Cosmi c String s and Galax y Formatio n

Neil Turok

Department of Theoretical Physics Imperial College London SW7 2BZ, England

The hot big bang theory of the early universe is **rather well established . Among its successful prediction s** are the Hubble expansion, the microwave background **radiation and the abundance s of the light elements . It also** fits in rather nicely with ideas from particle physics. **According to these ideas (which are firmly based on experiment**) at high energies particle interactions become more symmetrical and the apparently complicated particle spectrum today becomes very simple. It is an appealing **notion that such a state of high symmetry was actually** realised in the very early universe at very high **temperatures , and the symmetry was broken as the univers e expanded and cooled ¹ .**

However we know that the hot big bang theory is incomplete without a source of perturbations . We know from the observed isotropy of the microwave background the the **univers e was very isotropic and (unless we are very special) homogeneou s early on, but obviously some perturbations were essential to produce the structure we see today.**

The recent observations have underlined this **fairly dramatically . For example there appear to be giant** "filaments" i.e. roughly linear overdense regions in the **distributio n of galaxie s about 100 h" ¹ Megaparsec s long and 5 h - 1 M p c across ² , large "voids " i.e. region s nearly empty of bright galaxies 60 h"*1 Mpc in diameter ³ and in mor e** complete deep surveys most galaxies appear to lie on the surfaces of "bubbles" 20-30 h⁻¹ Mpc across⁴. For comparison the Hubble radius H_0^{-1} (the length scale characterising the **expansion rate of the universe) is 3000 h" ¹ Mpc. The most dense clusters of galaxies , called Abell clusters , are defined to be regions smaller than 1.5 h" ¹ Mpc in radiu s**

281

J. Audouze et al. (eds.), Large Scale Structures of the Universe, 281-288. ©1988 by the IAU.

containing mor e than 50 bright galaxies . For comparison the mean separation of bright galaxie s (i.e. the inverse of the cube root of the number density) is 5 h" ¹ Mpc . Observations ⁵ indicate that these are significantl y clustered on scales of at least 50 h" ¹ Mpc. Their mean separation is about 55 h" ¹ Mpc. Here h is of cours e Hubbies constant in units of 100 km s" ¹ .

What makes these observations interesting is that it does not seem possible to have formed such large scale structure by moving galaxies around since the big **bang . Peculiar velocitie s (velocities relative to the Hubble flow) grow as t ¹ ³ in an expanding univers e under gravity . In fact in the linear regime there is a precis e relation that the peculiar displacement** $\delta \mathbf{r}$ **=** $\mathbf{H}_{0}^{-1}\delta \mathbf{v}$ **where 6v is the peculiar velocity . Now galaxie s today only rarely** have velocities greater than 600 km $s^{-1} = 2.10^{-3}$ c relative to the observed structures and H_0^{-1} is 3000 h⁻¹ Mpc so we have **quite a strong upper bound on the distance s they have moved** of only 6 h⁻¹Mpc ! Thus galaxies have not moved very far since the big bang and not nearly far enough to produce the **large scale structure we see . Of course explosion s could also have moved the matter around but it is difficult to** move it further than about 10 h^{-1} Mpc with these unless one invokes exotic high energy phenomena like superconducting **strings . Thus there are good reasons to believ e that in the large scale structure we are looking very directly at the primordial density perturbations !**

There is and will always be the problem that statistic s are poor for the very largest scale surveys but they are certainly improving quickly and there is every hope for very good statistics on structures up to 100 h⁻¹ **Mpc or so in the next few years .**

Perhaps the most direct evidence on the primordial **perturbation s would come from observation s of anisotrop y in** the microwave background radiation - the present **observationa l sensitivitie s are within an order of a f ew of the levels predicted in all current theories and have already ruled out many theories . Needles s to say a pictur e of the primordia l density perturbation s would give a unique window on fundamental physic s and the very early universe .**

Cosmic strings are one idea as to the origin of the primordia l density perturbations . The basic idea of the cosmic string theory is very simple . We know that the universe at very early times was nearly homogeneou s and isotropic, but also very hot. If our ideas of unification are correct, then symmetry breaking processes occurred as

282

well . Now in a certain class of unified theories when this symmetry breaking occurs topologically stable line defects form called strings or vortex lines⁶. They have a direct analogue in the flux lines formed in superconductors when **the U(l) symmetry of electromagnetis m is broken by the Cooper pair condensate .**

The condition for such strings is that the vacuum manifold (the states of least energy in the theory) posses s noncontractible loops. The vacuum automatically has a lot **of degenerac y in unified theories because it must be invariant under the full symmetry group of the theory, and** is in fact equal to the coset space G/H where G is the **original symmetry group and H is the subgroup it is broken t o. The occurrenc e of noncontractibl e loops is a purely group theoretic question and has been answered affirmativel y in a wide range of simple theories including those based on superstring theories ⁷ . Unlike magneti c monopole s however , strings are not forced on you by unificatio n but are simply an option . They are generic enough however for us to take seriously the possibility of their formation at some stage in the early universe .**

A nice feature when comparing strings to quantum **fluctuation s during inflation as a source of density** perturbations is that no fine tuning of coupling constants is needed to obtain strings with the right mass per unit length to form galaxies - the grand unification scale **emerges naturally . By contrast theories based on inflation generally require extra "singlet¹ ¹ fields added by** hand to the GUT theory with very tiny self-couplings to **work at all . You can of course have inflation first and** then form strings but so far the models constructed to do **this are even more contrived than those for inflation .**

The potential strings have as density perturbation s is easily seen as follows . In a radiation or matter dominated universe the total density $\rho \sim 1/\text{Gt}^2$ **where G is Newtons constant . If the network of strings evolves in such a way that there is a fixed number of strings of mass μt crossing** ϵ a horizon volume t^3 where μ is the mass per unit length **of the string then the string density** $\rho_{\mathbf{s}} \sim \mu / t^2$ **and the fractional density perturbation** $\rho_{\infty}/\rho \sim \tilde{G}\mu$ **= constant. In a gauge theory** $\mu = 2\pi v^2 f(\lambda/e^2)$ where *v* is the value of the **symmetry breaking Higgs field in the vacuum and f is a dimensionles s function of order unity . λ is the self coupling of the Higgs field and e is the gauge coupling constant ⁸ .**

Without any fine tuning of parameters *v* is of the order of m_{gult} , typically about 10¹⁶ GeV in GUT theories **predicting strings , and μ «^m gut Since we do not know the** theory let alone the couplings we shall treat μ as a free **parameter . In fact since the simplest strings do not couple strongly to anything except via gravity μ only enters as Ο ~ nig ^U t / ^m pianc k wnic Q w ^e shall parametris e as Θ μ = 10" ⁶ μ 6 It is also useful to write Newton s constant as a** line density : then μ = 2.1 10′ μδΜ0 parsec.'

String formation may be understood heuristically as **follows ⁶ . A t a temperature T ^c ~ m g u ^t the Higgs field Φ begin s to notice the potential and tends to fall towards its mimima . At this stage Φ fluctuate s on a scale equal to the** correlation length $\sim T_{\alpha}^{-1}$. We may imagine the universe as broken up into domains of roughly this size where the **directio n θ in which Φ point s on the vacuum manifold is** chosen at random in each domain but matches on smoothly at **the boundaries . Now as the system cools θ will vary from domain to domain, causing defects to form on the edges common to certain domains . For if θ varies by** *2%* **as we encircle such an edge then** Φ **must vanish on that edge. Where it does so ν (Φ) is nonzero and a thin tube of vacuum energy is stored there . In fact these lines where Φ vanishe s cannot have any ends . So the strings are either in the form of closed loops or infinitely long.**

String formation was originally understood numerically by simply throwing down phase s θ at random on a lattice of domains, with a prescription for smoothly varying the **phase s from one domain to the next ⁹ . Most of the string is in one string as large as the box in which the simulation is performed . The remainder is in the form of a scale** invariant distribution of loops. Recently we have **understood how these result s may be understood analyticall y by counting states in the quantised closed bosonic string, an intriguing connection 1 0 .**

After the strings form we have to evolve them. First the strings are damped by collisions with particles until the temperature falls to \sim **(Θμ) ¹ / ² m gut . In this stage, and later on, the typical curvatur e scale of the string increases rapidly whil e the width remain s constant .**

Quite quickly it becomes a very good approximation to **treat the strings as infinitely thin relativistic lines or "Nambu-Goto " strings the action for which is simply the** area of the two dimensional worldsheet they trace out in **spacetime . Note however that the Nambu action is only valid if there is no structure along the string. This is not true for superconductin g strings ¹ ¹ where the** current-carrying fields do vary along the string.

284

In this case there is a significant local modification to the action and in fact the "positive pressure" contributed by the **current can cancel the string tension entirely, leading to** strings behaving more like shoelaces than relativistic **string 1 2 . The nicest thing about the Nambu-Got o Action is that it is completely geometrical - the parameter μ does not enter** in the equations of motion which depend solely on the background spacetime metric. The characteristic velocity of the string is simply the speed of light. In a given universe (and we know that to a very good approximation our universe **w as flat FRW radiation dominated i.e. a * t ¹ / ² at early times) the string evolution has no free parameter s at all .**

The Nambu action breaks down where two strings collide. **In this case on has to solve the full nonlinear field equations . This was done by Shellard and others ¹ ³ who found that when two strings collide they reconnect the other way for** centre of mass velocities \leq .95 i.e. essentially always. This a very nice result because the string interactions are **also fixed and cannot be adjusted . Again for strings with** more complex internal structure like superconducting strings **this may not be the case .**

How does a string network evolve? The result of the numerical simulations is that a network of strings in an expanding universe formed according to the above prescription **rather quickly i.e. in a few expansion times, approache s a "scaling solution" . In the scaling solution there is only one** length scale, the Hubble radius, which grows as t. The **distributio n of strings can be separated into two components .** Strings longer than the Hubble radius have a curvature scale **of the order of t and several such strings cross each horizon volume . Unles s these strings chop off a constant fraction of** their length each expansion time they quickly come to dominate **the total energy, since their energy remains roughly constant while the energy in radiation decrease s as the inverse of the** scale factor. They do apparently manage to do this in the **simulations , and this is now supported by analytic** calculations for strings in flat spacetime which show that there is a lot more phase space available to small loops than **long strings and thus a strong imbalance favouring the chopping off of loops over their reconnecting onto long strings 1 0 . Analytic approache s to string networks in expanding** universes have been developed by Kibble and Bennett¹⁵.

The productio n of loops by the string network is a very important feature . Since these loops only decay very slowly into gravitational radiation, and their energy remain roughly constant until they do, their density scales as matter so the smallest loops actually dominate the energy density in string.

string. Our simulations show that typically when a loop is **chopped off a long string it self intersects several times, breaking up into several smaller loops but then the proces s terminates . In other words a large fraction of the phase spac** available to a chopped off loop consists of **non-self-intersectin g trajectories¹ * *.**

Loop production may be described in more detail as **follows . If n(r,t)dr is the number density of loops of radius r to r+dr at time t then in the scaling solution η obeys**

$$
\partial n/\partial t = -3 \ \mathbf{a}/a \ n + f(r/t)/t^5 \tag{2}
$$

where the scale factor $a \propto t^{1/2}$ in the radiation era and $f(X)$ **is a dimensionles s function . We cut f(X) off by definitio n a X=Xc^ l and if loop self-intersectio n ceases soon after loops a re produced then f cuts off for X << 1 also . If any intersection happen s it has to happen rapidly - the loops motio n is periodic with period one half of its length in the centre of mass frame , and the length is some number β times r** with r~t for loops produced at time t. So any intersection must be completed in an expansion time or so. (2) yields

$$
n(r,t) = v r^{-5/2} t^{-3/2}
$$
; $v = \int_{0}^{xc} f(X) X^{3/2} dX$ (3)

According to numerical simulations¹⁴ $\beta \sim 10$ and $\nu \sim .01$ and **both are uncertain by a factor of 2-3.**

A loop produced with radius rohas a mass βμro and loses **energy to gravity waves ¹ ⁶ at a rate Ê = - Γΰμ ² wit h Γ ~ 50 .** Thus the radius at a later time is given by $r_0 - \gamma G \mu t$ with γ = $\Gamma/\beta \sim 5$ and we find for the final loop distribution

 \sim \sim

$$
n(r,t) = \nu (r + \gamma G \mu t)^{-5/2} t^{-3/2}
$$
 (4)

 \sim \sim

In the cosmic string theory we may identify loops of a given mean separation with object s of the same mean separation (in comoving coordinates) today 1 7 . Remarkably, simulation s of string evolution show that loops are produced with a correlatio n function which closely matche s that observed for Abell clusters , with no adjustabl e parameters 1 7 . However to calculate the required value of G_u one needs to know exactly **which sized loops gave rise to galaxies , clusters , etc .** This part of the calculation also depends on the type of dark **matter one assumes present . Now loops with radius greater than r** have a number density $n_{\lambda}(r,t) = \int dr n(r,t) \equiv d^{-3}$. Following **(4) through to the present and ignoring loop decay we find for bright galaxies d = 5 h⁻¹Mpc gives** $r = 4$ **h⁻² pc whereas for** clusters $d = 55$ h⁻¹Mpc and $r = 0.5$ h⁻² kpc. This is just smaller than the Hubble radius at t_{eq} , so cluster loops were $\mathbf{p} \cdot \mathbf{p} = \mathbf{p} \cdot \mathbf{p}$ and $\mathbf{p} \cdot \mathbf{p} = \mathbf{p} \cdot \mathbf{p} \cdot \mathbf{p}$

2 8 6

Now in order to accrete an object of mass M with an overdensity (ρ/ρ_b) by today, with cold dark matter one **require s a seed mas s**

$$
m_S = M (\rho/\rho_D)^{1/3} \xi / (5(1+Z_{eq}))
$$
 (5)

where ξ **equals 1 for a seed mass laid down long before** t_{eq} **and** represents the loss in growth for a seed mass laid down later **on¹⁷. For example ζ≈4 if accretion begins at** t_{eq} **.**

Cluster loops have masses m_c=βμr_c= 1Ο^{ιι}h ²μ6Μ0. However clusters have masse s 5 10 l i ⁺ σ ² h *Μ and overdensitie s of 130σ² in an Abell radius where *σ* is their velocity dispersion **in units_of 700 km s""1 , so from (5) they required a seed mas s of** $10^{11}h^{-3}$ σ⁸/³M₀. Thus we require μ₆ ≈ h⁻¹ σ⁸/³, just about **the value predicted in GUTS . The total uncertainty in μ6 is probably about an order of magnitud e given our still fairly crude numerical simulations and the uncertainty in σ and ^cluster eFo ^r galaxies we find just by scaling that the total** mass of comparable overdensity $M_{\sigma} = 4$ $(d_{\sigma}/d_{\sigma})^2$ M_{σ} $=$ 10^{13} Moh⁻¹ σ^2 (ξ≈1 for galaxy^{oloops) and a rotation} **velocity** $v=$ $\sqrt{3}$ σ_{α} = $\sqrt{3}$ $4^{1/3}\sigma \approx 400$ km s⁻¹. This is on the large side but is improved in the neutrino scenario.

Brandenberger will describe in his talk how the scenario changes if the dark matter is hot¹⁸. Suppression of **growth on small scales leads to M ^g « 1.5 10 ¹ ² Moh^ σ ⁸ . If h«.5 , as is required from the age of the universe then we require a large value of σ i.e. cluster velocity dispersions of ≈1000 km s " ¹ for galaxies to be as massiv e as observed . This require s a larger value of μ6 * 4. This leads to larger observed peculiar velocities 1 9 . In fact the neutrino scenario looks from many point s of view the more attractive . Notice that string s cure the main problem of the conventional neutrino model s where free streaming erases strucure on small scales . The string loops survive free streaming and are able to accrete galaxies , albeit less efficiently than with CDM.**

I have dealt in some detail in this lecture with the normalisatio n of the cosmic string theory, as this of considerabl e importance to people now beginning to look for mor e direct evidence . I hope I have brought out the many uncertaintie s and their sources 2 0 . Nevertheles s the most hopeful feature of the scenario is that if strings exist they should be detectable fairly soon. Recently Cowie and Hu have found a candidate object for lensing by a string loop²¹, and **several groups are considering the problem of detecting strings through their effect on the microwave background²².**

REFERENCE S

- **l.D.A. Kirzhnits and A.D . Linde, Ann. Phys.N.Y. 101 (1975) 195.**
- **2. R. Giovanelli and M.P . Haynes , Astron . J. 87 (1982)1355. 3. R.F. Kirschner, A. Oemler, P.L. Schecter ancT S.A.**
- **Schectman in "Early Evolution of the Universe and its Present Structure", I.A.U. Symposium 104 (1983) 197 .**

4. V. de Lapparent, M. Geller and J. Huchra, Ap. J. Lett. 302 (1986) 11.

- **5.ΗΤΤΑ. Bahcall and R.M. Soneira, Ap. J. 270 (1983) 20 .**
- **6.T.W.B. Kibble, J.Phys . A9 (1976) 1387; Phys . Rep . 6 7 (1980) 183: Ya. B. Zel ¹ clôvich, MNRAS 192 (1980) 663 7 A. Vilenkin , Phys . Rev. Lett. 46 (198lT ~1169 , 1496 (E) ; Phys . Rep . 121 (1985) 263 .**
- 7. T.W.B. Kibble, G. Lazarides and Q. Shafi, Phys. Lett. **113B (1982) 237 ; D. Olive and N. Turok, Phys . Lett. 117B (1982) 193, E. Witten , Phys . Lett. 149B (1984) 351 .**
- 8. e.g. H. Nielsen and P. Olesen, Nuc. Phys. B61 (1973) 45; **L. Jacobs and C. Rebbi , Phys . Rev. B19 (197ÜT ~4486 .**
- **9. T. Vachaspat i and A. Vilenkin , Phys . Rev. D30 (1984)** 2036, A. Albrecht and N. Turok, ref.14, J. Frieman and R. **Scherrer, Phys . Rev. D3 3 (1986) 3556 .**
- **1 0. D. Mitchell and N. Turok , Phys . Rev. Lett, 58 (1987) 1801, Nue . Phys . B to appear .**
- **1 1. E. Witten, Nuc . Phys . B249 (1985) 557 .**
- **1 2 . E. Copeland, M. Hindmarsh and Ν. Turok, Phys . Rev. Lett . 58 (1987) 1910, and to appear .**
- **1 3. P. Shellard, Nuc . Phys . B28 3 (1987) 624 .**
- **1 4. A. Albrecht and N. Turok, Phys . Rev. Lett. 54 (1985) 1868, and in preparation; D. Bennett and F. Boucher, in preparation .**
- **15.T.W.B. Kibble , Nuc . Phys . B252 (1985) 227 ; D . Bennett, Phys . Rev. £33(1986)872 , D34(1986),3592,1235(Ε),3932(E) .**
- **1 6. N. Turok, Nuc . Phys . B242~"(1984) 520; T. Vachaspat i and A. Vilenkin , Phys . Rev .~ÏÏ3 T (1985) 3052 ; C. Burden, Phys . Lett. 164B (1985) 277 .**
- **1 7. N. Turok, Phys . Lett. B126 (1983) 437 ; Phys . Rev. Lett. 55 (1985) 1801; N. Turok and R. Brandenberger , Phys.—Rev . D33 (1986) 2175; H. Sato, Mod. Phys . Lett. Al (1986) 9; A. Stebbins , Ap. J. Lett. 303** (1986) $\overline{L21}$; for a recent review see N. Turok, Lectures at **Erice Winter Scool 1987, Imperial College preprint 1987 .**
- **1 8. R. Brandenberger , Ν. Kaiser , and N.Turok , DAMTP preprint 1987 and R. Brandenberger , Ν. Kaiser, D. Schramm and N. Turok, DAMTP preprint 1987; E. Birtschinger , MIT preprint, 1987 .**
- **1 9. A. Dressler, S. Faber, D. Burstein, R. Davies , D. Lynden-Bell , R. Turlevich and G. Wegner , 1986, preprint . P. Shellard, R. Brandenberger , Ν. Kaiser and N. Turok, Nature , 1987 .**
- **2 0 . P.J.E. Peebles , preprints , 1986, 1987 ; N. Turok, in "Nearly Normal Galaxies : from the Planck Time to the present" , proceeding s of the Santa Cruz Summer Workshop ,** Ed. S. Faber, Springer-Verlag, 1987.
- **2 1 . L. Cowie and D. Hu, Ap. J. Lett, in press**
- **2 2 . N. Kaiser and A. Stebbins , Nature 310 (1984) 391,**
- **A. Stebbins , Fermilab preprint 1987 .**