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CERTAIN SUBSETS OF PRODUCTS OF METACOMPACT 
SPACES AND SUBPARACOMPACT SPACES 

ARE REALCOMPACT 

PHILLIP ZENOR 

We will say that a space X has property (*) if and only if each discrete 
subset of X is realcompact; i.e., the cardinality of each discrete subset of X is 
nonmeasurable. In [8], Shirota shows that a completely regular JVspace X 
is realcompact if and only if X has property (*) and X is complete with respect 
to some uniformity. In [7], Moran, using measure theoretic techniques, shows 
that any normal metacompact JVspace with property (*) is realcompact. 

Let ^ denote the class of JVspaces which are either metacompact or 
subparacompact. It is the purpose of this paper to establish the following 
result: 

THEOREM. The normal space X is realcompact if and only if X has property (*) 
and X can be embedded as a closed subspace in the product of a collection of 
members of yM. 

Recall that a space X is realcompact if it can be embedded as a closed subspace 
in the product of a collection of copies of the reals. For basic theorems and 
notation concerning realcompact spaces and ultrafilters, the reader is referred 
to [3]. 

The space X is said to be metacompact if whenever tyl is an open cover of 
X, there is a point finite open refinement of tft 

A space is said to be subparacompact if whenever ^ is an open cover of X} 

there is a refinement Jrf? = US=i &\ of % that covers X such that, for each i, 
3£\ is a discrete collection of closed sets. The name "subparacompact" is 
due to Burke [1]. In [5], McAuly shows that every semi-metric space is 
subparacompact and in [2] Creede shows that every semi-stratifiable space 
is subparacompact. 

It should be pointed out that the normality condition of our Theorem 
cannot be removed since the space M> given in Exercise 51 of [3] is a completely 
regular Moore space that is not realcompact. 

For convenience, if <f is a class of spaces and X is a space, then C(X, <f) 
will denote the class of continuous functions on X with range in S. If / is a 
function, then Range(/) will denote the range of/. 

LEMMA 1. Suppose that X is a Ti-space and <S is a class of Ti-spaces such 
that the topology on X is the weak topology induced by C(X, <o). Then X can be 
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embedded as a closed subspace in the product of a collection of members of $ if 
if and only if it is true that, if ^ is a free ultrafilter of closed subsets of X, then 
there is a member f of C(X, S>) and an open cover °tt of Range (J) such that 
{f-HU) : U e °tt\ refines {(X - F) : F Ç J H -

Proof. Suppose that S" is a collection of members of S and T is a homeomor-
phism taking X onto a closed subspace of TY<o'. For each £ f ^ ' , PE will 
denote the projection of Tlcf' onto £ ; thus, for each E £ S', PE-T is in 
C(X, <§). L e t ^ be a free ultrafilter of closed subsets of X. For each £ in $', 
let JH? denote the set, {H : H is a closed subset of E and {PF/T)~l{H) £ J H . 

Claim 1. If £ Ç <?', then there is at most one point in C\ J^~E : since E is 
regular, if there were two points p and q in H JH?, then there would be open 
sets U and F in £ containing p and g respectively such that U O V = 0; 
thus, (PE-T)-l{U~) and ( P ^ T ) " 1 ^ - ) would be disjoint members of J H 
which would be impossible. 

C/aiw 2. Suppose that £ Ç (f ' and x is a point of £ such that if U is an 
open set in E that contains x, then [/ is in J H - Then x is in each member of 
J H - To see that this is true, suppose the contrary; i.e., suppose that there is a 
member H of J H that does not contain x. By the regularity of £ , there is an 
open set U containing x such that U fï H = 0, but this is impossible s inceJH 
is centered. 

Claim 3. There is a member £ of <^' such that Ç\JH = 0: suppose other­
wise. Then there is a point x of I I $' such that, for each £ , PE(x) = Pi J H -
We will show that x is a limit point of T(X) ; and so, T~1(x) will be a member 
of J H which will be a contradiction. To this end, let <o" be a finite subset 
of S>r and for each £ in # " , let £/# be an open set in E containing PE(x). It 
will suffice to show that there is a point y of X such that PE(T(y)) is in [/# for 
each £ in $". For each £ in <§*", let F# be an open set in £ containing PE(x) 
such that F# C UE> Then 

Ees" 
and so, let 3/ be a point of this intersection. It must be the case that PE(T(y)) 
is in UE for each £ in $". 

Let £ be a member of S>/ such that H J H = 0- According to Claim 2, 
there is an open cover °tt of £ such that {(P# • P ) - 1 ( £7 ) : U G ^ } refines 
{X — F : £ G J H , which completes this part of the proof. 

Suppose now that it is true that: if J r is a free ultrafilter of closed sets in X, 
then there are a member/ of C(X, (o) and an open cover °ll of Range(/) such 
that {f-^U) : U € <%} refines {X - F: F £^}. Let <f' be a collection of 
members of <̂  such that : (i) C(X, <ff) determines the topology on X and 
(ii) if J r is a free ultrafilter of closed sets inX, then there are a member / of 
C(X, S') and an open cover °ti of Range(/) such that {f-^U) : U € <%} 
refines \X — F : F Ç J H - Let £ be the natural embedding of X into 

I I Range (/) 
/€C(x,<n 
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given by Pf(T(x)) = f(x) (see the Embedding Lemma, [4, p. 116]). Let y 
be a limit point of T(X) in 

{ I ! R a n g e ( / ) } - r ( A " ) . 
f£C(X,E') 

Let &~' = {/^(V ) : V is an open set in Range (/) containing P/(y),f G 
C(X, $')). Then J r / is a centered collection in X. Since y is not in T(X), it must 
be the case that O &~' = 0. L e t # " be an ultrafilter of closed sets in X that contains 
J ^ . JF" must be free; and so, there is a member/ of C(X, $') and an open 
cover % of Range(/) such that {f-^U) : U £ <%} refines {X - F : T7 G &}. 
Let F be an open set in Range (/) containing P/(y) such that F is a subset of 
some member of *2fc\ Then f~l(V ) is not in Ĵ ~, which is a contradiction from 
which the lemma follows. 

LEMMA 2 [6, Theorem 18]. If °tt is an open cover of the space X, then there 
is a discrete subset H of X such that 

(1) \st(x, <%) : x G H) covers X 
and 

(2) No member of % contains two points of H. 

In the following theorem, ^#i will denote the class of regular metacompact 
JVspaces; ^ 2 will denote the class of regular subparacompact TYspaces; 
and ^# 3 =^i U ^ 3 -

THEOREM. The following conditions on a normal Ti-space are equivalent: 
(1) X is realcompact. 
(2) X has property (*) and X can be embedded as a closed sub space in the 

product of a collection of members of^%. 
(3) X has property (*) and if ^ is a free ultrafilter of closed subsets of X, 

then there is a point finite open cover of X that refines {X — F : F G &\. 

Proof. (1) ==> (2): This is obvious since every closed subset of a realcompact 
space is realcompact and the real line is a member of ^#3-

(2) => (1): Let 2f be a free z-ultrafilter in X. We will show that X is real-
compact by showing that there is a countable subcollection of 2f with empty 
intersection. 

Let &~ be an ultrafilter of closed subsets of X that contains <2T. Since X 
can be embedded as a closed subset of the product of a collection of members 
of^^3, by Lemma 1, there is a member M oï^étz, a m a p / taking X onto M, and 
an open cover <% of M such that {f-^U) : U £ <%} refines {X - F : F G $r\. 

Case 1. M is in^#i : Let °tt' be a point finite open refinement of °U that 
covers M. Applying Lemma 2, there is a discrete subset H of X such that 

(i) {st(x, t 1 (<%')) : x G H) covers X and 
(ii) no member of f~li^') contains two points of H. 
hetW be the subcollection of f~l{^r) consisting of all W which contain 

a point of H. Now, since iV is both point finite and infinite, it follows that 
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the cardinality of iV is the same as the cardinality of H; and so, there is a 
one-to-one function <p from H to W. For each F in i^~, let H(F) = [x Ç H : 
<p(x) H J7 = 0}. Clearly, {H(F) : .F € ^"} has the finite intersection property; 
and so, we may let J^ denote an ultrafilter of subsets of H that contains 
\H(F) : F e ^ ~ } . Since, for each x Ç H there is an Fx in ^ such that 
<p(x) H Fx = 0, *>f must be a free ultrafilter in iJ. Thus, since H is real-
compact, there is a countable subcollection {Ki, K2,...} of J ^ with P ^ = 0. 

Claim 1. If I f JT, then there is a member F of ^~ such that 
-F C ^ reK(^( x ) ) : To see that this is so, suppose otherwise; i.e., suppose that 
there is a Z in j f such that X — \JXZK(V(X)) is in J^~. Then H(X — \JX^K 

(<p(x))) is a member of J ^ that fails to intersect K which is a contradiction 
and hence Claim 1 follows. 

Claim 2. P?=i((U* an (<£>(#))) = 0: To see that this is true, let y £ X and 
observe that there is a finite subset S oî H such that ^(x) contains y if and 
only if x 6 5. Thus, since Pi I * = 0, there is an integer n such that Kn C\ S = 0. 
For that n, it must be the case that \Jx<zK (<p(%)) does not contain y. 

Now, By Claim 1, for each integer n there is a member Fn of ^ such that 
^» C U^z„(^( x ) ) - Since X is normal, for each n there is a zero-set, Zw, in X 
such that Fn (Z Zn (Z UxeKn(<p(x))- {Z\, Z2, . . .} is a subcollection of 3f 
with pi Z* = 0. 

Case 2. Af is in M2: Let J ^ = U ? = i ^ * be a closed cover of M that refines 
^ such that, for each i, J^ft is a discrete collection of sets. For each n, let 
J f„ = {f-^H) : H e^n} and let J f = U : = X . Then for each w, Jfn is a 
discrete collection of closed sets in X. Furthermore, if n is a positive integer 
and K £ ^ n , then K is not inJ^~. 

We have two cases to consider: 
Subcase 1. There is an integer n such that U Kn is in ^ \ Let A be an indexing 

set ior&n so that we ha.ve-J4fn = {H(a) : a Ç ^4}. We will view i a s a topo­
logical space with the discrete topology. For each a in A, K(a) will denote the 
set f~l(H(a)) so that A is also an indexing set for J^n. U B C A, then let 
K(B) = {JaeBK(a) and H (B) = \J a&H (a). Let & = {B C A: K(B) £#~}. 
It is clear that Se has the finite intersection property. Furthermore, since it is 
true that if B C A, then either K(B) £ ^ or i£(,4 - 5 ) £ J ^ it follows 
that Se is an ultrafilter of subsets of A. Note that if a £ A, then i£({a}) is 
not in J r . Thus, ^ is a free ultrafilter in A. Since 4̂ has the same cardinality 
as a discrete subset of X, it follows that A is realcompact; and so, there is a 
countable subset {Bl9 B2, . . .} of ^ with P Bt = 0. It follows that {K(Bi), 
K(B2), . . .} is a countable subset of Ĵ ~ with empty intersection and {H(Bi), 
H(B2), . . .} is also a centered collection of closed subsets of M with empty 
intersection. It is true then that {Jkf — H(Bi), M — H(B2), . . .} is a countable 
open cover of X. Since M is subparacompact, Tkf is countably metacompact; 
thus, there is a point finite open cover { Ui, U2, . . .} of M such that, for 
each k, Ujc C (M — H{Bk)). For each k, let Vk = Uj>kUj. For each k, it 
follows that Dkj=iH(Bj) C /_1(^/c)- Since X is normal, there is, for each k, 
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a zero-set Z* such that n î - i^CB, ) C Zk C tl(Vk). Thus, {Zu Z2, . . .} 
is a countable subset of 2? with d Zt = 0. 

Subcase 2. For each n, it is true that \JCfcn is not in Ĵ ~. In this case, for 
each n, let Fn be a member of Ĵ ~ that does not intersect \JC^n. Since X is 
normal, there is, for each n, a zero-set Zn such that ^ C ^ C ^ - U ^ w . 
It follows that {Zi, Z2, . . .} is a countable subcollection of <2T with empty 
intersection. This completes the proof that (2) implies (1). 

(1) => (3): This is a corollary to Lemma 1. 
(3) => (1): The argument for this implication is the same as that for Case 1 

in the proof that (2) implies (1). 

COROLLARY 1. Every normal subparacompact Ti-space with property (*) is 
realcompact. 

COROLLARY 2. (Moran [7]). Every normal metacompact Ti-space with property 
(*) is realcompact. 

In view of our Theorem, two questions seem to be of interest: 

Question 1. Is every normal subparacompact TVspace complete with respect 
to a uniformity on the space? Indeed, must every normal Moore space be 
complete with respect to some uniform structure? 

Question 2. Must every metacompact normal TYspace be complete with 
respect to some uniform structure on the space? 
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