 s should place the system within the limits of elastic
theory. However, estimated deflections are generally small. It is quite possible, nevertheless,
that violent storms may induce swells of sufficiently large amplitude to generate stresses at the
hinge line of the magnitude of tidally produced ones. Moreover these stresses may be
generated by moments about the z- as well as the y-axis, depending on the direction of the swell.
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