CERTAIN SUBSETS OF PRODUCTS OF METACOMPACT SPACES AND SUBPARACOMPACT SPACES ARE REALCOMPACT

PHILLIP ZENOR

We will say that a space X has property (*) if and only if each discrete subset of X is realcompact; i.e., the cardinality of each discrete subset of X is nonmeasurable. In [8], Shirota shows that a completely regular T_1 -space X is realcompact if and only if X has property (*) and X is complete with respect to some uniformity. In [7], Moran, using measure theoretic techniques, shows that any normal metacompact T_1 -space with property (*) is realcompact.

Let \mathcal{M} denote the class of T_3 -spaces which are either metacompact or subparacompact. It is the purpose of this paper to establish the following result:

THEOREM. The normal space X is real compact if and only if X has property (*) and X can be embedded as a closed subspace in the product of a collection of members of \mathcal{M} .

Recall that a space X is *realcompact* if it can be embedded as a closed subspace in the product of a collection of copies of the reals. For basic theorems and notation concerning realcompact spaces and ultrafilters, the reader is referred to [3].

The space X is said to be *metacompact* if whenever \mathscr{U} is an open cover of X, there is a point finite open refinement of \mathscr{U}

A space is said to be *subparacompact* if whenever \mathscr{U} is an open cover of X, there is a refinement $\mathscr{H} = \bigcup_{i=1}^{\infty} \mathscr{H}_i$ of \mathscr{U} that covers X such that, for each i, \mathscr{H}_i is a discrete collection of closed sets. The name "subparacompact" is due to Burke [1]. In [5], McAuly shows that every semi-metric space is subparacompact and in [2] Creede shows that every semi-stratifiable space is subparacompact.

It should be pointed out that the normality condition of our Theorem cannot be removed since the space Ψ given in Exercise 51 of [3] is a completely regular Moore space that is not realcompact.

For convenience, if \mathscr{C} is a class of spaces and X is a space, then $C(X, \mathscr{C})$ will denote the class of continuous functions on X with range in \mathscr{C} . If f is a function, then $\operatorname{Range}(f)$ will denote the range of f.

LEMMA 1. Suppose that X is a T_1 -space and \mathscr{E} is a class of T_3 -spaces such that the topology on X is the weak topology induced by $C(X, \mathscr{E})$. Then X can be

Received August 25, 1971 and in revised form, October 28, 1971.

PHILLIP ZENOR

embedded as a closed subspace in the product of a collection of members of \mathscr{E} if if and only if it is true that, if \mathscr{F} is a free ultrafilter of closed subsets of X, then there is a member f of $C(X, \mathscr{E})$ and an open cover \mathscr{U} of $\operatorname{Range}(f)$ such that $\{f^{-1}(U) : U \in \mathscr{U}\}$ refines $\{(X - F) : F \in \mathscr{F}\}.$

Proof. Suppose that \mathscr{E}' is a collection of members of \mathscr{E} and T is a homeomorphism taking X onto a closed subspace of $\Pi \mathscr{E}'$. For each $E \in \mathscr{E}'$, P_E will denote the projection of $\Pi \mathscr{E}'$ onto E; thus, for each $E \in \mathscr{E}'$, $P_E \cdot T$ is in $C(X, \mathscr{E})$. Let \mathscr{F} be a free ultrafilter of closed subsets of X. For each E in \mathscr{E}' , let \mathscr{F}_E denote the set, $\{H : H \text{ is a closed subset of } E \text{ and } (P_E \cdot T)^{-1}(H) \in \mathscr{F}\}$.

Claim 1. If $E \in \mathscr{E}'$, then there is at most one point in $\bigcap \mathscr{F}_E$: since E is regular, if there were two points p and q in $\bigcap \mathscr{F}_E$, then there would be open sets U and V in E containing p and q respectively such that $U^- \cap V^- = \emptyset$; thus, $(P_E \cdot T)^{-1}(U^-)$ and $(P_E \cdot T)^{-1}(V^-)$ would be disjoint members of \mathscr{F} , which would be impossible.

Claim 2. Suppose that $E \in \mathscr{E}'$ and x is a point of E such that if U is an open set in E that contains x, then U^- is $\inf \mathscr{F}_E$. Then x is in each member of \mathscr{F}_E . To see that this is true, suppose the contrary; i.e., suppose that there is a member H of \mathscr{F}_E that does not contain x. By the regularity of E, there is an open set U containing x such that $U^- \cap H = \emptyset$, but this is impossible since \mathscr{F}_E is centered.

Claim 3. There is a member E of \mathscr{E}' such that $\bigcap \mathscr{F}_E = \emptyset$: suppose otherwise. Then there is a point x of $\prod \mathscr{E}'$ such that, for each E, $P_E(x) = \bigcap \mathscr{F}_E$. We will show that x is a limit point of T(X); and so, $T^{-1}(x)$ will be a member of \mathscr{F} , which will be a contradiction. To this end, let \mathscr{E}'' be a finite subset of \mathscr{E}' and for each E in \mathscr{E}'' , let U_E be an open set in E containing $P_E(x)$. It will suffice to show that there is a point y of X such that $P_E(T(y))$ is in U_E for each E in \mathscr{E}'' , let V_E be an open set in E containing $P_E(x)$ such that $V_E \subset U_E$. Then

$$\bigcap_{E \in \mathscr{E}''} (P_E \cdot T)^{-1} (V_E^{-}) \neq 0;$$

and so, let y be a point of this intersection. It must be the case that $P_E(T(y))$ is in U_E for each E in \mathscr{E} ".

Let *E* be a member of \mathscr{E}' such that $\bigcap \mathscr{F}_E = \emptyset$. According to Claim 2, there is an open cover \mathscr{U} of *E* such that $\{(P_E \cdot T)^{-1}(U^-) : U \in \mathscr{U}\}$ refines $\{X - F : F \in \mathscr{F}\}$, which completes this part of the proof.

Suppose now that it is true that: if \mathscr{F} is a free ultrafilter of closed sets in X, then there are a member f of $C(X, \mathscr{E})$ and an open cover \mathscr{U} of Range(f) such that $\{f^{-1}(U) : U \in \mathscr{U}\}$ refines $\{X - F : F \in \mathscr{F}\}$. Let \mathscr{E}' be a collection of members of \mathscr{E} such that : (i) $C(X, \mathscr{E}')$ determines the topology on X and (ii) if \mathscr{F} is a free ultrafilter of closed sets in X, then there are a member f of $C(X, \mathscr{E}')$ and an open cover \mathscr{U} of Range(f) such that $\{f^{-1}(U) : U \in \mathscr{U}\}$ refines $\{X - F : F \in \mathscr{F}\}$. Let T be the natural embedding of X into

$$\prod_{f \in C(X, \mathscr{E}')} \operatorname{Range}(f)$$

given by $P_f(T(x)) = f(x)$ (see the Embedding Lemma, [4, p. 116]). Let y be a limit point of T(X) in

$$\{\prod_{f\in C(X,E')} \operatorname{Range}(f)\} - T(X).$$

Let $\mathscr{F}' = \{f^{-1}(V^{-}) : V \text{ is an open set in Range } (f) \text{ containing } P_f(y), f \in C(X, \mathscr{E}')\}$. Then \mathscr{F}' is a centered collection in X. Since y is not in T(X), it must be the case that $\bigcap \mathscr{F}' = \emptyset$. Let \mathscr{F} be an ultrafilter of closed sets in X that contains \mathscr{F}' . \mathscr{F} must be free; and so, there is a member f of $C(X, \mathscr{E}')$ and an open cover \mathscr{U} of Range(f) such that $\{f^{-1}(U) : U \in \mathscr{U}\}$ refines $\{X - F : F \in \mathscr{F}\}$. Let V be an open set in Range(f) containing $P_f(y)$ such that V^{-} is a subset of some member of \mathscr{U} . Then $f^{-1}(V^{-})$ is not in \mathscr{F} , which is a contradiction from which the lemma follows.

LEMMA 2 [6, Theorem 18]. If \mathscr{U} is an open cover of the space X, then there is a discrete subset H of X such that

- (1) $\{st(x, \mathcal{U}) : x \in H\}$ covers X and
 - (2) No member of \mathscr{U} contains two points of H.

In the following theorem, \mathcal{M}_1 will denote the class of regular metacompact T_1 -spaces; \mathcal{M}_2 will denote the class of regular subparacompact T_1 -spaces; and $\mathcal{M}_3 = \mathcal{M}_1 \cup \mathcal{M}_3$.

THEOREM. The following conditions on a normal T_1 -space are equivalent:

- (1) X is realcompact.
- (2) X has property (*) and X can be embedded as a closed subspace in the product of a collection of members of \mathcal{M}_3 .
- (3) X has property (*) and if \mathscr{F} is a free ultrafilter of closed subsets of X, then there is a point finite open cover of X that refines $\{X F : F \in \mathscr{F}\}$.

Proof. (1) \Rightarrow (2): This is obvious since every closed subset of a realcompact space is realcompact and the real line is a member of \mathcal{M}_3 .

 $(2) \Rightarrow (1)$: Let \mathscr{Z} be a free z-ultrafilter in X. We will show that X is realcompact by showing that there is a countable subcollection of \mathscr{Z} with empty intersection.

Let \mathscr{F} be an ultrafilter of closed subsets of X that contains \mathscr{Z} . Since X can be embedded as a closed subset of the product of a collection of members of \mathscr{M}_3 , by Lemma 1, there is a member M of \mathscr{M}_3 , a map f taking X onto M, and an open cover \mathscr{U} of M such that $\{f^{-1}(U) : U \in \mathscr{U}\}$ refines $\{X - F : F \in \mathscr{F}\}$.

Case 1. M is in \mathcal{M}_1 : Let \mathcal{U}' be a point finite open refinement of \mathcal{U} that covers M. Applying Lemma 2, there is a discrete subset H of X such that

(i) $\{st(x, f^{-1}(\mathcal{U}')) : x \in H\}$ covers X and

(ii) no member of $f^{-1}(\mathcal{U}')$ contains two points of H.

Let \mathscr{W} be the subcollection of $f^{-1}(\mathscr{U}')$ consisting of all W which contain a point of H. Now, since \mathscr{W} is both point finite and infinite, it follows that the cardinality of \mathscr{W} is the same as the cardinality of H; and so, there is a one-to-one function φ from H to \mathscr{W} . For each F in \mathscr{F} , let $H(F) = \{x \in H : \varphi(x) \cap F = \emptyset\}$. Clearly, $\{H(F) : F \in \mathscr{F}\}$ has the finite intersection property; and so, we may let \mathscr{K} denote an ultrafilter of subsets of H that contains $\{H(F) : F \in \mathscr{F}\}$. Since, for each $x \in H$ there is an F_x in \mathscr{F} such that $\varphi(x) \cap F_x = \emptyset, \mathscr{K}$ must be a free ultrafilter in H. Thus, since H is realcompact, there is a countable subcollection $\{K_1, K_2, \ldots\}$ of \mathscr{K} with $\cap K_i = \emptyset$.

Claim 1. If $K \in \mathscr{H}$, then there is a member F of \mathscr{F} such that $F \subset \bigcup_{x \in K} (\varphi(x))$: To see that this is so, suppose otherwise; i.e., suppose that there is a K in \mathscr{H} such that $X - \bigcup_{x \in K} (\varphi(x))$ is in \mathscr{F} . Then $H(X - \bigcup_{x \in K} (\varphi(x)))$ is a member of \mathscr{H} that fails to intersect K which is a contradiction and hence Claim 1 follows.

Claim 2. $\bigcap_{i=1}^{\infty} ((\bigcup_{x \in K_i} (\varphi(x))) = \emptyset$: To see that this is true, let $y \in X$ and observe that there is a finite subset S of H such that $\varphi(x)$ contains y if and only if $x \in S$. Thus, since $\bigcap K_i = \emptyset$, there is an integer n such that $K_n \bigcap S = \emptyset$. For that n, it must be the case that $\bigcup_{x \in K_n} (\varphi(x))$ does not contain y.

Now, By Claim 1, for each integer *n* there is a member F_n of \mathscr{F} such that $F_n \subset \bigcup_{x \in K_n} (\varphi(x))$. Since X is normal, for each *n* there is a zero-set, Z_n , in X such that $F_n \subset Z_n \subset \bigcup_{x \in K_n} (\varphi(x))$. $\{Z_1, Z_2, \ldots\}$ is a subcollection of \mathscr{Z} with $\bigcap Z_i = \emptyset$.

Case 2. *M* is in M_2 : Let $\mathscr{H} = \bigcup_{i=1}^{\infty} \mathscr{H}_i$ be a closed cover of *M* that refines \mathscr{U} such that, for each i, \mathscr{H}_i is a discrete collection of sets. For each n, let $\mathscr{H}_n = \{f^{-1}(H) : H \in \mathscr{H}_n\}$ and let $\mathscr{H} = \bigcup_{n=1}^{\infty} \mathscr{H}_n$. Then for each n, \mathscr{H}_n is a discrete collection of closed sets in *X*. Furthermore, if *n* is a positive integer and $K \in \mathscr{H}_n$, then *K* is not in \mathscr{F} .

We have two cases to consider:

Subcase 1. There is an integer n such that $\bigcup K_n$ is in \mathscr{F} : Let A be an indexing set for \mathscr{H}_n so that we have $\mathscr{H}_n = \{H(a) : a \in A\}$. We will view A as a topological space with the discrete topology. For each a in A, K(a) will denote the set $f^{-1}(H(a))$ so that A is also an indexing set for \mathscr{K}_n . If $B \subset A$, then let $K(B) = \bigcup_{a \in B} K(a) \text{ and } H(B) = \bigcup_{a \in B} H(a). \text{ Let } \mathscr{B} = \{B \subset A \colon K(B) \in \mathscr{F}\}.$ It is clear that \mathscr{B} has the finite intersection property. Furthermore, since it is true that if $B \subset A$, then either $K(B) \in \mathscr{F}$ or $K(A - B) \in \mathscr{F}$, it follows that \mathscr{B} is an ultrafilter of subsets of A. Note that if $a \in A$, then $K(\{a\})$ is not in \mathcal{F} . Thus, \mathcal{B} is a free ultrafilter in A. Since A has the same cardinality as a discrete subset of X, it follows that A is realcompact; and so, there is a countable subset $\{B_1, B_2, \ldots\}$ of \mathscr{B} with $\bigcap B_i = \emptyset$. It follows that $\{K(B_1), \ldots\}$ $K(B_2), \ldots$ is a countable subset of \mathscr{F} with empty intersection and $\{H(B_1), \ldots\}$ $H(B_2), \ldots$ is also a centered collection of closed subsets of M with empty intersection. It is true then that $\{M - H(B_1), M - H(B_2), \ldots\}$ is a countable open cover of X. Since M is subparacompact, M is countably metacompact; thus, there is a point finite open cover $\{U_1, U_2, \ldots\}$ of M such that, for each k, $U_k \subset (M - H(B_k))$. For each k, let $V_k = \bigcup_{j>k} U_j$. For each k, it follows that $\bigcap_{j=1}^{k} H(B_j) \subset f^{-1}(V_k)$. Since X is normal, there is, for each k, a zero-set Z_k such that $\bigcap_{j=1}^k K(B_j) \subset Z_k \subset f^{-1}(V_k)$. Thus, $\{Z_1, Z_2, \ldots\}$ is a countable subset of \mathscr{Z} with $\bigcap Z_i = \emptyset$.

Subcase 2. For each n, it is true that $\bigcup \mathscr{H}_n$ is not in \mathscr{F} . In this case, for each n, let F_n be a member of \mathscr{F} that does not intersect $\bigcup \mathscr{H}_n$. Since X is normal, there is, for each n, a zero-set Z_n such that $F_n \subset Z_n \subset X - \bigcup \mathscr{H}_n$. It follows that $\{Z_1, Z_2, \ldots\}$ is a countable subcollection of \mathscr{L} with empty intersection. This completes the proof that (2) implies (1).

 $(1) \Rightarrow (3)$: This is a corollary to Lemma 1.

 $(3) \Rightarrow (1)$: The argument for this implication is the same as that for Case 1 in the proof that (2) implies (1).

COROLLARY 1. Every normal subparacompact T_1 -space with property (*) is realcompact.

COROLLARY 2. (Moran [7]). Every normal metacompact T_1 -space with property (*) is realcompact.

In view of our Theorem, two questions seem to be of interest:

Question 1. Is every normal subparacompact T_1 -space complete with respect to a uniformity on the space? Indeed, must every normal Moore space be complete with respect to some uniform structure?

Question 2. Must every metacompact normal T_1 -space be complete with respect to some uniform structure on the space?

References

- 1. D. K. Burke, On subparacompact spaces, Proc. Amer. Math. Soc. 23 (1969), 655-663.
- G. Creede, Semi-stratifiable spaces, Topology Conference, Ariz. State Univ., Tempe, Ariz. (1967), 318-324.
- 3. L. Gillman and M. Jerison, Rings of continuous functions (VanNostrand, Princeton, 1960).
- 4. J. Kelley, General topology (VanNostrand, Princeton, 1955).
- L. F. McAuley, A note on collectionwise normality and paracompactness, Proc. Amer. Math. Soc. 9 (1958), 796-799.
- R. L. Moore, Foundations of point set topology, Amer. Math. Soc. Col., Publ. XIII, New York, 1932.
- 7. W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. III 20 (1970), 507-524.
- 8. T. Shirota, A class of topological spaces, Osaka J. Math. 4 (1952), 23-40.

Auburn University, Auburn, Alabama