A LOWER BOUND FOR THE SCHOLZ-BRAUER
PROBLEM

KENNETH B. STOLARSKY

1. Introduction. In (6) Scholz asked if the inequality
(1.1) 20— 1) =g+1(g — 1

held for all positive integers ¢, where I(z) is the number of multiplications
required to raise x to the nth power (a precise definition of /(%) in terms of
addition chains is given in § 2). Soon afterwards, Brauer (2) showed, among
other things, that I/(n) ~ (log #)/(log 2). This suggests the problem of
calculating

log 2

log g

It can be deduced from (2) that 6 < 1. If 6 < 1, (1.1) follows immediately
for infinitely many ¢. My main result, Theorem 5 of § 4, merely shows that 6
is slightly larger than %. Actually, I know of no case where (1.1) is not in
fact an equality; a tedious calculation verifies this for 1 < ¢ < 8.

The usual approach to (1.1) is to look first for a formula giving I(g) in
terms of the binary representation of g. Write ¢ = 2"t 4 272 4 | .| 4 2%,
n>n>...>n;,20, and B(q) =s. Clearly, if B(qg) =1, l(q) = n,
while if B(q) = 2, Utz (8) has shown that I{q) = n, + 1. If B(q) = 3,
Gioia, Subbarao, and Sugunamma (3) have shown that I(g) = n; + 2, while
if B(gq) = 4 they have shown that I(g) = #, + 2 or #; + 3, and that both
cases occur. In fact, they show that if #; — n, = 3 — n4, or By — 0y =
n3 — n4+ 1, or w3 — ny = 3 and n3 — n, = 1, then the former case occurs;
however, there is still another case here, namely n; — n, =5, #y — n3 = 1,
and n; — n4 = 1. I conjecture that aside from these cases, B(g) = 4 implies
I(q) = n1 + 3.

By means of such formulae, (1.1) was shown to hold for B(g) = 1, 2in (8),
and for B(g) = 3 in (3). A very short proof of (1.1) for B(gq) < 3, based on
(2), was given by Whyburn (9). If my above conjecture were true, his method
would also prove (1.1) for B(q) = 4. However, Hansen (4, Satz 1) shows that
Whyburn’s method fails to decide (1.1) for infinitely many g.

In § 2 the necessary definitions are developed, particularly the notion of a
component of an addition chain. In § 3 the structure of such components is
analyzed, and lower bounds for 6 are given in § 4.

(1.2) 6 = liminf(}(2 — 1) — ¢) -
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2. Definitions.

Definition 1. A sequence {a;}i-o is called an addition chain (AC) for 7 of
length 7 if 1= <a1<...<a =n and a; =a;+ a; for 1 7 =7,
with 0 = j, k < 4. For fixed n, [(n) is the smallest possible value of 7. {a}2,
is said to be an (infinite) AC if {a,}7_, is an AC for a, of length », » = 1.

Definition 2. A sequence of positive integers {b;}7_; is said to be of type I if
forl=s:i=sj=sr—1,
(2.1) 2=, < by S 20y

It is said to be of type I if for j = 0, b;41 > b, and for j = 1 either b;,, = 2b;
or bj+1 é bj + bj._.l.

Definition 3. For x > 0 let L(x) = [(log x)/(log 2)], where [y] denotes the
greatest integer less than or equal to y. For integers ¢, let B(g) be the number
of 1’s in the binary representation of ¢. Let (M, N) = ¢(M, N; 1, 0) and
o(M) = ¢(M,0), where

M
o(M,N;cy,co) = p 2%,

j=N

Clearly, for positive integers ¢ and b,

(2.2) B(a+b) £ B(a) + B(b) and B(ab) = B(a)B(b),
(2.3) B(a) = L(a) + 1,

and

(2.4) B(o(M,N;cy,c)) = M — N+ 1.

Definition 4. Given a sequence of positive numbers {b;}, let e; = 7 — L(b,).
Clearly, e; = 0 for sequences of types I and II. Let

(2.5) C;=C;({b}) = {bie; = j}.

The % ; are said to be the components of the sequence. Conversely, any
sequence for which L(b;41) — L(b;) = 1 is said to be a component.

One easily sees that every AC is of type II, and that the components of a
sequence of type II are sequences of type I. Conversely, it can be shown thata
sequence of type I is almost a component in the sense that for infinitely many
relatively prime integers m, L(bjyim) — L(bym) = 1,7 =1,...,r — 1. Itis
important to note that if #» € € ;(&), & an AC, then I/(n) < L(n) + j.
Conversely, if I(n) = L(n) + j, then n € € ;(&/) for some AC 7.
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Definition 5. The word A = II}_; S, is said to correspond to the AC

oA = {ai};=0

if the letter .S; is given by:

1) S;=Hp, ifa;=a;+a;-, 1> k22

2) S;=Dyifa; = 2a;4, k = 2;

@3) S;=Fifa;=a;1+ ajo11, B 2 1;

4) S;=Difa; = 2a;1.
Write 4 & &, S; <> a;, S;S;41 > aj, ajy1, ..., etc. A and & shall be used
interchangeably, since either denotes the addition chain unambiguously.
Furthermore, it will be convenient to let B be a variable letter which never
equals D.

For example, every AC 4 begins with D? or DF,. If A = DF\F:(F3F,)",
then €y D, €, F1Fy, and €, F3Fy, 2 <1 =<n+ 1. Words are
always assumed to be in reduced form; e.g., DD?F;F; is always written
D3F,2. Also, since an AC is strictly monotonic, certain combinations of letters
such as DD,, F.1H,,;, and DH,,;, k = 2, can never occur.

I

Definition 6. Given words W and W', W’ is said to be an internal segment of
W if there are words W, and W, (possibly empty) such that W = W, W'W.. If

N i
(2.6) w=1IlS, and V=[] S,D", iZN,mz=0,
j=1

j=1

T is said to be a truncation of W; if the number of letters B in W exceeds the
number in V, the truncation is said to be proper.

3. The structure of components. The main result of this section,
Theorem 1, classifies all possible combinations of letters which can occur in a
component. Roughly, it states that long components consist mainly of D’s.
A different result of this sort is used in (4): if ¢ is the last integer of an AC 4,
then there are at most 4B(q) — 4 letters in A other than D.

Lemma 1. If {b.}%=0 2s of type 11, and a component, then b;i1 = 2b; for
some 7,0 = j = 3.

Proof. Otherwise, bl =< 2b0 - ]., bz =< 3bo - 1, b3 = 5b0 —_ 2, b4 é Sbo - 3,

and L(b,) ~ L(by) £ 3, a contradiction.

Lemma 2. If {b,} 2, is of type 11, and a component, and by = 2b,, then

b1 # 2b; can occur at most twice for j = 1.

Proof. If b;11 # 2b; has three solutions for j = 1, then b,b,7! is bounded by
one of the following four sequences, where P 2 1,0 =2 1, R = 2:

(3.1) 1,2,...,29 29 4 2971 2041 | 201 90+2,

(3.2) 1,2,...,27,28 4 2P-1 2P+1 4 2P—1 2@+l 4 2Q-1
20+1 4 2@ 4 2@-1 4 20-2 < 2@+2,
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(3.3) 1,2,...,2%, 27 4 21 29 4 2¢-1 2Q+1 | 2@-2
2Q+1 _|_ 29 + 20—1 + 20—2

34) 1,2,...,2°F, 27 f 2Pt 2F 4 2R-1 QR+l 4 2B-2 |
2Q+1 4 2Q-2 2Q+1 | 2@ | 20-2 4 20-3 < 9@+2,

In each case, L(bgys) — L(bo) = Q + 2, a contradiction.

Henceforth, given an AC 4, let W = W,(4) & €, = € ). Clearly,
W = D™ m = 1, for 2+ = 0 while W cannot begin with D if 7 > 0.

IIA

20+2;

LEMMA 3. €, contains at most three internal segments of the form D™, m = 1;
if three occur, € ; is terminated by the last.

Proof. Say that the word W <> % ; has an internal segment

(35) W’ = Dman oo BlTIsz.le o e Bz,z.DmsBs,

where mq, ms, ms, 71, 72 2 1 and B;; # D. Let ¢ be the number corresponding
to the last letter of the AC before W', and ¢, = 2¢y, ¢3, . . ., ¢; the numbers
corresponding to the letters of W’. If W’ is replaced by

(3.6) W' = D™ FD™+1i—1F Dmstra—1 [

let the corresponding numbers be dy = ¢1 = 2¢o, ds,...,d, Here, f =
my + me + ms + r1 4+ re 4+ 1. Clearly, d,; = ¢, and the d; form the sequence
B.7) 2oy ..., 2Mcy, 2171 B¢y, L., 2MEMeATIm2 L By QMmatmetTI=8 Gy

2775 . 9¢y, 275 . 27 ¢,.

However, by (2.1), 271, < ¢; = d, = 2/78. 27¢,, a contradiction.
Next, denote the numbers of € ; by by, b, b, . .. .

LEMMA 4. A letter of € ; can be D, or Hy,,, k = 2, only if it corresponds to
b1 or bz.

Proof. Otherwise, € ; would not be of type I.
It now follows from the above lemmas that W<« % ;, ¢ > 0, has one of the
two forms (g; = 0)
73 g5
(3.8) B%, B D[] F,,D"*[] F,,D%,
i=1 j=1
where 1 £ g1 4,1 < gy, and g3 + g5 = 2.

LemMA 5. If {ai} =, s an AC, L(a;y1) — L(a;) = 1 for j =4, 28 < a; <

2P + 282 4+ 2P~ and a; + a1 < 2FF, then a4 = 20y for § = 1.

Proof. Clearly, 2741 < @44y = 2a; < 2841 + 2P-1 4 2P=3 and hence a; +
@1 < 2F*2, thus, a2 = 2a,:41, and so forth.
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Theorem 1 can now be stated for W<« %, ¢ > 0, using the notation of
Definitions 5 and 6.

TueoreM 1. W is a truncation of an element of one of the following seven
mutually exclusive classes of words, where kB = 1 and m; = 0:

(1) BBF,F\D™y;

(2) BBF,D™F, D™ m; =
(3) BBD™F,F,D™, m; =
(4) BBD™ F\D™F\ D™, my, Mg =
(5) BDF,D™F D™, m; = 1,k =
(6) BD™F,F\D™*, mi 2 1;

(7) BD™F,D™F.D"s, my, my = 1.

1;
1;
2

The proof requires four more lemmas. First, set « = L(b;); then (recall
Definition 3)

(3.9 b1 £o(a) and by < o(a + 1).

LemMmA 6. (a) If g1 = 4, then W belongs to class (1). (b) If g1 = 3 and
g3 = 1, then W belongs to class (2).

Proof. In each case, b3 < by + by = 222 + o(a) by (3.9). In (a), by <
by 4+ by < 2213 4 g(a) < 22+3 4 20%+1; therefore, W has the form BBF,F,.D™,
m =0, by Lemmas 4 and 5. If ¥ =2, 04 b3+ b1 S o(a+ 2) < 2213, a
contradiction; hence, W belongs to class (1). In (b), bsy,, = 272b5 < 292+at+2
o(e + g2). Now Fy, k = 2, cannot follow D?2since then bayy, < o(g2 + a + 2),
a contradiction. Hence, F; follows D%, by, < 29243 4 o(gy + a — 1),
and by Lemma 5 only D’s can follow. Thus, W belongs to class (2), and the
proof is completed.

If g; = 3 and g; = 0, the reasoning of the proof of Lemma 6(b) shows
that either W belongs to (2), or else is a truncation of a word of (2). Thus,
we need only consider the cases where g; < 2.

LemMMa 7. W = DF,.D™Fy, m = 0, k' = 2, is not an internal segment of W.

Proof. This is clear if 2 = 0. Otherwise, let ¢o be the number corresponding
to the last letter of the AC before W, and ¢1 = 2¢y, ¢s, . . . , Cmt3 the numbers
corresponding to the letters of W’. If W’ is replaced by W' = DF\D™F, let
the corresponding numbers be d; = ¢1 = 2¢o, ds, . . ., dpnys. Clearly, dpy3 =
¢mis and the d; form one of the sequences 2¢, 3¢o, 4¢o; 2¢o, 3co, 2+ 3¢o, Sco;
2¢o, 3¢o, 2+3co,...,2™ 3¢y, 2™ %-15¢cy depending upon whether m = 0,
m =1, or m = 2, respectively. However, for each of these, by (2.1),
2m+200 < Cpas = dpys, a contradiction,

LeMMA 8. If g1 = 2,gs=1,g5 = 1, and g4 2 1, then F, = F,.
Proof. Say k1 = 2. If go =1, (3.9) vyields b3 £ o(a 4+ 2), bs £ b5+ b, =

20+3 4 g(a), and by < 20+ + o(a + 1) < 204 4 2242, Now b5 + by < 20+5;
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thus, by Lemma 5 only D’s can follow b5 a contradiction since g5 = 1. If
g2 = 2, then W' = D?F, D?F, is an internal segment of W; by Lemma 7,
W' = D*F, D?F,. The argument used in Lemmas 3 and 7 (take W' =
D?F,D%F,) yields the contradiction 29t+3¢, < ¢5, 44 = dy, 44 = 29471 15¢,.

From Lemmas 7 and 8, and the fact that g; 4+ g5 < 2, it follows that if
g1 = 2, W either belongs to (3) or (4), or is a truncation of a word of (3).
Thus, it is now only necessary to consider the case g; = 1. If one of g;, g4 or g;
is 0, W belongs to (6) or is a truncation of a word of (6); this follows from
Lemma 7.

LEMMA 9. If gr =1, g5 =1,g.2 1, g5 = 1, and k1 = 2, then g, = 1.
Proof. 1f g, = 2, (3.9) vields by < ola 4+ 2), by < by + by < 2455 + o(a),

by £ 2t + g(a+ 1) < 204 22+2 and by 4+ b; < 22*3, Thus, by Lemma 5,
only D’s can follow b;, a contradiction, since g5 = 1. For g, = 3 the proof is
essentially the same.

Now by Lemma 7, if W satisfies the hypothesis of Lemma 9, it belongs to
(5). The only remaining caseis g1 = 1, gz =1, g4 2 1, g5 = 1, k; = 1; such
a W clearly belongs to (7).

This completes the proof of Theorem 1.

The structure of %y and %1 is particularly simple; as mentioned before,
%o« D™, m = 1, while €, corresponds to a truncation of a word of class (1)
or (6). In fact, the possibilities in the former case are (m, ms = 0,k = 1) F,D™1,
F FyD™, F.DyD™, FiF,D™, Fi3D™i while in the latter they are FiDF,D™1,
my = 0, and FiD™F.D™, m; = 1. (3, Lemma 3) follows from this and the
discussion after Definition 4.

THEOREM 2. There exist words W belonging to each of the seven classes of
Theorem 1.

Proof. Let m = 0. The % : of the AC D2F,F;F;3D™ belongs to (1). The
proof is completed by listing the remaining classes together with an AC whose
% s belongs to that class.

(2) D*F\F3;DFsF*DF,D™;

(3) D2F1F3DF5F1DF2F1DM;

(4) D*F1F3DFsF\D?*F,DF,D™,;

(5) D*F1F;DF;DF,DF.D™,;

(6) D*F1F3;DFsDF,F,.D™;

(7) D*F\F3DFsDF\DF,D™.

4, Lower bounds. From the remarks after Definition 4, one easily
deduces the following result.

LemMa 10. If B(¢;) S C-R, C> 0, R>1,forall c; € €, < A, where A
varies over all addition chains, then
log B(n) log CR

log R log R °

(4.1) I(n) > L(n) +
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This suggests the following problem: if ¢; € € ; £ A, where 4 is an infinite
addition chain, how rapidly can B(c;) grow with ¢? The example

2n+1

4.2) 4 = D] FeD
n=0

shows that B(c;) = 2% is possible; I know of no case where B(c;) grows more
rapidly. If the hypothesis of Lemma 10 held with C = 1, R = 2, it would
follow that § = 1.

THEOREM 3. 6 = 1.

Proof. In any AC {a;}, B(e;) = B(aj-1) if aj <> D. By Theorem 1, %,
contains at most four non-D’s; thus, the hypothesis of Lemma 10 holds with
C=1R =24

THEOREM 4. § = 1.

A preliminary result of independent interest will be obtained first. As in § 3,
let by, by, bs, ... denote the elements of %, b, being the last of these. Let
M = max B(a;), where a; varies over the elements of the AC which precede
by. Let (1), ..., (7) denote the word classes of Theorem 1, and let « be as in
(3.9). If B(b,) = RM, we say that R is attained if for every e¢ > 0 there
exist ACs such that B(b,)/M > R — .

LemMmA 11. Abbreviate the statement “If € ,<> W € (s), then b; < uyp
bjr1 = ug, B(by,) = RM, and R is attained” by (s); j; u1, u2; R. Then
(1); 3; 2272 + g(a), 2#F% + o(a); 5;
(2); my 4+ 3; 20t™1+2 + g(a + my), 20t™+3 + g(a + my — 1); 8;
(3); my + 3; 22F™MF2 4 g (a + my), 22" + o (a + my); 6;
(4)' mi + Mo + 3; Qa+tmy+ma+t2 + O'(a + o _I_ ’”12), Qat+my+ma+3
+ ola + my + my — 1); 6;
(5); my + 3; 22t™t2 4 g(a + my), 20t + o (a + my — 1); 6;
(6); my + 2; 2¢t™+l 4 g(a + my — 1), 20t™+2 + g(a + my — 1); 4;
(7); my+ my + 2; 2eF™tmetl L g(a + my + my — 1), 2eFmrtmet2
+ o(a + my + m, — 2); 4.

LEMMA 12. If W €, is a proper truncation of a word belonging to one of the
seven classes, then B(b,) < 6M, and for W = BBD™ F.D™, the bound 6
s attained.

Only part of the first two statements of Lemma 11 will be proved; the
remainder of Lemmas 11 and 12 is of the same nature, and in fact easier.
The bounds on by, b,,1 are almost immediate from (3.9).

Given numbers ¢/ < ... < a/, B(a/) = M, 1 < i < s, it is quite easy to
see that there exists an AC 4 = {a,} containing the a; such that B(a;) < M.
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For the first statement of Lemma 11 let s = 3, and for a3z > as > a; let
ay = g, 0; 6, 0), @ = o(as, az) + a1, 0; 6, 2), a3’ = o(as, a2) +
o (a1, 0; 6, 4). Define z by

-1
A = U ng

j=0
and form ¥, by taking b; = as’ + a1/, bs = by + a)/, bs = by + bs, and
b4 = b3+ b2 = 2a3+3 + 0'((!3 - 1, (7} + 3) + 2a2+1 + 2‘12 + 0'(6(11 + 5, 0) -
o(a1, 0; 6, 2). By letting a1, as, a; — 00 under the condition az/6 > a; >
az — ay > 6 (say), it is easily seen by (2.4) that for any ¢ > 0 there is an 4
such that B(a) £ M for a € €, j < 1, and B(bs) > (5 — €)M; hence, the
bound 5 is attained. On the other hand, it is clear that B(b;) < 2M and
B(by) = 3M. Write by = by + x. If x # by, then B(x) £ M; thus, by (2.2),

B(bsgm) = B(bs) = B(bs + b2) = B(2b2 + x) = B(b2) + B(x) = 4M.

If x = b;, there are two cases to consider: B(by) < 2M and B(b,) > 2M.
In the first of these, B(baim,) < B(bs) + B(b1) < 4M, while in the second,
b, = b1 + v, where B(y) = M; therefore, again by (2.2),

B(baymy) = B(bs) = B(bs + b2) = B(2bs + b1) = B(3b1 + 2y)
< B(3)B(b1) + B(y) = 5M.

Hence B(b,) = B(baym,) < 5M.

For the second statement of Lemma 11 proceed as above with s = 4,
ag > ag > al, al’ = 0'(0[1, O, 8, 0), (1/2, = 0'(&3, az) + 0'(0[1, 0; 8, 2), (13/ =
0‘(0[3, 0(2) -+ 0’(0(1, O; 8, 4:), a,4' = 0'(0[3, 0(2) + 0'(0(1, O; 8, 6), bl = 04/ + (11,,
bz = bl -+ (12/, b3 = bz -+ 613,, by = 2b3, and bs = b4 + b;; = Qastd -+
o(as, ag + 4) + 22242 4 2e2+1 | a2 | ¢(8a; + 7, 0) to show that the bound
8 is attained. On the other hand, B(b;) < 2M and B(b;) < 3M. There are
two cases to consider: (1) B(d:) > 2M and (2) B(b;) < 2M. In (1),
by = by + x, where B(x) = M. If by = b, + vy, where B(y) = M, then
B(bs) £ B(bi + x + y) < 4M; otherwise, b3 = by + b; and B(b;) =
B(2b; + x) < 3M. In (2), B(b;) < 4M obviously holds. Now since only one
non-D (at F;) remains, B(b,) < 8.

By Lemmas 11 and 12, the hypothesis of Lemma 10 holds with C = 1,
R =8.

This completes the proof of Theorem 4.

THEOREM 5. 6 = 2 - (log 2/log 48) > 1.

Proof. It easily follows from the second statement of Lemma 11 that if
A =\ %,, €:and € ;1 cannot both be words of (2); thus, B(c;), ¢; € €,
grows at most like (6 - 8) %2,

More careful use of Lemmas 11 and 12 would probably yield a larger lower
bound for 6.
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Note added in proof. A much more extensive bibliography will be found in
D. E. Knuth’s book (The art of computer programmaing, Vol. 2, Addison-Wesley,
Reading, Massachusetts, to appear) along with numerical tables of I(n), a
proof of the conjecture at the end of the second paragraph of § 1, and related

results.
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