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CERTAIN SUBSETS OF PRODUCTS OF METACOMPACT
SPACES AND SUBPARACOMPACT SPACES
ARE REALCOMPACT

PHILLIP ZENOR

We will say that a space X has property () if and only if each discrete
subset of X is realcompact; i.e., the cardinality of each discrete subset of X is
nonmeasurable. In [8], Shirota shows that a completely regular T'i-space X
is realcompact if and only if X has property () and X is complete with respect
to some uniformity. In [7], Moran, using measure theoretic techniques, shows
that any normal metacompact T;-space with property (x) is realcompact.

Let .4 denote the class of T's-spaces which are either metacompact or
subparacompact. It is the purpose of this paper to establish the following
result:

THEOREM. T he normal space X is realcompact if and only if X has property (x)
and X can be embedded as a closed subspace in the product of a collection of
members of M.

Recall that a space X isrealcompact if it can be embedded as a closed subspace
in the product of a collection of copies of the reals. For basic theorems and
notation concerning realcompact spaces and ultrafilters, the reader is referred
to [3].

The space X is said to be metacompact if whenever % is an open cover of
X, there is a point finite open refinement of %

A space is said to be subparacompact if whenever % is an open cover of X,
there is a refinement# = \U%; S ; of % that covers X such that, for each 2,
, is a discrete collection of closed sets. The name ‘‘subparacompact’ is
due to Burke [1]. In [5], McAuly shows that every semi-metric space is
subparacompact and in [2] Creede shows that every semi-stratifiable space
is subparacompact.

It should be pointed out that the normality condition of our Theorem
cannot be removed since the space ¥ given in Exercise 51 of [3] is a completely
regular Moore space that is not realcompact.

For convenience, if & is a class of spaces and X is a space, then C(X, &)
will denote the class of continuous functions on X with range in &. If fis a
function, then Range(f) will denote the range of f.

LemMa 1. Suppose that X is a Ti-space and & is a class of Ts-spaces such
that the topology on X is the weak topology induced by C(X, &). Then X can be
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embedded as a closed subspace in the product of a collection of members of & if
if and only if it is true that, if & is a free ultrafilter of closed subsets of X, then
there is a member f of C(X, &) and an open cover U of Range(f) such that
{(fFUU): U € U} refines { (X — F) : FF € F}.

Proof. Suppose that &’ is a collection of members of ¢ and 7" is a homeomor-
phism taking X onto a closed subspace of II&”. For each E € &7, P, will
denote the projection of I1&’ onto E; thus, for each E € &', Py-1 is in
C(X, &). LetZ be a free ultrafilter of closed subsets of X. For each E in &/,
let.# ; denote the set, {H : H is a closed subset of E and (Py-T)"'(H) ¢ % }.

Claim 1. If E € &, then there is at most one point in (% j : since E is
regular, if there were two points p and g in N% z, then there would be open
sets U and V in E containing p and ¢ respectively such that U N 1V =0;
thus, (PgT)"X(U ) and (Pgx-7)"'(V") would be disjoint members of %,
which would be impossible.

Claim 2. Suppose that E € &’ and «x is a point of E such that if U is an
open set in E that contains x, then U™ is in# 5. Then « is in each member of
F ». To see that this is true, suppose the contrary; i.e., suppose that there is a
member H of % 5 that does not contain x. By the regularity of E, there is an
open set U containing x such that U™ (N H = @, but this is impossible since.#
is centered.

Claim 3. There is a member E of &’ such that N.% = @: suppose other-
wise. Then there is a point x of II &’ such that, for each E, Pz(x) = NZ 4.
We will show that «x is a limit point of 7°(X); and so, 7! (x) will be a member
of %, which will be a contradiction. To this end, let &’ be a finite subset
of & and for each Ein &, let Uy be an open set in E containing Py (x). It
will suffice to show that there is a point y of X such that Pz(T (y)) isin Uy for
each E in &, For each E in &", let V be an open set in E containing P (x)
such that Vz C Ug. Then

N Pe- )7 (V5) #0;
Ecs’!
and so, let ¥ be a point of this intersection. It must be the case that Pz (7'(y))
is in Ug for each E in &".

Let E be a member of &’ such that N 5 = 0. According to Claim 2,
there is an open cover % of E such that {(Pgz-T)"Y(U ): U € %} refines
{X — F: F € ¥}, which completes this part of the proof.

Suppose now that it is true that: if # is a free ultrafilter of closed sets in X,
then there are a member f of C(X, &) and an open cover % of Range (f) such
that {f~2(U) : U € %} refines {X — F: F ¢ #}. Let &’ be a collection of
members of & such that: (z) C(X, &) determines the topology on X and
(i) if & is a free ultrafilter of closed setsin X, then there are a member f of
C(X, &') and an open cover % of Range(f) such that {f~Y(U): U € %}
refines {X — F: F ¢ #}. Let T be the natural embedding of X into

Range(f)

JEC(X,6")
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given by P;(I'(x)) = f(x) (see the Embedding Lemma, [4, p. 116]). Let y
be a limit point of 7'(X) in

II  Range(f)} — T'(X).

70X, B
Let %' = {f~X(V") : V is an open set in Range (f) containing P,(y), f €
C(X, &")}. Then %" isa centered collection in X. Since y is not in 7" (X), it must
be the case that % ' =@. Let% be an ultrafilter of closed setsin X that contains
F'. % must be free; and so, there is a member f of C(X, &’) and an open
cover % of Range(f) such that {f~1(U) : U € %} refines {X — F: F ¢ #}.
Let V be an open set in Range(f) containing P,(y) such that V™ is a subset of
some member of . Then f~1(V") is not in %, which is a contradiction from
which the lemma follows.

LEMMA 2 [6, Theorem 18). If % is an open cover of the space X, then there
15 a discrete subset H of X such that

(1) {st(x,U) : x € H} covers X
and

(2) No member of U contains two points of H.

In the following theorem, #; will denote the class of regular metacompact
T';-spaces; #> will denote the class of regular subparacompact 7';-spaces;

and//fg =:/”1 U_/ﬂg

THEOREM. The following conditions on a normal Ti-space are equivalent:
(1) X 1s realcompact.
(2) X has property (x) and X can be embedded as a closed subspace in the
product of a collection of members of M.
(3) X has property (x) and if & is a free ultrafilter of closed subsets of X,
then there is a point finite open cover of X that refines (X — F: F € & }.

Proof. (1) = (2): This is obvious since every closed subset of a realcompact
space is realcompact and the real line is a member of .

(2) = (1): Let Z be a free z-ultrafilter in X. We will show that X is real-
compact by showing that there is a countable subcollection of 2 with empty
intersection.

Let # be an ultrafilter of closed subsets of X that contains Z. Since X
can be embedded as a closed subset of the product of a collection of members
of A3, by Lemma 1, there is a member M of #;, a map f taking X onto M, and
an open cover % of M such that {f~1(U) : U € %} refines {X — F: F ¢ % }.

Case 1. M is in #: Let %' be a point finite open refinement of % that
covers M. Applying Lemma 2, there is a discrete subset H of X such that

() {st(x, 1 (X)) : x € H} covers X and

(ii) no member of f~1(%') contains two points of H.

Let # be the subcollection of f~!(%’) consisting of all W which contain
a point of H. Now, since # is both point finite and infinite, it follows that
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the cardinality of # is the same as the cardinality of H; and so, there is a
one-to-one function ¢ from H to #'. For each F in %, let H(F) = {x € H :
¢(x) N F = @}. Clearly, {H(F) : F € %} has the finite intersection property;
and so, we may let ¢ denote an ultrafilter of subsets of H that contains
{H(F): F € #7}. Since, for each x € H there is an F, in # such that
ox) N F, = 0,24 must be a free ultrafilter in H. Thus, since H is real-
compact, there is a countable subcollection {Ki, Ks,...} of ¢ with N\ K; = 0.

Claim 1. If K € A, then there is a member F of % such that
F C U,ex(o(x)): To see that this is so, suppose otherwise; i.e., suppose that
there is a K in # such that X — U,cx(o(x)) is in % . Then H(X — U,ex
(¢(x))) is a member of ¢ that fails to intersect K which is a contradiction
and hence Claim 1 follows.

Claim 2. N1 ((Uzex; (0 (x))) = 0: To see that this is true, let y € X and
observe that there is a finite subset S of H such that ¢(x) contains y if and
onlyif x € S. Thus, since N\ K; = @, there is an integer # such that K, N S=0.
For that #, it must be the case that U,cx, (¢(x)) does not contain y.

Now, By Claim 1, for each integer # there is a member F, of % such that
Fo C Uzex, (¢(x)). Since X is normal, for each # there is a zero-set, Z,, in X
such that F, C Z, C Usex,(0(x)). {Z1, Zs, ...} is a subcollection of Z
with N Z; = 0.

Case 2. M is in Ms: Let# = \ U215, be a closed cover of M that refines
9 such that, for each 7, 5, is a discrete collection of sets. For each #, let
A= {fY(H):HcH,} and let # = U2+ H,. Then for each n, 4, is a
discrete collection of closed sets in X. Furthermore, if 7 is a positive integer
and K € 4, then K is not in % .

We have two cases to consider:

Subcase 1. There is an integer # such that \J K, isin % : Let 4 be anindexing
set for 5, so that we have %, = {H(a) : a € A}. We will view 4 as a topo-
logical space with the discrete topology. For each @ in 4, K (a¢) will denote the
set f~1(H(a)) so that A is also an indexing set for 2¢,. If B C A4, then let
K(B) = UK (@) and H(B) = UgegH(a). Let # = {B C A: K(B) € #}.
It is clear that & has the finite intersection property. Furthermore, since it is
true that if B C 4, then either K(B) € ¥ or K(4 — B) ¢ %, it follows
that & is an ultrafilter of subsets of 4. Note that if @ € 4, then K({a}) is
not in% . Thus, & is a free ultrafilter in 4. Since 4 has the same cardinality
as a discrete subset of X, it follows that 4 is realcompact; and so, there is a
countable subset {Bi, Bs, ...} of & with N B; = @. It follows that {K(B),
K(B.), ...} is a countable subset of & with empty intersection and {H (B,),
H(B,), ...} is also a centered collection of closed subsets of M with empty
intersection. It is true then that {M — H(B,), M — H(B,), ...} isa countable
open cover of X. Since M is subparacompact, M is countably metacompact;
thus, there is a point finite open cover {Ui, Us, ...} of M such that, for
each k, U, C (M — H(B;)). For each k, let V; = U;»:U;. For each k&, it
follows that N%_1H (B;) C f~1(Vy). Since X is normal, there is, for each k&,
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a zero-set Z, such that N'_.K(B,) C Z, C f~1(Vy). Thus, {Zy, Zs, .. .
is a countable subset of & with N Z, = @.

Subcase 2. For each #, it is true that \UJ, is not in & . In this case, for
each #, let F, be a member of &# that does not intersect \U.#,. Since X is
normal, there is, for each %, a zero-set Z, such that F, C Z, C X — UX,.
It follows that {Z;, Zs, ...} is a countable subcollection of Z with empty
intersection. This completes the proof that (2) implies (1).

(1) = (3): This is a corollary to Lemma 1.

(8) = (1): The argument for this implication is the same as that for Case 1
in the proof that (2) implies (1).

COROLLARY 1. Every normal subparacompact Ti-space with property (x) 1is
realcompact.

COROLLARY 2. (Moran [7]). Every normal metacompact T1-space with property
(*) 1s realcompact.

In view of our Theorem, two questions seem to be of interest:

Question 1. Is every normal subparacompact 7'1-space complete with respect
to a uniformity on the space? Indeed, must every normal Moore space be
complete with respect to some uniform structure?

Question 2. Must every metacompact normal 7i-space be complete with
respect to some uniform structure on the space?
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