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Abstract. This paper is concerned with the smooth representation theory of the general linear group
G = GLn(F) of a non-Archimedean local fieldF . The point is the (explicit) construction of a special
series of irreducible representations of compact open subgroups, called semisimple types, and the
computation of their Hecke algebras. A given semisimple type determines a Bernstein component of
the category of smooth representations ofG; that component is then the module category for a tensor
product of affine Hecke algebras; every component arises this way. Moreover, all Jacquet functors and
parabolic induction functors connectingG with its Levi subgroups are described in terms of standard
maps between affine Hecke algebras. These properties of semisimple types depend on their special
intertwining properties which in turn imply strong bounds on the support of coefficient functions.
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This paper is concerned with the smooth (complex) representation theory of the
general linear group GLn(F ) of a non-Archimedean local fieldF . As such, it builds
on and in a certain sense completes our earlier work [5]. On the other hand, it may
be seen as carrying out for GLn the program, initiated in [9], of analysing the
category of smooth representations of a reductivep-adic group via the method of
types. Let us begin by briefly reviewing this program.

1. LetG be the group ofF -points of some connected reductive group defined
overF and writeR(G) for the category of smooth complex representations ofG.
Let L be anF -Levi subgroup ofG and denote byX(L) the group ofunramified
quasicharactersof L, i.e., smooth homomorphismsL → C× which vanish on all
compact subgroups ofL. Then given an irreducible supercuspidal representation
σ of L, we may, following [1], associate to the pair(L, σ ) a full subcategory
R(L,σ )(G) of R(G) by decreeing that a smooth representationπ of G will be an
object inR(L,σ )(G) if each of its irreducible subquotients appears as a composition
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factor ofιGP (σ⊗χ), for someχ ∈ X(L) and some parabolic subgroupP ofG with
Levi factorL; here,ιGP is the functor of (normalized) parabolic induction. We recall
two basic results from [1]:

(1) Let (Li, σi), i = 1,2 be as above. Then

R(L1,σ1)(G) = R(L2,σ2)(G)

(as subcategories ofR(G)) if and only if the pairs(Li, σi) are G-inertially
equivalent: that is, there is a quasicharacterχ ∈ X(L2) so that the pairs
(L1, σ1) and(L2, σ2⊗ χ) areG-conjugate.

We denote theG-inertial equivalence class of(L, σ ) by [L, σ ]G and writeR[L,σ ]G
(G) in place ofR(L,σ )(G). We denote the set ofG-inertial equivalence classes of
pairs(L, σ ) by B(G).

(2) We haveR(G) =∏s∈B(G)Rs(G).

Suppose now thatK is a compact, open subgroup ofG and that(ρ,W) is an
irreducible smooth representation ofK. Let (ρ̌, W̌ ) be the representation contra-
gredient to(ρ,W) and letH(G, ρ) be the space of compactly supported, EndC(W̌ )-
valued functionsf onG which satisfyf (hxk) = ρ̌(h) f (x)ρ̌(k), x ∈ G, h, k ∈
K. Then we may viewH(G, ρ) as an algebra under convolution once we have
fixed a Haar measure onG. Let (π, V ) be a smooth representation ofG, set
Vρ = HomK(W,V ) and letV ρ =∑φ∈Vρ φ(W); denote byRρ(G) the full subcat-
egory ofR(G) whose objects(π, V ) have the property thatV is generated asG-
representation byV ρ . ThenVρ is naturally a leftH(G, ρ)-module (see Section 2 of
[9]), and the map(π, V ) 7→ Vρ induces a functor Mρ :Rρ(G)→ H(G, ρ)-Mod.

The significance of this construction resides in the following [9] Section 4:

(3) Let (K, ρ), (L, σ ) be as above, sets = [L, σ ]G, and suppose thatRs(G) =
Rρ(G). ThenMρ is an equivalence of categories.

If Rs(G) = Rρ(G), then we say that(K, ρ) is ans-type.

(4) Let(K, ρ), (L, σ ) be as above and suppose that the categoriesRs(G), Rρ(G)

have the sameR(G)-irreducible objects. Then(K, ρ) is ans-type.

2. The immediate aim of the present paper is the construction of ans-type(Ks, ρs)

for everys ∈ B(GLn(F )).
Such a construction will only be useful, however, if the algebrasH(G, ρs) have

well-understood module categories. In the case of the types constructed here, we
show that the algebrasH(G, ρs) are naturally isomorphic to tensor products of
affine Hecke algebras of type A.

It is also desirable to have a module-theoretic interpretation of the functors of
normalized parabolic induction and Jacquet restriction. Consideration of this in a
general context led us to introduce the notion of acover, which we now briefly
review ([9] Section 8).
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LetM be a Levi subgroup ofG, letKM be a compact open subgroup ofM and
ρM an irreducible smooth representation ofKM . Then aG-coverof (KM, ρM) is
a compact open subgroupK of G together with a smooth irreducible representa-
tion ρ of K, the pair(K, ρ) satisfying the following properties for each parabolic
subgroupQ of G with Levi factorM:

(i) K ∩M = KM andK = K ∩ N` · KM · K ∩ Nu, whereNu = Nu(Q) is the
unipotent radical ofQ andN` = N`(Q) is that of the opposite toQ relative to
M;

(ii) K ∩N`,K ∩Nu are contained in the kernel ofρ whileρ|KM ∼= ρM ;
(iii) there exists a(K,Q)-positive elementz in the center,Z(M), of M and an

invertible elementfz ∈ H(G, ρ) with supportKzK.

(An elementz ∈ Z(M) is said to be(K,Q)-positive if the sequenceszk(K ∩
Nu)z

−k, z−k(K ∩N`)zk tend monotonically to 1 ask→∞.)
We may now state one of the principal results of [9]. Lets = [L, σ ]G ∈

B(G), and letM be a Levi subgroup ofG which containsL. The pair(L, σ )
then determines an elementsM = [L, σ ]M ∈ B(M). We have ([9] 8.4):

With notation as above, suppose that(KM, ρM) is an sM-type inM and that
(K, ρ) is aG-cover of(KM, ρM). Then(K, ρ) is ans-type inG. Further, there
is for each parabolic subgroupQ ofG with Levi factorM a unique injective
algebra homomorphism

jQ:H(M, ρM)→ H(G, ρ)

such that the following diagram commutes:

R
sM (M)

≈- H(M, ρM)−Mod

Rs(G)

ιGQ
?

≈- H(G, ρ)−Mod,
?
(jQ)∗

where(jQ)∗ is the ring-theoretic induction functor given byjQ.

(In fact, the statement in [9] 8.4 refers to theun-normalizedinduction functor;
however, only a trivial modification is required to treat the normalized one.)

3. We can now describe the results of this paper. We first rephrase those of [5]
in the language of types and covers. So, from here on out,G = GLn(F ). The
book [5] is largely concerned with the case of thoses = [L, σ ]G ∈ B(G) for
which L ∼= GLr (F )s , rs = n, andσ ∼= π0 ⊗ · · · ⊗ π0, for some irreducible
supercuspidal representationπ0 of GLr(F ). One of the main accomplishments
of [5] was the explicit construction of a compact open subgroupJ of G and an
irreducible smooth representationλ of J such that the categoriesRs(G), Rλ(G)

have the same irreducible objects. From (4) above, therefore,(J, λ) is ans-type.
Moreover,H(G, λ) is a Hecke algebra of affine typeibid. 5.6.6.

https://doi.org/10.1023/A:1001773929735 Published online by Cambridge University Press

https://doi.org/10.1023/A:1001773929735


56 C. J. BUSHNELL AND P. C. KUTZKO

In particular, there exists a type(J0, λ0) for the inertial equivalence class[GLr
(F ), π0]GLr (F ) ∈ B(GLr (F )). If, in the original context, we setsL = [L, σ ]L ∈
B(L), we obtain ansL-type(KL, τL) in L by setting

KL = J0× J0× · · · × J0, τL = λ0⊗ λ0⊗ · · · ⊗ λ0.

The types(J, λ) are referred to (with some prescience) in [5] assimple types.
However, they cannot be constructed in the appropriate way as covers, and are not
the most convenient choice here. We therefore use [5] Ch. 7, where we constructed
a modified version of the simple type(J, λ); this is aG-cover of(KL, τL) (and has
the same Hecke algebra as(J, λ)). We explain this more fully in Section 1 below.

Now we pass to the case of a generals ∈ B(G), which is the central concern
of this paper. A choice of representative(L, σ ) for s determines a Levi subgroup
M which may be described as the smallest Levi subgroup which contains theG-
normalizer (in the obvious sense) ofsL. The classess considered in [5] may then
be characterized by the property thatM = G. In the general case, the arguments
outlined above yield anM-cover (KM, τM) of (KL, τL). The main result of this
paper asserts:

(i) There exists aG-cover(K, τ) of (KM, τM). In particular, (K, τ) is ans-type
in G and aG-cover of(KL, τL).

(ii) If Q is a parabolic subgroup ofG with Levi factorM, the associated algebra
homomorphismjQ:H(M, τM)→ H(G, τ) is an isomorphism and preserves
support of functions. In particular,H(G, τ) is a tensor product of affine Hecke
algebras.

4. Much of the significance of this result flows from the fact that we construct
the types(K, τ) explicitly. Their particular form is well-adapted to constructing
types in the group SLn; indeed, it was our earlier work [6], [7] on that group which
originally motivated our search for semisimple types in GLn. A totally different
application connects semisimple types with results from [13] to giveexplicit for-
mulasfor Plancherel measure and conductors of Rankin-Selberg convolutions [10].
However, such matters must be treated elsewhere.

5. The proof of the above theorem is quite elaborate and involves several new
ideas, along with most of the machinery of [5] and some of its elaborations in
[4]. The simple types of [5] are built from parahoric subgroups ofG with their
standard filtrations.It is clear from the outset that this framework is inadequate
for the construction of semisimple types: a reader familiar with the methods of [5]
might consider the problem when, for example,G = GL5, the Levi subgroupL
is GL2 × GL3, and the associated supercuspidal representations of GL2, GL3 are
given by totally ramified field extensions ofF . This necessitates the introduction of
nonstandard filtrations attached to ‘lattice sequences’, as in Section 2 below. These
generalize the standard filtrations attached to latticechains.

Next, it is clear that the difficult part in the construction of a cover is achiev-
ing the condition (iii). This, however, can be made to follow (in the right cir-
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cumstances) from intertwining properties of comparatively straightforward repres-
entations of certain subgroups of the requiredK. It is the construction of these
subgroups which takes up most of the paper.

Lattice sequences are introduced in Section 2. The key point is that lattice
sequences, unlike chains, admit a reasonable definition of direct sum. Using this
property, we construct in Section 3 a first family of compact open subgroups with
the essential intertwining property. The next step is to extend some of the ma-
chinery of [4], [5] concerning simple characters (terminology of [5] Ch. 3) to the
context of lattice sequences. This takes up Section 4 and Section 5. The main family
of subgroups (with the intertwining property) is then treated in Section 6. Finally,
we give the explicit construction of the desired covers in Section 7 and Section 8.

We conclude this Introduction with words of thanks to our colleagues. During
the writing of this paper, we have received substantial benefit and encouragement
from their comments. In this context, we wish to mention Guy Henniart, Marie-
France Vignéras, and, particularly, Corinne Blondel. Her detailed criticisms of an
earlier draft were extremely helpful to us.

Notation: The following notation will be standard throughout, and is chosen
to be consistent with [5], to which we shall often refer. First,F denotes a non-
Archimedean local field with discrete valuation ringoF . We writepF for the max-
imal ideal ofoF , andkF = oF /pF for the (finite) residue field ofF .

We write[x] for the integer part of a real numberx; thus[x] is the largest integer
6 x.

If V is a finite-dimensionalF -vector space, we adhere to the convention that an
oF -lattice inV is a finitely generatedoF -submodule ofV which spansV overF .

We fix a continuous characterψF of the additive group ofF , with conductor
pF . If V is as above, andA = EndF (V ), we putψA = ψF ◦ trA/F . If a ∈ A, we
writeψA,a, or justψa, for the functionx 7→ ψA(a(x − 1)), x ∈ A.

Let [A, n,m, β] be a simple stratum in EndF (V ). (See [5] Section 1.5 for this
term.) The symbolsH (β,A), J (β,A), Hm+1(β,A), J (β,A) and their variations
have the same meanings as in [5] Section 3.1. The simple character setC(A,m, β)
is as in [5] Section 3.2. In particular, the elements ofC(A,m, β) are (rather special)
abelian characters of the groupHm+1(β,A).

It will be convenient to have as standard the following ‘block matrix’ notation.
Let V be a finite-dimensionalF -vector space, and writeA = EndF (V ). Suppose
we have subspacesV 1,V 2 of V such thatV = V 1⊕V 2. Let1i denote the projection
V → V i with kernelV j , j 6= i, and putAij = 1i · A · 1j ⊂ A. We identify
Aij = HomF (V

j , V i). We use the notation

A =
(
A11 A12

A21 A22

)
and sometimes abbreviateAii = Ai . If L is anoF -lattice inA, we setLij = L∩Aij .
We use analogous notations when there are more than two factorsV i.
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1. Main Theorem

Throughout this section,V denotes a finite-dimensionalF -vector space andG =
AutF (V ). We use the notation of [9], as outlined in the introduction.

1.1. We give a preliminary version of the main result:

MAIN THEOREM (first version).Let s ∈ B(G). There exists ans-type inG.

We shall give a more refined statement after we have examined a sequence of
special cases. The final explicit form is Theorem 8.2 below.

1.2. We assume in this paragraph that the inertial equivalence classs is super-
cuspidal,i.e., of the forms = [G,π ]G, for an irreducible supercuspidal represent-
ationπ of G. By [5] (8.4.1), there is a maximal simple type(J, λ) occurring inπ ,
unique up toG-conjugation. By [5] (6.2.3), an irreducible representationπ ′ of G
containsλ if and only if π ′ ∼= π ⊗ χ ◦ det, for someunramifiedquasicharacterχ
of F×. This says that(J, λ) is ans-type.

1.3. We return to the case of a generals ∈ B(G). Thuss = [L, σ ]G, for some
Levi subgroupL of G and some irreducible supercuspidal representationσ of L.
There is a decomposition ofV as a direct sum of nonzero subspaces

V = V 1⊕ V 2⊕ . . .⊕ V r

of whichL is theG-stabilizer. Thus

L =
r∏
i=1

AutF (V
i), σ =

r⊗
i=1

πi,

whereπi is an irreducible supercuspidal representation of the group AutF (V
i) ∼=

GLni (F ). The classs determines the integersni up to permutation and the corres-
ponding factorsπi up to unramified twist.

By 1.2, there is a maximal simple type(Ji, λi) occurring inπi, for eachi. We
set

KL =
r∏
i=1

Ji, τL =
r⊗
i=1

λi.

Immediately, we have

PROPOSITION. DefinesL = [L, σ ]L ∈ B(L). The pair (KL, τL) is then an
sL-type inL.

The choice of representative(L, σ ) of the inertial equivalence classs gives rise
to another Levi subgroup ofG as follows. WritesL = [L, σ ]L ∈ B(L). The
G-normalizer NG(L) of L acts on the setB(L) by conjugation.
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LEMMA. There is a unique Levi subgroupM of G which contains theNG(L)-
stabilizer ofsL and is minimal for this property.

This is obvious.

1.4. In this paragraph, we consider the case where the Levi subgroupM defined
in 1.3 isG itself.

PROPOSITION. Suppose, in the situation of1.3, that M = G. The sL-type
(KL, τL) of 1.3 then admits aG-cover (K, τ). In particular, (K, τ) is an s-type
in G.

Proof.The hypothesis onM implies thatL is isomorphic to GLn0(F )
r , rn0 = n,

and thatσ may be taken in the formσ = π0⊗ · · · π0. ThesL-type(KL, τL) is then
necessarilyL-conjugate to one of the form(J r0 , λ

⊗r
0 ), where(J0, λ0) is a maximal

simple type in GLn0(F ) occurring inπ0, [5] (6.2.4).
From this point, the argument is a re-interpretation of certain results in [5],

which have to be further generalized in Section 7 below, so we shall be brief.
The existence of ans-type is given by [5] (8.4.3). Indeed,ibid. (7.3.12), (7.3.14)

say that this type may be taken to be a simple type(J, λ), associated to a simple
stratum[A, n,0, β]. In particular,J = J (β,A). (There is also the possibility that
(J, λ) is ‘of level zero’, i.e., of the form [5] (5.5.10)(b). In this case, the proof is
easier, and we omit the details.)

However,(J, λ) is not a cover of(KL, τL), as remarked above. We therefore
use [5] Theorem 7.2.17. That result produces a representationλP of a subgroupJP
of J attached to a particular parabolic subgroupP of G with Levi componentL
(this Levi isM in the notation of [5]). The Iwahori decomposition properties (i)
and (ii) in the definition of cover (see Introduction) are easy to check for(JP , λP ).
To verify the third condition, we note thatλP induces the representationλ of J loc.
cit. Thus we have an isomorphismH(G, λP ) ∼= H(G, λ) of Hecke algebras. By
[5] (7.2.19), this isomorphism has the following property: iffP ∈ H(G, λP ) has
supportJP gJP , for someg ∈ G, then its imagef ∈ H(G, λ) has supportJgJ . By
[5] (5.6.6), any such functionf is invertible inH(G, λ), sofP is also invertible.
Thus (K, τ) = (JP , λP ) is the cover we seek. (Alternatively, property (iii) of a
cover follows in this case from [5] (7.3.2) and [9] 7.14.) 2

Continuing in the same situation, we recall ([5] 5.6.6) that the Hecke algebra
H(G, λP ) = H(G, λ) is isomorphic to anaffine Hecke algebraH(G, λ) ∼=
H(r, q

f

E), in the notation of [5]. Here,E denotes the fieldF [β], the integerf is
determined by the relation[F [β]:F ]rf = n, andqE = |kE|. For further comments
on the associated algebra homomorphismsH(L, τL)→ H(G, τ), see [5] 7.6.20:
in a certain sense, they depend only on the parametersr andqfE .
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1.5. We return to the general case, where the Levi subgroupM defined in
Lemma 1.3 is possibly not equal toG. As an immediate consequence of Proposi-
tion 1.4, we have:

COROLLARY. Let sM = [L, σ ]M ∈ B(M). There exists ansM -type(KM, τM) in
M which is anM-cover of(KL, τL).

Let us make this explicit (as we will need this notation later). The Levi subgroup
M is theG-stabilizer of a decompositionV = W 1⊕W 2⊕· · ·⊕Wt of V as a direct
sum of nonzero subspacesWj . SetGj

M = AutF (Wj ). We then haveL = ∏
Lj ,

whereLj = L ∩ Gj

M (with the obvious abuse of notation). The type(KL, τL)
decomposes as the tensor product of types(KLj , τLj ), each of which admits aGj

M-

cover(Kj

M, τ
j

M) as in 1.4. We put

KM =
t∏

j=1

K
j

M, τM =
t⊗

j=1

τ
j

M.

We then have

H(M, τM) =
t⊗

j=1

H(G
j

M, τ
j

M),

and each of theH(G
j

M, τ
j

M) is affine.
We now give a more precise statement of our main result.

MAIN THEOREM (second version).There exists aG-cover(K, τ) of (KM, τM).
In particular, (K, τ) is ans-type inG and is aG-cover of(KL, τL).

The proof will occupy the remainder of the paper. Notice, however, that the
second and third assertions follow from the first, via [9] 8.3, 8.5 respectively.

If we choose a parabolic subgroupQ of G with Levi componentM, we get a
homomorphismjQ:H(M, τM) → H(G, τ) which realizes the induction functor
ιGQ, as mentioned in the Introduction. In this case,jQ is analgebra isomorphism,
which moreover preserves support of functions [9] 12.1:

supp(jQf ) = K supp(f )K, f ∈ H(M, τM).

In particular,H(G, τ) is a tensor product of affine Hecke algebras.
If we now choose a parabolic subgroupP of G with Levi componentL, then

P ∩M (resp.Q = MP ) is a parabolic subgroup ofM (resp.G) with Levi com-
ponentL (resp.M). The algebra homomorphismjP :H(L, τL)→ H(G, τ)which
realizes the induction functorιGP then factors asjP = jQ ◦ jP∩M , by [9] 8.7. Thus
jP is the composite of a tensor product of standard maps between affine Hecke
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algebras and an algebra isomorphism. Further, we get a similar factorization ofjP
relative to any Levi subgroup ofG containingL: this follows from the transitivity
property of covers [9] 8.5.

1.6. There is another striking consequence of [9] in the context of Theorem 1.5.
Using the same notation as above, we have

COROLLARY. An elementg ∈ G intertwines the representationτ if and only if
it is of the formg = k1mk2, wherek1, k2 ∈ K andm is an element ofM which
intertwinesτM .

This follows from [9] 12.2.

2. Lattice Sequences

The lattice sequences of the title generalize the lattice chains used extensively in
[5]. They give new filtrations of the parahoric subgroups of GLn(F ), somewhat
along the lines of the very general filtrations introduced in [12]. The present section
lays out their basic properties, generalizing the early parts of [2], [3].

Throughout,V denotes a finite-dimensionalF -vector space, andA = EndF (V ).

2.1. We start with a definition:

DEFINITION. An oF -lattice sequence inV is a function3 from Z to the set of
oF -lattices inV such that

(i) n > m implies3(n) ⊂ 3(m);
(ii) there existse = e(3) ∈ Z, e > 1, such that3(n+ e) = pF3(n), n ∈ Z.

2.2 Remarks. (i) Let 3 be a lattice sequence inV , and defineL3 = {3(n): n ∈
Z}. ThenL3 is a nonempty set of lattices inV which is linearly ordered under
inclusion and stable under multiplication byF×. In other words, it is alattice chain
in the sense of [5] (1.1).

(ii) In the opposite direction, suppose we are given a lattice chainL in V . We
can index the elements ofL by Z, L = {Lj : j ∈ Z}, so thatLj ) Lj+1, j ∈ Z,
and define a function3 by 3(j) = Lj , j ∈ Z. This is a lattice sequence with
L3 = L and the additional property that3(j) 6= 3(j + 1) for any j . In other
words, an (indexed) lattice chain is the same as a lattice sequence which isinjective
as a function. We call such lattice sequencesstrict.

2.3. Recall that a lattice chainL in V determines a hereditaryoF -order inA,
which we denote byA(L) or End0

oF
(L), in the manner of [5]:

A(L) = {x ∈ A: xL ⊂ L,L ∈ L}.
If 3 is a lattice sequence inV , we define

an = an(3) = {x ∈ A: x3(m) ⊂ 3(m+ n),m ∈ Z}, n ∈ Z.
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Note that, by definition,a0(3) = A(L3). Further, eachan(3) is anoF -lattice inA
and also a bimodule overa0(3). Observe that if3 is strict, withL = L3, then the
definition givesan(3) = Pn, whereP is the Jacobson radical of the orderA(L)
([5] (1.1)).

The lattice sequence3 determines a ‘valuation’ mapν3:A→ Z by

ν3(x) = max{n ∈ Z: x ∈ an(3)}, x ∈ A,

with the usual understanding thatν3(0) = ∞.

PROPOSITION.Let3 be a lattice sequence inV . We have:

(i) a0(3) = A(L3), that is,a0(3) is the hereditaryoF -order inA defined by the
lattice chainL3.

(ii) a1(3) is the Jacobson radical ofa0(3).
(iii) pFak(3) = ak+e(3)(3), k ∈ Z.
(iv) ak(3) · al(3) ⊂ ak+l(3), k, l ∈ Z.

Proof. Only (ii) requires any comment. LetL = L3. For L ∈ L, let L′ be
the largest element ofL such thatL′ ( L. From the standard theory of lattice
chains and hereditary orders, we know that an elementx ∈ A lies in the radical of
a0(3) = A(L) if and only if xL ⊂ L′ for all L ∈ L. On the other hand, ifm ∈ Z
satisfies3(m) = L, then we have3(m + 1) = L or L′, the latter case occurring
precisely whenm is the largest integer such that3(m) = L. Thusx ∈ A lies in
a1(3) if and only if xL ⊂ L′ for all L ∈ L. This proves (ii). 2
2.4. Suppose for the moment that3 is a strict lattice sequence inV . We may
therefore identify3 with its associated lattice chainL. In this case, the lattice
chainL and the orderA(L) = a0(3) determine each other: the chainL is simply
the set of allA-lattices inV . This cannot hold for lattice sequences in general. How-
ever, weaker versions of many related properties do generalize to this situation, for
example:

PROPOSITION. Let 3 be a lattice sequence inV , and write e = e(3). The
natural map

aj (3)

aj+1(3)
→

e−1∏
i=0

HomkF

(
3(i)

3(i + 1)
,

3(i + j)
3(i + j + 1)

)

is an isomorphism, for allj ∈ Z.
Proof.By periodicity and the definition ofaj , this map is certainly injective. It

is enough therefore to show that dimkF aj /aj+1 = 6e−1
i=0didi+j for all j ∈ Z, where

we have writtendi = dimkF (3(i)/3(i + 1)).
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This injectivity property shows that

dimkF (aj (3)/aj+1(3)) 6
e−1∑
i=0

didi+j , j ∈ Z.

This implies

e−1∑
j=0

dimkF aj /aj+1 6
e−1∑
i,j=0

didi+j .

The left hand side here is dimkF a0/ae = dimkF a0/pFa0 = N2, whereN = dimFV .
By periodicity, the right hand side reduces to(6e−1

i=0di)
2 = N2. It follows that

dimkF aj /aj+1 = 6e−1
i=0didi+j for 0 6 j 6 e − 1. The same equality then holds for

all j by periodicity, and the proposition is proved. 2
Using this Proposition, it is easy to find examples of lattice sequences3 with
aj (3) = aj+1(3) for somej ∈ Z.

2.5. If we have a lattice sequence3 and an integert , we can define another lattice
sequence3+t by (3+t)(n) = 3(n + t), n ∈ Z. We refer to3+t as atranslate
of 3. Of course, the lattice sequences3, 3+t have many properties in common.
In particular, we haveaj (3+t) = aj (3) for all j ∈ Z. We next show that the
converse of this property holds.

PROPOSITION.Let3, 3′ be lattice sequences inV , and suppose thataj (3) =
aj (3

′), for all j . There is then an integert such that3 = 3′+t .
Proof.The relationa0(3) = a0(3

′) shows that the associated lattice chainsL3,
L3′ are equal.

Assume for a contradiction that3 is not equal to any translate of3′. Replacing
3, 3′ by translates, we can therefore assume we have the following situation:
3(−1) 6= 3(0) = 3′(0) 6= 3′(−1) and, for some nonnegative integerj , 3(j) =
3(0) = 3′(j) = 3′(j +1), while3(j +1) 6= 3(j). Let l > 1 be the least integer
such that3′(j) 6= 3′(j + l+ 1). If we number the lattice chainL3 = {Lk: k ∈ Z}
so thatL0 = 3(0), we then have3(j + 1) = 3′(j + l + 1) = L1. Sincej > 0,
we haveaj+1(3) = aj+1(3

′) ⊂ P, whereP is the radical of the hereditary order
defined byL3. We identify

P/P2 =
e(L3)−2∏
i=−1

Hom(Li/Li+1, Li+1/Li+2),

and consider the image ofaj+l+1(3) here. By construction, this mapsL−1/L0

trivially to L0/L1. However, by (2.4), the image ofaj+l+1(3
′) contains an element

mappingL−1/L0 nontrivially to L0/L1. Thus we have a contradiction and the
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Proposition follows. 2
2.6. If we are given a lattice sequence3 in V , we can extend3 to a function on
the real lineR by setting3(r) = 3(n), r ∈ R, wheren is the integer defined by
the relationn− 1< r 6 n. Equivalently,

3(r) = 3(−[−r]) =
⋃
n>r

3(n) =
⋂
n<r+1

3(n).

We still have the relation3(s) ⊂ 3(r), r, s ∈ R, r 6 s. It will also be useful to
likewise extend the domain of definition of the functionn 7→ an(3). In this regard,
the following is helpful.

PROPOSITION.Let3 be a lattice sequence inV . Letr ∈ R and setn = −[−r].
For an elementx ∈ A, the following are equivalent:

(i) x ∈ an(3);
(ii) x3(s) ⊂ 3(n+ s) for all s ∈ R;
(iii) x3(m) ⊂ 3(r +m) for all m ∈ Z;
(iv) x3(s) ⊂ 3(r + s) for all s ∈ R.

Proof.The implication (i)⇒ (ii) is easy, and (ii)⇒ (iv) becausen+ s > r + s.
On the other hand, (iii) is a special case of (iv), so it remains only to show that (iii)
implies (i).

To do this, we note thatn − 1 < r 6 n, son + m − 1 < r + m 6 n + m for
all integersm. Thus3(r +m) = 3(n+m) andx3(m) ⊂ 3(n+m) for all m, as
required. 2
Forr ∈ R, we now definear (3) to be the set ofx ∈ A which satisfy the conditions
of the Proposition; in other words,

ar (3) = a−[−r](3), r ∈ R.
As an immediate consequence of this definition, we have

pFar (3) = ar+e(3)(3),

ar (3)as(3) ⊂ ar+s(3),
r, s ∈ R.

2.7. The main reason for introducing lattice sequences is that, unlike lattice chains,
they admit a natural notion of direct sum. To define this, we first need an operation
of ‘scaling’ on lattice sequences. This is the subject of the present section.

DEFINITION. Let 3 be a lattice sequence inV and letk be a positive integer.
Define a functionk3 from Z to the set ofoF -lattices inV by

k3:m 7→ 3(m/k), m ∈ Z.
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PROPOSITION.Let3 be a lattice sequence inV andk ∈ Z, k > 0. Then:

(i) k3 is a lattice sequence withe(k3) = ke(3);
(ii) we havek3(r) = 3(r/k), for all r ∈ R;
(iii) ar (k3) = ar/k(3), for all r ∈ R.

Proof.The functionk3: n 7→ 3(n/k) is an order-preserving map fromZ to the
set of lattices inV . Moreover,

k3(n) =
{
3(n/k) if k divides n,

3(1+ [n/k]) otherwise.

The first assertion is now clear.
In (ii), we letn be the integer such thatn−1< r 6 n. Thusk3(r) = k3(n) =

3(n/k). We writen = mk − l, for integersm, l such that 06 l < k. We then
havem − 1 < r/k 6 n/k 6 m, so thatk3(r) = 3(m) = 3(n/k) = 3(r/k), as
required.

For (iii), we takex ∈ A. Thenx ∈ ar (k3) if and only if x3(s/k) ⊂ 3(s/k +
r/k) for all s ∈ R. If s is of the formmk with m ∈ Z, this condition implies
x ∈ ar/k(3) by Proposition 2.6(iii). Thusar (k3) ⊂ ar/k(3). The opposite con-
tainment is clear. 2
Let ν3 be the valuation map attached to3, as in 2.3. The Proposition yields:

COROLLARY. Let3 be a lattice sequence inV and letk be a positive integer.
Thenνk3 = kν3.

2.8. We now define thedirect sumof two lattice sequences. Fori = 1,2, letV i be
a finite-dimensionalF -vector space and3i a lattice sequence inV i . We abbreviate
ei = e(3i), and set

e = lcm{e1, e2},
3(er) = 31(e1r)⊕32(e2r), r ∈ R.

Thus3, which we tend to denote

3 = 31⊕32,

is an order-preserving function fromR to the set of lattices inV 1⊕ V 2.

PROPOSITION.We have:

(i) 3 = 31⊕32 is a lattice sequence inV 1⊕ V 2 of periode;
(ii) 3 = e

e1
31⊕ e

e2
32;

(iii) if 3i is a lattice sequence inV i, for i = 1,2,3, then

(31⊕32)⊕33 = 31 ⊕ (32 ⊕33);
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(iv) the transposition isomorphismV 1⊕ V 2→ V 2⊕ V 1 induces an isomorphism

(31⊕32)(r) ∼= (32⊕31)(r),

for all r ∈ R.

Proof.Straightforward. 2
EXAMPLE. Suppose we have two lattice chains{Lj }, {L′j } with the same period
e. We can view these as corresponding to strict lattice sequences3,3′ respectively.
The sum3⊕3′ is then strict of periode, and the corresponding lattice chain is

· · · ⊃ L0⊕ L′0 ⊃ L1⊕ L′1 ⊃ · · · ⊃ Le ⊕ L′e ⊃ · · · .
On the other hand, there is an obvious way of sticking these lattice chains together
to get a chain of period 2e, namely

· · · ⊃ L0⊕ L′0 ⊃ L0⊕ L′1 ⊃ L1⊕ L′1 ⊃ L1⊕ L′2 ⊃ · · ·
This is the lattice chain associated to the strict lattice sequence3′′ where3′′ =
(23−1)⊕ 23′.

2.9. We continue with the same notation, and setV = V 1⊕ V 2, A = EndF (V ).
We use our standard block matrix notation (see ‘Notation’ above), and start wi th a
simple general observation.

LEMMA. LetX be anoF -lattice inA. The following are equivalent:

(i) 1i ·X · 1j ⊂ X, for all i, j ;
(ii) 1i ·X · 1j = X ∩ Aij , for all i, j ;
(iii) X =∐i,j X ∩ Aij .

The proof is straightforward.

PROPOSITION.For i = 1,2, let V i be a finite-dimensionalF -vector space and
let 3i be a lattice sequence inV i of periodei. Definee and3 as in2.8,and use
the other notation above. We have1i ∈ a0(3), i = 1,2. Consequently,

ar (3) ∩Aij = 1i · ar (3) · 1j , 16 i, j 6 2,

ar (3) =
∐

16i,j62

ar (3) ∩ Aij ,

and, further,

ar (3) ∩Ai = arei/e(3
i), i = 1,2,

for all r ∈ R.
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Proof. For the first assertion, the definition gives us1i3(r) = 3i(eir/e) ⊂
3(r), so1i ∈ a0(3). Sincear (3) is a bimodule overa0(3), the first two relations
are then consequences of the Lemma. The third follows from (2.6). 2
2.10. We now take a finite-dimensionalF -vector spaceV , with A = EndF (V ),
and form the characterψA = ψF ◦ trA/F of A, as in our list of general notations. If
S is a subset ofA, we write

S∗ = {y ∈ A:ψA(xy) = 1, x ∈ S}.
PROPOSITION. Let V be a finite-dimensionalF -vector space and3 a lattice
sequence inV . We then have

an(3)
∗ = a1−n(3), n ∈ Z. (2.10.1)

Proof.Abbreviatee = e(3), and letW be anF -vector space of dimensione. Let
3W be astrict lattice sequence inW of periode. SetX = V ⊕W ,3X = 3⊕3W .
The lattice sequence3X is then strict of periode. Proposition 2.9 gives us the
relation

am(3) = am(3X) ∩ EndF (V ) = 1V am(3X)1V

for all m ∈ Z, where1V denotes the obvious projectionX→ V .
Next, we writeAX = EndF (X) and useψF to define the analogue of the ‘star’

operation inAX:

S† = {y ∈ AX:ψAX(xy) = 1, x ∈ S},
whereS ⊂ AX andψAX = ψF ◦ trAX/F . If S is anoF -lattice, we haveS† ∩ A =
(1V S1V )∗. Since3X is strict, we can use [2] p. 190 to get

an(3X)
† = a1−n(3X), n ∈ Z.

Thus

a1−n(3) = an(3X)
† ∩ EndF (V )

= (1V an(3X)1V )∗

= an(3)
∗

as required. 2
Remark. The relation (2.10.1) doesnot hold for real indices. Indeed, we have

ar (3)
∗ = a−r (3), r ∈ R, r 6∈ Z. (2.10.2)
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3. Split Strata

We need to generalize the notion of stratum (as in [5] Chapter 1) to the context of
lattice sequences. The main result is Theorem 3.7, together with its Corollary 3.9;
this is the first real step in our construction of semisimple types.

3.1. LetV be a finite-dimensionalF -vector space and putA = EndF (V ). A
stratum in A is now a quadruple[3,n, s, b], where3 is anoF -lattice sequence
in V , n ∈ Z, s ∈ R with s < n, andb ∈ a−n(3). Two strata[3,n, s, bi ] are
equivalent, denoted[3,n, s, b1] ∼ [3,n, s, b2], if b1 ≡ b2 (moda−s(3)). To all
intents and purposes therefore, there is no real distinction between[3,n, [s], b]
and[3,n, s, b], but it will be useful to have the more general grading structure.

A stratum denoted[A, n,m, b] in [5] (with m,n ∈ Z) is the same as what we
here call[3A, n,m, b], where3A denotes the strict lattice sequence determined
by the hereditary orderA. We shall, however, continue to use the notation of [5]
alongside its extension to lattice sequences: this is useful when we are working
with strict lattice sequences and wish to emphasize the fact.

3.2. As in the standard case, we can define thecharacteristic polynomialϕb(X) ∈
kF [X] of a stratum[3,n, s, b]. To do this, we need to choose a prime elementπF
of F , and we writee = e(3), g = gcd(n, e). The elementb0 = π

n/g

F be/g then
lies in a0(3). Its characteristic polynomial as an endomorphism ofV is monic
and lies inoF [X]; we defineϕb(X) as the reduction modpF of this characteristic
polynomial. We observe thatϕb(X) depends only on the equivalence class of the
stratum[3,n, n−1, b] or, equivalently, that of[3,n, n− ε, b] for any 1> ε > 0.

We have to remember here the possibilitya−n(3) = a1−n(3). If this happens
and we have a stratum[3,n, n−1, b], then the elementb0 above lies ina1(3) and
ϕb(X) = XN , whereN = dimFV .

3.3. LetV be a finite-dimensionalF -vector space; we writeA = EndF (V ),G =
AutF (V ). Let3 be a lattice sequence inV , as in Section 2. We write

u(3) = u0(3) = a0(3)
×,

ur (3) = 1+ ar (3), r ∈ R, r > 0.

If A denotes the hereditary order inA defined by the lattice chainL3, i.e., A =
a0(3), we haveu(3) = U(A). If P = a1(3) is the radical ofA, we further have
ur (3) = U1(A) = 1+P when 0< r 6 1.

The set{un(3): n ∈ Z, n > 1} gives a filtration of the parahoric subgroupU(A)
ofG by open normal subgroups; this, however, is not usually the standard filtration
of U(A) by the principal congruence subgroupsUn(A) = 1+Pn, n > 1.

3.4. Now letx ∈ G = AutF (V ), and abbreviateν = ν3(x), ν′ = ν3(x
−1)

(notation of 2.7). Forr ∈ R, we have by definition

3(r) = x−1x3(r) ⊂ x−13(r + ν) ⊂ 3(r + ν + ν′),
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whenceν + ν′ 6 0. We haveν + ν′ = 0 if and only if the containments above are
equalities for allr. We say thatx is 3-invertible if it satisfies this condition, i.e.,
ν3(x

−1) = −ν3(x).
PROPOSITION.

(i) Letx ∈ G. Thenx is3-invertible if and only ifx3(r) = 3(r+ ν3(x)), for all
r ∈ R.

(ii) If x ∈ G is 3-invertible andν = ν3(x), we havexan(3) = an(3)x =
an+ν(3), for all n ∈ Z.

(iii) The setK(3) of3-invertible elements ofG is a subgroup ofG which normal-
izes and containsu(3).

Proof. Immediate. 2
Remarks. (i) The lattice chainL3 determined by3 is certainly stabilized by

K(3), in the sense thatgL ∈ L3 wheneverg ∈ K(3) andL ∈ L3. ThusK(3) is
contained in theG-stabilizer ofL3. TheG-stabilizer ofL3 is the group

K(A) = {x ∈ G: x−1
Ax = A},

whereA is the hereditary ordera0(3) defined byL3. (We recall thatK(A) is also
theG-normalizer of the groupU(A) = u(3).) We thus have

K(A) ⊃ K(3) ⊃ F×U(A),
but, in general, both containments here may be strict.

(ii) The definitions imply thatK(3) normalizes the filtration subgroupsur(3)
or, equivalently, the latticesar (3), r > 0. Proposition 2.5 shows that we can
recover the lattice sequence3, up to a translation, from the lattice-valued function
n 7→ an(3), n ∈ Z, n > 1, whence it follows thatK(3) = ⋂

r>0 NG(ur (3)),
where N denotes normalizer.

3.5. We now return to the extended notion of stratum 3.1.

PROPOSITION.Let [3,n, s, b] be a stratum. Then:

(i) If some elementb′ ∈ b + a1−n(3) is3-invertible withν3(b′) = −n, then we
have(a)a1−n(3) 6= a−n(3), and(b) b+a1−n(3) = bu1(3) and every element
of this set is3-invertible of valuation−n.

(ii) The stratum[3,n, s, b] satisfies the properties in(i) if and only if the charac-
teristic polynomialϕb(X) is not divisible byX.

The proof is immediate. We temporarily call strata satisfying these conditions
nondegenerate.

3.6. We shall need a notion ofdirect sumfor strata, corrresponding to the direct
sum operation on lattice sequences given in 2.8.
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For i = 1,2, let V i be a finite-dimensionalF -vector space and[3i, ni, ni −
1, bi] a stratum in EndF (V i). We can form the lattice sequence3 = 31 ⊕ 32 in
V = V 1 ⊕ V 2. Settinge = e(3) = lcm (e(31), e(32)), n = max nie/e(3i), we
get a stratum[3,n, n− 1, b] in EndF (V ), whereb = b1⊕ b2.

In this situation, it is easy to compute the characteristic polynomialϕb(X) of
the stratum[3,n, n− 1, b]:

LEMMA. Assume (by symmetry) thatn1/e(3
1) > n2/e(3

2).

(i) If n1/e(3
1) = n2/e(3

2), we haveϕb(X) = ϕb1(X)ϕb2(X).
(ii) If n1/e(3

1) > n2/e(3
2), we haveϕb(X) = ϕb1(X)X

m, wherem = dim(V 2).
In this case, moreover, we have[3,n, n− 1, b] ∼ [3,n, n− 1, b1 ⊕ 0].

We will be particularly interested in a special case of the foregoing. The follow-
ing notation will be standard for some time:

NOTATION. For i = 1,2, V i is a finite-dimensionalF -vector space andV =
V 1 ⊕ V 2. We let3i be a lattice sequence inV i, and set3 = 31 ⊕ 32. We write
V = V 1⊕ V 2 andA = EndF (V ). Letbi ∈ Ai = EndF (V i) satisfy

(i) ν31(b1) = −n1 < 0 andb1 is31-invertible;
(ii) eitherν32(b2) > −n1e(3

2)/e(31), or else all the following conditions hold:

(a) ν32(b2) = −n2 = −n1e(3
2)/e(31),

(b) b2 is32-invertible,
(c) gcd(ϕb1, ϕb2) = 1.

We use our standard block matrix notationA =⊕Aij , and put

b = b1⊕ b2 =
(
b1 0

0 b2

)
.

As above, we haveν3(b) = −n = −n1e (3)/e(3
1) ∈ Z. For this value ofn, we

define a pair ofoF -lattices inA:

h1 =
(
(an)

11 (a0)
12

(an+1)21 (an)22

)
,

h2 =
(
(an+1)

11 (a0)
12

(an+1)21 (an+1)22

)
.

(3.6.1)

We also putHi = 1+ hi, i = 1,2.

PROPOSITION.

(i) The setsHi, i = 1,2, are compact open subgroups ofG.
(ii) The mapx 7→ 1+ x induces an isomorphism ofh1/h2 withH1/H2.
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(iii) We have

h∗1 =
(
(a1−n)11 (a−n)12

(a1)21 (a1−n)22

)
,

h
∗
2 =

(
(a−n)11 (a−n)12

(a1)21 (a−n)22

)
.

Proof.These are straightforward computations, based on 2.9 and 2.10.2
We takeψF , ψA as usual, and form the characterψb of the groupH1. Thus

ψb(1+ x) = ψA(bx), x ∈ h1. (3.6.2)

This is indeed a character ofH1 which is trivial onH2 by (2.10).

3.7. We use the notation introduced in 3.6. We writeIG(ψb|H1) for the set of
g ∈ G which intertwine the characterψb of the groupH1. We also writeGi =
AutF (V i) andM = G1 ×G2, regarded as a Levi subgroup ofG = AutF (V ). We
also tend to identify, e.g.,G1 with its canonical imageG1 × {1} in M.

THEOREM. We haveIG(ψb|H1) ⊂ H1 ·M ·H1.
Proof. The characterψb of H1, and hence also the intertwining setI (ψb) =

IG(ψb|H1), depends only on the equivalence class of stratum[3,n, n − 1, b]. We
can therefore assume that, when we are in case (ii) of Notation 3.6, we actually
haveb2 = 0. The elementb then is3-invertible if and only ifb2 6= 0.

We need a sequence of preliminary results.

PROPOSITION.Under the hypotheses above, letc ∈ a1−n(3) ∩A21 and define a
map∂c:A12→ A12 by∂c(x) = b1x−xb2+xcx, x ∈ A12. Then∂c(a0(3)∩A12) =
a−n(3) ∩ A12.

Proof.We need some lemmas.

LEMMA 1. The map∂ = ∂0 mapsar (3) ∩ A12 ontoar−n ∩ A12, for all r.
Proof.It follows from the31-invertibility of b1 thatar−n(3)∩A12 = b1(ar (3)∩

A12). This gives the result in the caseb2 = 0. Suppose then thatb2 6= 0, and
consider the mapδ: x 7→ b−1

1 xb2. We have

b−1

(
1 x

0 1

)
b =

(
1 b−1

1 xb2

0 1,

)

and sinceb is3-invertible, it follows that our mapδ takesar∩A12 to itself. We con-
sider thee0-th power of this map, wheree0 = e/gcd(n, e). Since the polynomials
ϕbi are relatively prime, no eigenvalue ofδe0 (in some splitting field) is a 1-unit. It
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follows that the mapx 7→ x−δ(x) has only unit eigenvalues (in the splitting field),
and therefore mapsar (3) ∩ A12 bijectively to itself. The lemma now follows.2
LEMMA 2. We have∂c(a0(3) ∩ A12) + ak(3) ∩ A12 = a−n(3) ∩ A12, for all
integersk > −n.

Proof.Sincec ∈ a1−n(3)∩A21, we have∂c(a0(3)∩A12) ⊂ a−n(3)∩A12, and
the lemma holds ifk = −n.

We therefore assume that the assertion holds for some fixed integerk > −n.
Takey ∈ a−n(3) ∩ A12 and choosex ∈ a0(3) ∩ A12, z ∈ ak(3) ∩ A12 such that
∂c(x)+ z = y.

By Lemma 1, there existsx1 ∈ ak+n(3) ∩ A12 such that∂0(x1) = z. Also,
x1cx1 ∈ a2(k+n)+1−n (3) ∩ A12 ⊂ ak+1(3) ∩A12, while the elementsxcx1, x1cx

both lie inak+1 (3)∩A12. It follows that∂c(x + x1)− y ∈ ak+1(3) ∩A12, and the
lemma holds by induction. 2
Thus, if y ∈ a−n(3)∩ A12 andk > 1, there existsyk ∈ a0(3)∩ A12 such that
∂c(yk) − y ∈ ak(3) ∩A12. The seta0(3)∩ A12 is compact, so{yk} has a con-
vergent subsequence{yki }. The limit, call it y∞, of this subsequence then satisfies
∂c(y∞) = y, and we have proved the Proposition. 2

We now prove the Theorem. We writeM for the algebraA1 ⊕ A2 ⊂ A, so that
M =M×. We first need:

LEMMA 3. Let x = b + y, y ∈ h∗1. There existsh ∈ H1 such thathxh−1 ∈
b + h∗1 ∩M.

Proof.We writex in the form

x =
(
b′1 a

c b′2

)
.

For an elementu ∈ A12, we have(
1 u

0 1

)(
b′1 − uc 0

c b′2+ cu

)(
1 −u
0 1

)
=
(
b′1 ∂c(−u)
c b′2

)
.

The elementa above lies in(a−n)12, so we can apply the Proposition to get an
elementu ∈ (a0)

12 such that∂c(−u) = a. The matrix 1+ u lies inH1, so we have
reduced to the case wherex is lower triangular,

x =
(
b′1 0

c b′2

)
.

LEMMA 4. The mapy 7→ yb′1−b′2y, y ∈ A21, induces an isomorphism(an+r )21 ∼=
(ar )

21 for all r ∈ Z.
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Proof. It is enough to show that the map is surjective. The caseb′1 = b1,
b′2 = b2 is essentially identical to Lemma 1, so we omit the details. In general,
we write δ, δ′ for the mapsy 7→ yb1 − b2y, y 7→ yb′1 − b′2y respectively. For
y ∈ (an+r )21, we haveδ′(y) ≡ δ(y) (mod (ar+1)

21, from which it follows that
(ar )

21 = δ′(an+r )21+ (ar+1)
21. The lemma follows immediately. 2

In particular,y 7→ yb′1 − b′2y gives a surjection(an+1)
21� (a1)

21. We have(
1 0

y 1

)(
b′1 0

c b′2

)(
1 0

−y 1

)
=
(

b′1 0

c + yb′1 − b′2y b′2

)
.

For suitable choice ofy ∈ (an+1)
21, this matrix is diagonal, while 1+y ∈ H1. This

proves Lemma 3. 2
We now prove the theorem. For elementary reasons, an elementg ∈ G intertwines
the characterψb if and only if g−1(b+ h∗1)g ∩ (b+ h∗1) 6= ∅. Thus, ifg intertwines
ψb, we have elementsx, y ∈ h∗1 such thatg−1(b + x)g = b + y. Lemma 3 allows
us to replaceg by h1gh2, hi ∈ H1, and assume thatx, y ∈ h∗1 ∩M. We put

b + x =
(
b′1 0

0 b′2

)
, b + y =

(
b′′1 0

0 b′′2

)
,

and write out the equation(b+ x)g = g(b+ y). Comparing (1,2)-entries, we have
b′1g12 = g12b

′′
2. The upper triangular analogue of Lemma 4 shows that the map

A12 → A12 given byz 7→ b′1z − zb′′2 is injective, sog12 = 0. Likewiseg21 = 0,
whenceg ∈ M as required. 2
3.8. We will also need an approximate version of Theorem (3.7). For this, we
simplify our block matrix notation (3.6.1) in the obvious way.

COROLLARY. In the situation of3.7, let q be an integer with0 6 q 6 n, and
define a group by

qH1 = 1+
(

an aq

an+1 an.

)
An elementg ∈ G then intertwines the characterψb|qH1 if and only if there exist
x, y ∈ (an+1−q)21 such that(1+ x)g(1+ y) intertwinesψb|H1. In other words,

IG(ψb|qH1) ⊂
(

1 0

an+1−q 1

)
H1MH1

(
1 0

an+1−q 1

)
.

Proof. It follows from 3.7 Lemma 1 that, under the conditions (3.6), the group
1 + (an+1−q)21 acts transitively (by conjugation) on the set of characters ofH1
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agreeing withψb on the subgroupqH1. Thus, ifξ temporarily denotes the repres-
entation ofH1 induced byψb|qH1, theG-intertwining ofξ is:

(1+ (an+1−q)21)I (ψb)(1+ (an+1−q)21).

This is the same as theG-intertwining ofψb|qH1, so the result follows. 2
3.9. We continue in the situation of 3.7. We now give a corollary of Theorem 3.7,
which is one of our major results.

We suppose given, for eachi, a subgroupKi of u(3i) containingH1 ∩Gi , and
an irreducible representation%i of Ki whose restriction toKi ∩H1 is a multiple of
ψb there. It will also be useful to have the notation

Pu =
(
A11 A12

0 A22

)
∩G, Nu = 1+ A12,

P` =
(
A11 0

A21 A22

)
∩G, N` = 1+ A21.

In these circumstances, we have the following. (For the notion of cover, see the
Introduction above or [9] (8.1).)

COROLLARY.

(i) The setK = (K1×K2) ·H1 is a group.
(ii) There is a unique irreducible representation% ofK which is trivial onK ∩Nu,

K ∩N`, and whose restriction toK1×K2 is equivalent to%1⊗ %2.
(iii) The pair(K, %) is aG-cover of(K1×K2, %1⊗ %2).

Proof. We haveK1 × K2 ⊂ u(3) ∩ M, from which it follows that the group
K1×K2 normalizesH1. Assertion (i) follows, and assertion (ii) is immediate.

To prove (iii), we first have to check that there is an Iwahori decomposition

K = K ∩N` ·K ∩M ·K · Nu,

and this follows from the definition ofK. The outer factors here are certainly
contained in the kernel of%.

SincePu, P` are the only parabolic subgroups ofG with Levi componentM, it
remains only to verify the following. (As usual, we writeH(G, %) for the convo-
lution algebra of compactly supported%-spherical functions onG.)

LEMMA. LetπF be some prime element ofF , and define

ζ =
(
πF 0

0 1

)
∈ M.
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Let f ∈ H(G, %) have supportKζK. Thenf is invertible inH(G, %) and its
inverse is supported onKζ−1K.

Proof. First we note that the functionf is uniquely determined, up to scalar
constant factor, by the condition suppf = KζK. We may as well assume that
f (ζ ) is the identity map (denote it1) on the space underlying the contragredient of
%. Likewise, there is a unique functionf ′ ∈ H(G, %) with supportKζ−1K such
thatf ′(ζ−1) = 1. We computef ′ ? f .

The support of this convolution is contained in

Kζ−1KζK = K · ζ−1Kζ ∩Nu ·K.
Now let x ∈ Nu intertwine%. By the Iwahori decomposition forK and 3.7, there
existk1, k2 ∈ H1 ∩ Nu such thatk1xk2 ∈ P`. We deduce that the intertwining of%
in Nu is contained inK ∩Nu = H1∩Nu. In other words, the support off ′ ?f must
be contained inK. A simple computation shows thatf ′ ? f (1G) is of the formc1,
for somec > 0. Thusf is left invertible inH(G, %). It follows thatf is invertible
(cf. [9] proof of (7.14)), with inversec−1f ′. 2

4. Ps-Characters and Endo-Classes

In this section, we are concerned only with the standard situation relating to lattice
chains, rather than lattice sequences. We recall one of the basic concepts of [5],
namely that ofsimple character( ibid. Chapter 3), and some developments of the
idea in [4].

4.1. LetE/F be a finite field extension, andβ ∈ E× an element such thatE =
F [β]. The algebraA(E) = EndF (E) contains a unique hereditaryoF -orderA(E)
with the propertyK(A(E)) ⊃ E×; indeed,A(E) is the hereditary order defined by
the lattice chain{pjE : j ∈ Z}. Attached to this is the quantityk0(β,A(E)) ∈ Z ∪
{∞}, whose definition we now recall. WriteP(E) for the radical ofA(E), andaβ
for the mapx 7→ βx− xβ, x ∈ A(E). Thenk0(β,A(E)) is the least integerk such
thatP(E)k ∩ aβ(A) ⊂ aβ(A(E)), with the understanding thatk0(β,A(E)) = −∞
in the caseE = F . (See [5] (1.4.11).)

Here, we prefer to use the briefer notation

k0(β,A(E)) = kF (β).
Write νE for the standard additive valuation onE. We thus have eitherkF (β) =
−∞ or elsekF (β) > νE(β).

More generally, ifV is a finite-dimensionalE-vector space andA is a hereditary
oF -order in EndF (V ) with E× ⊂ K(A), we can definek0(β,A) in the same way
loc. cit. We have the relation

k0(β,A) = kF (β)e(A|oF )/e(E|F).
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4.2. In the language of [4] Section 1, asimple pair(k, β) overF consists of an
integerk and a nonzero elementβ generating a finite field extensionE of F such
that

−k > max{kF (β), νE(β)}.

Let (k, β) be a simple pair overF with k > 0. LetV be some finite-dimensionalF -
vector space, and let[A, n,m, β] be a simple stratum ([5] (1.5)) inA = EndF (V ),
with m > 0. Thus, in particular,m < −k0(β,A) and the simple character set
C(A,m, β) of [5] (3.2) is defined. We recall that the elements ofC(A,m, β) are
certain abelian characters of the groupHm+1(β,A) defined in [5] (3.1).

It will be convenient to extend our indexing as in earlier sections. Forr ∈ R,
r > 0, we define

Hr(β,A) = H−[−r](β,A), C(A, r, β) = C(A, [r], β).

For i = 1,2, let Vi be a finite-dimensional vector space overE = F [β],
and let[Ai , ni,mi, β] be a simple stratum in EndF (Vi) with mi > 0. Setei =
e(Ai|oF )/e(E|F). Suppose we have[

m1

e1

]
=
[
m2

e2

]
= k.

By [5] (3.6.14) there is a canonical bijection

τA1,A2,β :C(A1,m1, β)
≈- C(A2,m2, β). (4.2.1)

For anyr ∈ R, we have

[ [r]
e1

]
=

[
re2
e1

]
e2

 ,
so 4.2.1 gives a bijectionτA1,A2,β :C(A1, r, β) ∼= C(A2, re2/e1, β) for any real
r > 0.

4.3. The bijections of 4.2.1 exhibit a strong coherence property which is most
conveniently expressed via a notion from [4] Section 8.

We start with a simple pair(k, β) in which k > 0, and writeE = F [β]. We
suppose given a triple(V ,B,m), where

(i) V is a finite-dimensionalE-vector space,
(ii) B is a hereditaryoE-order in EndE(V ),
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(iii) m is an integer such that[m/e(B|oE)] = k.
To this data, we can attach the hereditaryoF -orderA in EndF (V ) defined by the
same lattice chain asB. If we putn = −νE(β)e(B|oE), the stratum[A, n,m, β]
is simple. Moreover, for any two choices ofm satisfying (iii), the simple character
setsC(A,m, β) are in canonical bijection (4.2.1).

A ps-character(attached to the simple pair(k, β), k > 0) is then a triple
(2, k, β), where2 is a simple-character-valued function as follows: to each triple
(V ,B,m) as above,2 attaches a simple character2(A) ∈ C(A,m, β). We call
this the realization of2 on A of levelm. These realizations are subject to the
following coherence condition: if we have two realizations2(Ai) of (2, k, β) on
ordersAi, i = 1,2, they are related by

2(A2) = τA1,A2,β2(A1).

Thus, for example,2(A2) is completely determined by2(A1) (and the element
β). Given the simple pair(k, β), the ps-character(2, k, β) is therefore determined
by any one of its realizations.

Now suppose we are given ps-characters(2i, ki, βi) overF , i = 1,2. We say
they areendo-equivalent,denoted

(21, k1, β1) ≈ (22, k2, β2),

if there exists anF -vector spaceV , hereditaryoF -ordersAi in EndF (V ), and real-
izations2i(Ai ) of the2i of the same level,such thatA1

∼= A2 asoF -orders, and
such that the simple characters2i(Ai) intertwine (hence, by [5] Theorem 3.5.11,
are conjugate) in AutF (V ). We then know ([4] (8.7)) that any realizations of the
given ps-characters on isomorphic orders in the same endomorphism algebra must
intertwine.

In particular, endo-equivalence is an equivalence relation on the set of ps-
characters overF . We refer to the equivalence classes asendo-classesof simple
characters.

Comment. This definition of endo-equivalence is not quite the same as that
given in [4]; however, it is easy to see (using [4] (8.3)) that the two definitions are
equivalent.

4.4. It is convenient to extend this terminology by admitting a trivial ps-character
20: if A is a hereditaryoF -order in some EndF (V ), the realization of20 on A is
the trivial character ofU1(A). This ps-character20 is not endo-equivalent to any
nontrivial2.

4.5. Let π be an irreducible supercuspidal representation of the groupG =
AutF (V ). Thenπ contains a maximal simple type(J, λ), which is uniquely de-
termined up toG-conjugacy ([5] Theorem 8.4.1).
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If π contains the trivial character ofU1(A), for some hereditaryoF -orderA in
EndF (V ), we say thatπ is of level zeroand setΘπ = {20}.

Otherwise, there is a simple stratum[A, n,0, β] in EndF (V ) such thatJ =
J (β,A) and a simple characterθ ∈ C(A,0, β) such thatλ|H 1(β,A) is a multiple
of θ . This characterθ determines a ps-character(2,0, β) and hence an endo-class
which we denoteΘπ . The uniqueness of(J, λ) implies that the endo-classΘπ

depends only on the equivalence class ofπ . Indeed, replacingπ by π ⊗ χ , where
χ is an unramified quasicharacter, has no effect onΘπ and so:

PROPOSITION. The endo-classΘπ defined above depends only on the inertial
equivalence class[G,π ]G ∈ B(G).

4.6. We need to recall an ‘approximation’ property of simple characters. We are
given simple strata[A, n,0, βi ] in someA = EndF (V ), i = 1,2, and an integer
m such that 16 m < n. We further have a simple stratum[A, n,m, γ ], such that
Hm+1(γ,A) = Hm+1 (βi,A) andC(A,m, γ ) = C(A,m, βi). (This arises if, for
example,[A, n,m, γ ] ∼ [A, n,m, βi ].)

In these circumstances, one knowsHm(γ,A) = Hm(βi,A) ([5] (3.1.9) plus [8]
2.11). Thus, if we take charactersθi ∈ C(A,m−1, βi), ϑ ∈ C(A,m−1, γ ) which
agree onHm+1, we get elementsci ∈ P−m (whereP is the radical ofA) such
that θi = ϑψci , for eachi. We letBγ = A ∩ EndF [γ ](V ), and we choose a tame
corestrictions onA relative toF [γ ]/F (see [5] Section 1.3). Thus we get strata
[Bγ ,m,m− 1, s(ci )] in EndF [γ ](V ).

PROPOSITION. For i = 1,2, the stratum[Bγ ,m,m − 1, s(ci )] is either null
or equivalent to a simple stratum. The strata[Bγ ,m,m − 1, s(ci )] have the same
characteristic polynomials (relative to some prime element ofF [γ ]) if and only if
the ps-characters defined by the charactersθi are endo-equivalent.

This follows from [8] 2.8 and the observation [5] (proof of (2.6.1)) that the
conjugacy class of a simple stratum is effectively determined by its characteristic
polynomial.

5. Simple Characters for Lattice Sequences

In this section we generalize the notion of simple character to the context of lattice
sequences. To do this, we require a substantial technical result (5.2 below) general-
izing [5] (7.1.19). First, however, we need to extend some basic concepts from [5]
Chapter 3.

5.1. LetE/F be some finite field extension, and let3 be anoE-lattice sequence
in a finite-dimensionalE-vector spaceV . Then3 is also anoF -lattice sequence in
theF -spaceV , and the extension of3 to a function onR, as in 2.6, is independent
of the base field. We have the period relationeF (3) = eE(3)e(E|F). We write
ar (3), r ∈ R, for theoF -lattices inA = EndF (V ) defined in 2.6. Using the same
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definitions relative to the base fieldE, we get a sequence ofoE-latticesbr(3) in
B = EndE(V ) along with the relationbr (3) = ar (3) ∩ B, r ∈ R.

Suppose we are now given an elementβ ∈ E× with E = F [β]. If 3 is
an E-lattice sequence, we can then define an integerk0(β,3) by k0(β,3) =
kF (β)eE(3).

DEFINITION. LetV be a finite-dimensionalF -vector space, and setA = EndF (V ),
G = AutF (V ). A stratum[3,n, r, β] in A is simple if

(i) the algebraE = F [β] is a field, and3 is anoE-lattice sequence;
(ii) ν3(β) = −n;
(iii) r < −k0(β,3).

Note that condition (iii) here is equivalent to[r] < −k0(β,3), so this definition is
consistent with the standard one [5] (1.5) for lattice chains.

5.2. We can now state the central result of the section. We first need a system of
notation; this will remain standard for some time.

HYPOTHESES.LetE/F be a finite field extension. For each integeri, 06 i 6 t ,
letV i be a finite-dimensionalE-vector space and3i anoE-lattice sequence inV i .
Write

ei = eF (3i), 16 i 6 t, e = eF (30).

We assume that:

(a) the lattice sequence30 is strict;
(b) ei dividese, 16 i 6 t .
We set

V = V 0⊕ V 1⊕ · · · ⊕ V t,

3 = 30⊕31⊕ · · · ⊕3t,

A = EndF (V ), G = AutF (V ),

A = End0
oF
(L3), P = radA,

B = EndE(V ),

B = A ∩ B, Q = P ∩ B.

(5.2.1)

Thus3 is a strictoE-lattice sequence inV whoseoF -period ise. (We note here
that the definition of direct sum of lattice sequences is independent of the choice
of base field.)

In this situation, we can use our standard block notation,

Aij = HomF (V
j , V i), 06 i, j 6 t.
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Thus we get a parabolic subgroupPu of G by Pu = G ∩ (∐i≤j Aij ) with Levi
componentM = ∏t

i=0 AutFV i and unipotent radicalNu = 1+ ∐i<j A
ij . We

write P` = MN` for the opposite ofPu relative to the Levi factorM.

PROPOSITION.Suppose we have an elementβ such thatE = F [β] and integers
n > m > 0 such that[A, n,m, β] is a simple stratum inA. Letθ ∈ C(A,m, β).

(i) The groupsHm+1 = Hm+1(β,A) andJm+1 = Jm+1(β,A) then have Iwahori
decomposition relative to the pair(M,Pu):

Hm+1 = Hm+1 ∩N` ·Hm+1 ∩M ·Hm+1 ∩Nu,

Jm+1 = Jm+1 ∩N` · Jm+1 ∩M · Jm+1 ∩Nu.

(ii) The charactersθ |(Hm+1 ∩Nu), θ |(Hm+1 ∩N`) are both trivial.
(iii) We haveHm+1(β,A) ∩ AutF (V 0) = Hm+1(β,A0), whereA0 = A(30).

Moreover, the characterθ0 = θ |Hm+1(β,A0) lies in C(A0,m, β) and indeed
θ0 = τA,A0,β(θ).

Proof.We haveHm+1 = 1+Hm+1, whereHm+1 = Hm+1 (β,A), in the notation
of [5]. The latticeHm+1 is a (B,B)-bimodule (see [5] (3.1.9)) and the canonical
projectionV → V i (i.e., the one with kernel

∐
j 6=i V

j ) lies in B, as in (2.9).
Thus Hm+1 is the direct sum of its intersections with theAij , and the Iwahori
decomposition follows immediately. The proof forJm+1 is identical.

The proof of the second assertion requires some technical preparation, which
we give in the next section.

5.3. We generalize the notion of ‘(W,E)-decomposition’ from [5] (1.2). For this
purpose, we fix a finite field extensionE/F and a finite-dimensionalE-vector
spaceV . Consistent with (5.2.1), we putB = EndE(V ),A = EndF (V ).

We also writeA(E) for theF -endomorphism ring ofE (viewed asF -vector
space) andA(E) for the unique hereditaryoF -order inA(E) which is normalized
byE×; the orderA(E) is attached to the lattice chain{pkE : k ∈ Z} in E.

LetW be someF -subspace ofV such that the canonical mapE ⊗F W → V is
an isomorphism. This induces an algebra isomorphismA(E)⊗F EndF (W) ∼= A,
and so givesV the structure of leftA(E)-module.

We observe thatA(E) is, in a natural way, a rightE-space. The trivial obser-
vationsA(E) ⊗E E = A(E), E⊗F EndF (W) = B combine with the algebra
isomorphism above to give an isomorphism

A(E)⊗E B ∼= A (5.3.1)

of (A(E), B)-bimodules.
Next, let3 be anoE-lattice sequence inV . We can view this as aoF -lattice

sequence inV , and define the latticesar (3) in A, br(3) in B as in 5.1.
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LEMMA. Suppose that the vector spaceW has anF -basis{w1, w2, . . . , wm} with
the following property: forj ∈ Z, there are integersj (k), 16 k 6 m, such that

3(j) = p
j (1)
E w1⊕ p

j (2)
E w2⊕ · · · ⊕ p

j (m)

E wm.

The isomorphism(5.3.1) then restricts to an isomorphismA(E) ⊗oE br (3) ∼=
ar (3), for everyr ∈ R.

Proof. Suppose first that the lattice sequence3 is strict. The assertion then
strengthens [5] (1.2.10), but the same proof applies. In the general case, letA =
A(3), andB = A ∩ B. By the first case, we haveA(E) ⊗B = A. On the other
hand, we certainly haveA(E) ⊗ br ⊂ ar . The result then follows on comparing
indices via Proposition 2.4. 2
If the subspaceW of V satisfiesE ⊗W ∼= V and the conditions of the lemma, we
say that it is ingeneral position relative to3 overE. When this holds, we have
K(A(E))⊗ 1⊂ K(3).

We now take an elementβ such thatE = F [β] and a simple stratum[3,n, r, β]
in A.

COROLLARY. Let n > s > r, s ∈ R. There exists a simple stratum[3,n, s, γ ]
in A which is equivalent to[3,n, s, β]. Moreover, given a(W,E)-decomposition
A = A(E) ⊗ B withW in general position relative to3 overE, we may choose
γ ∈ K(A(E))⊗ 1.

Proof. The argument is exactly the same as that given on p. 66 of [5], in the
proof of ibid. Theorem (2.4.1). 2
We now complete the proof of Proposition 5.2. For eachi, we choose anF -
subspaceWi of V i in general position relative to3i overE. The space

∑
i W

i =
W ⊂ V is then in general position relative to3 overE. Using thisW to decompose
A asA(E)⊗B, the canonical projectionsV → V i then commute with the implied
action ofA(E) on V . Given this, we simply imitate the proof of [5] (7.1.19) to
obtain the result. 2
5.4. We continue in the same situation as 5.2,but we assume for the moment that
t = 1. We now define a filtered latticeH(β,31) in A11 by

Hr (β,31) = Hre/e1(β,A) ∩ A11. (5.4.1)

(Observe that this is consistent with 2.9). We can do the same thing withJ, to
obtain groups

Hr(β,31) = 1+ H
r (β,31), J r(β,31) = 1+ J

r (β,31),

for realr > 0. We also get a groupJ (β,31) = J(β,31) ∩u(31). We remark that
the latticeH0(β,31) is a ring, even anoF -order, and theHr (β,31) are ideals of
H(β,31): this follows from the corresponding property for strict lattice sequences.
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LEMMA. In the situation of5.2,suppose thatt = 1 and that the lattice sequence
31 is strict. LetA1 denote the hereditary order defined by31. We have:

(i) Hr (β,A) ∩ A11 = Hre1/e(β,A1);
(ii) for θ ∈ C(A,−(1 + [−r]), β), the characterθ1 = θ |Hre1/e(β,A1) lies in

C(A1,−(1+ [−re1/e]), β) andθ1 = τA,A1,βθ .

Proof.We recall that30 is strict of periode, and thate1 dividese. The method
of [5] (7.2) (see especially (7.2.18)) reduces us to the case wheree = e1, and that
case is treated inibid. (3.6.14). 2
PROPOSITION.The definitions above ofHr (β,31), Jr (β,31) depend only onβ
and the lattice sequence31. In particular, they are independent of the choice of the
strict lattice sequence30.

Proof.Suppose first that the lattice chain31 is strict. LetA1 denote the heredit-
ary oF -order defined by the lattice chainL31. The groupHr (β,31), as defined by
5.4.1, is the same asHr (β,A1) for all r, by the lemma.

Reverting to the general situation, suppose we have another strictoE-lattice
sequencē30 with oF -periodē divisible bye1. We can defineHr (β,31) relative to
3̄0. We have to show that these two definitions coincide. To do this, we choose a
strict oE-lattice sequencẽ30 of oF -periodẽ divisible by bothe andē. We consider
the strictoE-lattice chain3′ = 3̃0 ⊕ 3̄0 ⊕30. We can form3′′ = 3′ ⊕31, and
write A′′ for the associated hereditaryoF -order. Our two definitions ofHr (β,31)

are then both equal to the intersection ofHrẽ/e1 (β,A′′) with EndF (V 1). 2
5.5. In the situation of 5.2, we consider the charactersθ |Hm+1(β,A)∩ AutF (V i),
0 6 i 6 t , whereθ ∈ C(A,m, β). Again it is only the caset = 1 which
immediately interests us. Let us assume for the moment thatthe lattice chain
31 is strict. We then haveHm+1(β,A) ∩ AutF (V 1) = Hm1+1(β,A1), where
A1 = End0

oF
(L31), andm1 is the integer[me1/e]. Lemma 5.4 shows that the

characterθ1 = θ |Hm1+1 (β,A1) lies inC(A1,m1, β) and thatθ1 = τA,A1,β (θ).
We can perform this same construction without the hypothesis that31 is strict.

To express its invariance properties, it is convenient to use the notion ofps-character
recalled in Section 4. In those terms, the same argument used to prove Proposi-
tion 5.4 gives us:

PROPOSITION.Use the notation of5.2,and sett = 1. Letθ ∈ C(A,m, β), and
let θ1 denote the restriction ofθ to the group

H(m+1)e1/e(β,31) = Hm+1(β,A) ∩ AutF (V
1).

The characterθ1 then depends only on the ps-character defined by(θ,m, β), and
not on the choice of30.
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If (2, k, β) denotes the ps-character defined by(θ,m, β), we can think ofθ1 as
therealization of2 on31, and use the notationθ1 = 2(31).

The processθ 7→ θ |Hre/e1(β,A)∩ AutF (V 1) defines a set of characters of
the groupHr(β,31). In the case wherer is not integral, we denote this set by
C(31, r, β). We extend to integer parameters by

C(31, r, β) = C(31, [r], β), r ∈ Rr Z.

This is consistent with the conventions of Section 4 for the standard case. Our
construction above then gives us a map

C(A, r, β)→ C(31, re1/e, β), r ∈ R,

which is surjective by definition.

5.6. We conclude by recalling and extending some more notation from [5]. Sup-
pose, for the moment, we have a simple stratum[A, n,m, β] in someA = EndF (V ),
wheren,m are integers withm > 0. WriteE = F [β], B = EndE(V ), B = A∩B.
If P denotes the Jacobson radical ofA, thenQ = P ∩ B is the radical ofB.

We writeaβ for the adjoint mapx 7→ βx −xβ, x ∈ A. We set

Nk(β,A) = {x ∈ A: aβ(x) ∈ P
k}, k ∈ Z.

We put r = −k0(β,A) and then setN(β,A) = N−r (β,A). This is a(B,B)-
bimodule, and anoF -lattice inA.

If we takeθ ∈ C(A,m, β), the setIG(θ) of g ∈ G = AutF (V )which intertwine
θ is ([5] (3.3.2))IG(θ) = (1+Mm) · B× · (1+Mm), where we have abbreviated

Mm =Mm(β,A) = Qr−mN(β,A)+ J

[
r+1

2

]
(β,A).

We extend this notation to a simple stratum[3,n,m, β] attached to a lattice
sequence3 in V . We choose a simple stratum[30, n,m, β], for a strict lattice
sequence30 in a spaceV 0, with e(30) = e(3); we form the strict lattice se-
quence3̃ = 30 ⊕ 3 and the simple stratum[3̃, n,m, β] in V 0 ⊕ V . Let Ã

be the hereditaryoF -order defined by3̃ andB̃ the correspondingoE-order. The
latticeMm(β, Ã) is then a(B̃, B̃)-bimodule and so its projection toA equals the
intersectionMm(β, Ã) ∩ A. We then defineMm(β,3) to be this projection. As a
direct consequence of the corresponding property for strict lattice sequences, we
get:

PROPOSITION. Let [3,n,m, β] be a simple stratum, for nonnegative integers
m,n. Seta = a0 (3), b = a ∩ B, in the notation above. Letθ ∈ C(3,m, β).
An elementx ∈ u (a) normalizes the pair(Hm+1(β,3), θ) if and only if x ∈
u(b)(1+Mm(β,3)).
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6. Relatively Split Strata

We seek a generalization of Corollary 3.9 to a certain class of extensions of simple
characters attached to lattice sequences. These are sharper versions of certain of
the ‘split types’ of [5] Chapter 8. The main definitions come in 6.1, and the main
result is Corollary 6.6, which gives the most important step in the proof of the Main
Theorem 1.5.

6.1. Fori = 1,2, we are given a simple stratum[3i, ni,0, β] in Ai = EndF (V i).
We form the lattice sequence3 = 31 ⊕ 32 in V = V 1 ⊕ V 2; we thus obtain
a simple stratum[3,n,0, β] in A = EndF (V ). We fix an integerm of the form
m = m1e(3)/e(3

1),m1 ∈ Z, 0< m < −k0(β,3). We write

A =
(
A11 A12

A21 A22

)
in our standard block matrix notation.

Let us abbreviatehq = Hq(β,3), b = b0(3), Mm = Mm(β,3) (in the
notation of 5.6). We consider the lattice

k =
(

hm b+Mm

hm+1 hm

)
. (6.1.1)

More precisely,k is the direct sum of the intersectionskij = k ∩ Aij , with k11 =
(hm)11 etc. In particular, the diagonal blocks are respectivelyHm1 (β,31), and
Hme(32)/e(3) (β,32).

The groupu(b)(1+Mm) normalizesHm = Hm(β,3) (as follows from [5]
(3.1.9)) and so the set

K = 1+ k (6.1.2)

is a compact open subgroup ofG = AutF (V ).

PROPOSITION. Let θ ∈ C(3,m, β) and chooseθ̃ ∈ C(3,m − 1, β) which
extendsθ . There exists a unique characterϑ of K which agrees withθ̃ on the
groupK ∩Hm(β,3) and is trivial on1+ (b+Mm)

12.
Proof. The uniqueness assertion is clear. To prove existence, it is enough to

treat the case where31 is a strict lattice sequence of period divisible bye(32): to
achieve this, we replace31 by 30 ⊕ 31, where30 is a suitable strict lattice se-
quence. This done, the assertion follows readily from the commutator calculations
in [5] Section 3.2. 2
6.2. We continue with the notation of 6.1. We now define a characterξ = ϑψb
of K, for a special kind of elementb as follows:
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NOTATION. Let s be a tame corestriction onA relative to the field extension
F [β]/F . Letbi ∈ a−m(3) ∩Aii , and setδi = s(bi ) ∈ b−m (3) ∩ Aii , i = 1,2. We
assume that the pair(δ1, δ2) satisfies the conditions of3.6 relative to the base field
E = F [β]. We put

b = b1⊕ b2 ∈ a−m(3), δ = s(b) = δ1⊕ δ2 ∈ b−m(3).

Note that the restriction ofs to Aii is again a tame corestriction onAii =
EndF (V i) relative toF [β]/F .

We now form the characterξ = ϑψb of the groupK.

THEOREM. Let x ∈ A12 be such that1+ x intertwines the characterξ of K.
Thenx ∈ k ∩ A12.

6.3. We first observe that it is enough to prove Theorem 6.2 under the assumption
that31 is a strict lattice sequence of period divisible bye(32): to achieve this, we
replace31 by 30 ⊕ 31 andb1 by b0 ⊕ b1, where30 is strict of period divisible
by both e(3i) and b0 is chosen so that the pair(b0 ⊕ b1, b2) still satisfies the
conditions in 6.2. If the result holds in this case, it holds in the original one, simply
by intersecting withA.

We henceforward assume, therefore, that31 is strict of period divisible by
e(32). In particular,3 is a strict lattice sequence of the same period as31. We
therefore use the standard notation of [5], and writeA for the hereditaryoF -order
a0(3). We also setE = F [β], B = EndE(V ), B = A∩B. We denote the radicals
of A, B by P, Q. We setr = −k0(β,A).

Using this notation, we recall some results from [5]. Let 06 q < r, and let
2 ∈ C(A, q, β). According to [5] (3.3.2), theG-intertwining of the character2 is
given by

IG(2) = (1+Mq) · B× · (1+Mq),

where

Mq = Q
r−q

N+ j, N = N−r(β,A), j = J

[
r+1

2

]
(β,A).

We use the standard abbreviationHt = Ht (β,A). We observe that, in the case
q 6

[
r
2

]
, we haveMq = j [5] (3.1.10).

6.3.1. Letq, k, ` be positive integers satisfying[ r
2

]
6 q < r, k + ` > q + 1, k + 2` > r + 1.

Letx ∈ QkN+ j, y ∈ Q`N+ j and2 ∈ C(A, q, β). The commutator[1+x,1+y]
then lies inHq+1 and2[1+ x,1+ y] = ψ(1+x)−1β(1+x)−β(1+ y).
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Proof.This combines [5] (3.2.6), (3.2.8) and (3.2.12). 2
6.3.2. Let t, q be positive integers satisfying

t < r,

[
t

2

]
6 q < t,

and let2 ∈ C(A, q, β). Letg ∈ G intertwine the restriction of2 toHt+1. Then,
for h ∈ g−1Hq+1g ∩Hq+1, we have2g(h) = 2(h)ψg−1βg−β(h).

Proof.This is the second assertion of [5] (3.3.9). 2
We also need a collection of exact sequences, derived from [5] Section 3.1. Recall
that we have chosen (in our definition ofδ above) a tame corestrictions on A
relative toE/F . We use ‘star’ to denote duals with respect toψA, as before. We
also useM to denote the group AutF (V 1)× AutF (V 2).

LEMMA. Let06 q < r. The following sequences are exact:

0 - Qr−q - Mq

aβ- (Hq+1)∗ s - Q−q - 0;

0 - Qq+1 - Hq+1 aβ - M∗
q

s - Qq+1−r - 0;

0 - Q

[
r+1

2

]
- H

[
r+1

2

]
aβ - j

∗ s - Q
1−
[
r+1

2

]
- 0.

If 0→ l1→ l2→ l3→ l4→ 0 denotes any of these sequences, the sequence

0→ t−1
l1t + l1→ t−1

l2t + l2→ t−1
l3t + l3→ t−1

l4t + l4→ 0

is exact, for anyt ∈ B×.
For any choice of lk, we havelk = ∐

i,j lk ∩ Aij . We writel
ij

k = lk ∩ Aij . If
t ∈ B× ∩M, we further have

(t−1lkt + lk) ∩ Aij = t−1l
ij

k t + l
ij

k ,

and the sequence

0→ t−1l
ij

1 t + l
ij

1 → t−1l
ij

2 t + l
ij

2 → t−1l
ij

3 t + l
ij

3 → t−1l
ij

4 t + l
ij

4 → 0

is exact, for all choices ofi, j and(l1, l2, l3, l4).
Proof. The exactness of the first sequence is [5] (3.1.16). That of the third is

given by ibid. (3.1.22). The second sequence is simply the dual of the first: the
canonical inclusionB → A and the tame corestrictions:A → B are mutually
dual, while the dual ofaβ :A→ A is simplya−β .
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Now let us assume(l1, l2, l3, l4) = (Qr−q,Mq , (H
q+1)∗,Q−q). The sequence

0→ t−1
l1t + l1→ t−1

l2t + l2→ t−1
l3t + l3→ t−1

l4t + l4→ 0

is certainly a complex, and exactness at the ends is clear. To get exactness at the
second place, we have to show that

(t−1
Mq t +Mq) ∩ B = t−1

Q
r−qt +Q

r−q.

We have containment in the direction⊃ here. On the other hand,Mq ⊂ Pr−q , and

(t−1Pr−qt +Pr−q) ∩ B = t−1Qr−qt +Qr−q

by [5] (1.3.16).
It remains, in this case, to establish exactness at the third place. Dualizing, this

is equivalent to showing that

t−1
Q
q+1t ∩Q

q+1→ t−1
H
q+1t ∩ H

q+1 aβ- t−1
M
∗
q t ∩M

∗
q

is exact. This is equivalent to the relation

t−1Hq+1t ∩ Hq+1 ∩ B = t−1Qq+1t ∩Qq+1,

which follows easily, as before.
A simple ‘Snake Lemma’ argument now shows that the sequence

0→ t−1
l1t ∩ l1→ t−1

l2t ∩ l2→ t−1
l3t ∩ l3→ t−1

l4t ∩ l4→ 0

is exact, where theli are as in the first case above. Dualizing, this gives the exact-
ness of the sequence in the second case

(l1, l2, l3, l4) = (Qq+1,Hq+1,M∗
q ,Q

q+1−r ).

The final case is similar to the first one, so we omit the details.
To prove the remaining assertions, it is enough to observe that all thelk areB-

bimodules, and the canonical projectionsV → V i both lie inB, cf. 2.9. 2
6.4. We now prove Theorem 6.2 in the case wherem >

[
r
2

]
. Let us writeξ0 for

the restriction ofξ to the groupK ∩Hm. Thusξ0 = θ̃ψb on this group.

LEMMA. Let g ∈ G intertwine the characterξ0. Theng lies in0 · B× ∩M · 0,
where0 denotes the group

0 =
(

1+Q+Mm B+Mm

Q+Mm−1 1+Q+Mm

)
.
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Proof. It will be convenient to have the notation

Pu = M · 1+ A12, Nu = 1+ A12,

P` = M · 1+ A21, N` = 1+ A21,

and also the abbreviationL = K ∩ Hm. Our group0 has Iwahori decomposition
with respect to(Pu,M), and the subgroup0u = 0∩Pu normalizes the pair(L, ξ0).

Any g ∈ G which intertwinesξ0 on L must also intertwine the restriction of
ξ0 to the groupHm+1 = Hm+1 (β,A). This restriction lies inC(A,m, β), sog ∈
(1+Mm)B

× (1+Mm). Absorbing factors into0u, we may assumeg has the form
(1+ x)t (1+ y), with t ∈ B× andx, y ∈ Mm ∩ A21. The elements 1+ x,1+ y
normalizeL and fix the characterψb on L. On the other hand, the commutator
relation 6.3.2 gives usϑ1+x|L = ϑψaβ(x)|L and likewise with(1−y) = (1+y)−1 in
place of 1+x. By definition, our elementt intertwines the charactersξ1+x, ξ1−y of
L, and so intertwines their restriction toB×∩L. The factorsψaβ(x),ψaβ(−y) restrict
trivially here. Also by definition, there exists̃θ ∈ C(A,m−1, β) such thatϑ |L =
θ̃ |L. By the definition [5] (3.2.3) of simple character, the restrictionθ̃ |Hm ∩ B×
factors through the determinant map detB :B× → E×, so the same applies toϑ on
B× ∩ L. In particular, it is intertwined by every element ofB×. We deduce thatt
intertwines the characterψb|B× ∩ L.

However, we can recognize the characterψb|B×∩L in different terms. Lets be
the tame corestriction onA used in the definition ofδ. There is then a characterψB
of B, of the formψE◦ trB/E , such thatψa|B = ψB,s(a) for anya ∈ A. In particular,
we haveψb|B× ∩ L = ψB,δ|B× ∩ L. Corollary (3.8) now shows that

t ∈
(

1 0

Q 1

)
·
(

1 B

0 1

)
· B× ∩M ·

(
1 0

Q 1

)
·
(

1 B

0 1

)
.

We can absorb the upper triangular factors into0 andB× ∩M, and we may now
takeg = (1 + x)t (1 + y), with t ∈ B× ∩ M, x, y ∈ (Q +Mm) ∩ A21. Our
adjustments do not alter the hypothesis thatg intertwinesξ0.

In particular, this elementg intertwines the restriction ofξ to the group

K ′ = 1+
(

Hm+1 Hm

Hm+1 Hm+1

)
.

The factorψb is trivial on this group, sog intertwinesϑ |K ′. This last is the re-
striction of θ̃ ∈ C(A,m−1, β) as above. We now apply 6.3.1 tõθ to show that,
as characters ofK ′g ∩ K ′, we haveϑg = ϑψg−1βg−β. We next use this relation to
show that

g = (1+ x′)t (1+ y′), x′, y′ ∈ (Q+Mm−1) ∩ A21.
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To do this, let us writeK ′ = 1+ k′. Since, by hypothesis, the elementg intertwines
ϑ onK ′, the relation above says thatg intertwines the cosetβ + k′∗, in the sense
thatg−1(β + k′∗)g ∩ (β + k′∗) 6= ∅. We have, for example,

(1+ y)(β + k
′∗)(1+ y)−1 = β − aβ(y)+ k

′∗,

so this formal intertwining condition amounts to

t−1aβ(x)t + aβ(y) ≡ 0 (modt−1k′∗t + k′∗).

The latticek′ decomposes as the direct sum of its intersections with the blocksAij ,
so the same applies tok′∗. Sincet ∈ M, in particular, we have

t−1k′∗t + k′∗ =
∐
(t−1k′∗t + k′∗) ∩ Aij =

∐
(t−1k′∗t ∩ Aij )+ (k′∗ ∩ Aij ),

just as in Lemma 6.3. We can therefore examine this congruence relation ‘block by
block’. Sincex, y ∈ A21, it is automatically satisfied in all blocks exceptA21. It is
therefore equivalent to

t−1aβ(x)t + aβ(y) ≡ 0 (mod(t−1h∗t + h∗) ∩ A21,

where we have abbreviatedh = Hm. We can now use 6.3 Lemma 3 to produce
elementsx′, y′ ∈Mm−1∩A21 such thataβ(t−1x′t + y′) = aβ(t−1xt + y). In other
words,t−1x′t + y′ − t−1xt − y lies in the(2,1) block of

(t−1(Q+Mm)t +Q+Mm) ∩ B = t−1
Qt +Q.

In all, there exist elementsx′′, y′′ ∈ (Q +Mm−1) ∩A21 such thatg = (1+x′′)
t (1+y′′), as required. This completes the proof of the Lemma. 2
Let us now deduce 6.2 from the Lemma, in the present casem >

[
r
2

]
. Let g ∈ Nu

intertwineξ . We thus haveg = γ tγ ′, for somet ∈ B× ∩M andγ, γ ′ ∈ 0. The
group0 has Iwahori decomposition0 = 0 ∩Nu ·0 ∩M ·0 ∩N`. We accordingly
write γ = γu γMγ`, γ ′ = γ ′` γ

′
Mγ
′
u, in the obvious notation. (We get this second

decomposition by applying the Iwahori decomposition toγ ′−1.) We thus getγ −1
u g

γ ′u
−1 = γ`t

′ γ ′`, for somet ′ ∈ M. The first of these elements lies inNu, and the
second inP`. We deduce thatγ −1

u gγ ′u
−1 = 1, whenceg ∈ Nu∩ 0 = Nu ∩ K, as

required.

6.5. We now prove Theorem 6.2 in the remaining case, where 16 m 6
[
r
2

]
.

Here we haveMm = j and the groupK is given by

K = 1+
(

Hm B+ j

Hm+1 Hm

)
.
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We define the groupΓ exactly as in 6.4.
Let g ∈ G intertwineξ . The group0u normalizesξ , so we may as well take

g = (1+ x)t (1+ y), with t ∈ B× andx, y ∈ j∩A21. Consider the restriction ofξ
to the group

K ′ = 1+
(

Hm H1

Hm+1 Hm

)
.

Here, the characterϑ agrees with a character2 ∈ C(A,0, β). The character2 is
invariant under conjugation by 1+ j. We deduce thatt intertwines the character
ψB,δ on the group

K ′ ∩ B× = 1+
(

Qm Q

Qm+1 Qm

)
.

Therefore, by (3.8), we have

t ∈
(

1+Q B

Q 1+Q

)
· B× ∩M ·

(
1+Q B

Q 1+Q

)
.

Thereforeg ∈ 0 ·B× ∩M ·0, and the Theorem follows in this case, just as before.
This completes the proof of 6.2. 2

6.6. We now give what will be the crucial consequence of Theorem 6.2. We
remain in the same situation, but it will now be convenient to abbreviateGi =
AutF (V i), so thatM = G1×G2. In particular,K is the group defined by 6.1.2.

NOTATION. For i = 1,2, we suppose given

(i) an open subgroupKi ofu(3i) containing and normalizing the groupHm(β,3)∩
Gi;

(ii) an irreducible smooth representation%i ofKi whose restriction toKi ∩K is a
multiple ofξ |Ki ∩K.

Under these conditions, we have

COROLLARY.

(i) The set(K1 ×K2) ·K = K̃ is a group.
(ii) There is a unique irreducible smooth representation% of K̃ which is trivial on

K ∩Nu,K ∩N`, and whose restriction toK1×K2 = K̃ ∩M is equivalent to
%1⊗ %2.

(iii) The pair(K̃, %) is aG-cover of the pair(K̃ ∩M,%1 ⊗ %2).

Proof.The groupK1 is contained inu(31) and normalizesHm∩G1. It therefore
normalizeshm+1 ∩G1 = um+1 (3)∩Hm∩G1; it also fixes the restriction ofξ to this
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group. The restriction ofξ to this group lies inC(31,m1, β). By 5.7, the normal-
izer of such a character is the intersection withG1 of the normalizeru(b)(1+Mm)

of our original characterθ ∈ C(3,m, β). It follows thatK1 normalizes bothK∩Nu

andK ∩N`. The argument forK2 is the same, and this proves (i). Assertion (ii) is
now immediate.

SincePu, P` are the only parabolic subgroups ofG with Levi componentM,
the Iwahori decomposition properties required by (iii) are immediate. Letζ denote
the element

ζ =
(
πF 0

0 1

)
∈ M.

Here,πF is some prime element ofF . There is a unique functionf ∈ H(G, %)

supported onK̃ζ K̃ whose value atζ is the identity transformation1 (of the space
underlying the contragredient of%). To complete the proof of (iii), it is enough to
show thatf is invertible inH(G, %) and that its inverse is supported onK̃ζ−1K̃ .
To do this, we letf ′ ∈ H(G, %) have supportK̃ζ−1 K̃ with f ′(ζ−1) = 1= f (ζ ).
The convolutionf ′ ? f has support contained in

K̃ζ−1K̃ζ K̃ = K̃ · ζ−1K̃ ∩Nu ζ · K̃.

However, by 6.2, the intertwining ofξ , and hence of%, inNu is preciselyK∩Nu =
K̃ ∩ Nu (cf. the proof of 3.9). We deduce that the support off ′ ? f is contained
in K̃. An easy direct computation shows thatf ′ ? f (1G) = c1, for some positive
constantc.

We deduce thatf is left-invertible inH(G, %); it follows easily (cf. the proof
of [9] (7.14)) thatf is in fact invertible, and its inverse is thereforec−1f ′. 2

7. The Homogeneous Case

In this section, we prove the Main Theorem 1.5 in a special case; this will serve as
the first step in the general inductive argument of Section 8.

We use the notation introduced in Section 1. In particular,L is theG-stabilizer
of a decompositionV = ∐16i6r V

i of V as a direct sum of nonzero subspacesV i ,
and we setGi = AutF (V i). Thus we can writeσ =⊗16i6r πi, for an irreducible
supercuspidal representationπi of Gi .

The representationπi determines an endo-classΘi = Θπi of simple characters
as in 4.5. For the remainder of this section, we assume that21 = 22 = · · · =
2r = 2.

7.1. We return to thesL-type (KL, τL) = (∏ Jj ,
⊗
λj ) of 1.3, and give a more

detailed description of the maximal simple types(Jj , λj ). (We are just summar-
izing the definition [5] (5.5.10).) Our hypothesis on the2j says that we may
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take the maximal simple type(Jj , λj ) in Gj in the following form. There is an
elementβ and, for eachj , a simple stratum[Aj , nj ,0, β] in EndF (V j ) such that
Jj = J (β,Aj ); moreover, the restriction ofλj toH 1(β,Aj ) is a multiple of some
θj ∈ C (Aj ,0, β), and theθj are all realizations of the same ps-character(2,0, β)
(of endo-class2).

Let us abbreviateE = F [β]. The oE-order Bj = Aj∩ EndE(V j ) is max-
imal, since(Jj , λj ) is a maximal simple type. We haveJ (β,Aj )/J

1(β,Aj ) =
U(Bj )/U

1(Bj ) ∼= GLfj (kE), for some integerfj . In particular, the ordersAj all
have the sameoF -period, namelye(E|F).

The representationλj is given as follows. First, there is a unique irreducible
representationηj of J 1(β, Aj ) whose restriction toH 1(β,Aj ) is a multiple ofθj .
The representationηj extends to a representationκj of Jj which is intertwined by
every element ofGj which intertwinesηj , i.e.,IGj (κj) = Jj · AutE(V j )·Jj . (In the
language of [5] Section 5.2,κ is a ‘β-extension ofηj ’.) We then haveλj = κj ⊗ρj ,
whereρj is the inflation of an irreducible cuspidal representation of GLfj (kE).

7.2. It is now our task to assemble the(Jj , λj ) of 7.1 into the desireds-type. First
we need some more notation. LetPu be the parabolic subgroup ofG stabilizing the
flag {0} ⊂ V 1 ⊂ V 1⊕ V 2 ⊂ . . .. ThusPu has Levi componentL; we writeNu for
its unipotent radical andP` = LN` for its opposite relative toL.

We writeLj = {Ljk : k ∈ Z} for the lattice chain attached toAj ; we assemble
these into a lattice chainL = {Lk: k ∈ Z} in V , of oF -periodre(E|F), according
to the rule:

L0 = L1
0⊕ L2

0⊕ · · · ⊕ Lr0,
L1 = L1

0⊕ L2
0⊕ · · · ⊕ Lr−1

0 ⊕ Lr1,
L2 = L1

0⊕ L2
0⊕ · · · ⊕ Lr−2

0 ⊕ Lr−1
1 ⊕ Lr1,

and so on. This defines a hereditaryoF -orderA in EndF (V ); we putB = A ∩ B.
We now follow the procedures of [5] (7.1), (7.2). The set

K = H 1(β,A) ∩N` · J (β,A) ∩ Pu

is then a group containingH 1(β,A). It admits an irreducible representationκ with
the following properties:

7.2.1.

(i) the restriction ofκ toH 1(β,A) is a multiple ofθ = 2(A);
(ii) κ is trivial onK ∩N`,K ∩Nu;
(iii) K ∩ L = KL andκ|KL is of the formκ ′1 ⊗ · · · ⊗ κ ′r , for someβ-extensionκ ′j

of ηj .

We can choose the decompositionλj = κj ⊗ ρj above so thatκj = κ ′j for all j ;
we assume this has been done.
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The quotientK/K ∩ J 1(β,A) is canonically isomorphic to the product of the
Jj/J

1(β,Aj ) ∼=GLfj (kE); we can therefore inflateρ1⊗· · ·⊗ρr to a representation
ρ of K and formτ = κ ⊗ ρ.

THEOREM. The pair(K, τ) is aG-cover of(KL, τL), and hence ans-type inG.
It is, moreover, aG-cover of the pair(KM, τM) of 1.5.

Proof.The second assertion of the theorem implies the first, by [9] (8.5).
In the case where theπj are all inertially equivalent, i.e., the caseM = G of 1.4,

the construction above yields the pair(K, τ) of 1.4. In the general case, we have
K ∩M = KM andτ |KM = τM . The Iwahori decomposition properties of(K, τ)
relative toM are easy to establish; to prove the theorem, it is enough therefore, by
[9] (7.2), to show that theG-intertwining of the representationτ is contained in
KMK.

To do this, we can use the technique of [5] (5.3) to show thatIG(τ) = KIH (ρ)K,
whereH = AutE(V ) and we viewρ as an irreducible representation ofU(B) =
K ∩ H . A pleasant exercise along the lines of [5] (5.5.5) (or an appeal to the very
general result [11] 7.12) shows thatIH (ρ) ⊂ U (B) ·M ∩H ·U (B), and the proof
is complete. 2

8. The General Construction

8.1. We retain the notation of Section 1 as used in Section 7. In particular,M

is theG-stabilizer of the decompositionV = ∐
16i6t W

i . To eachWi , we can
associate an endo-class of simple characters, namely2j for anyj such thatV j ⊂
Wi . Let2(1), 2(2), . . . ,2(q) be the distinct endo-classes arising here. For each
k, let W̄ k be the sum of thoseWj whose associated endo-class2πj is2(k). Write
Ḡj = AutF W̄ j , M̄ = ∏j Ḡ

j . We choose a ps-character(2i,0, βi) of endo-class
2(i).

Theorem 7.2 gives us an̄M-cover (KM̄ , τM̄) of (KL, τL) with the following
properties:

8.1.1.

(i) KM̄ =
∏
i Ki , for subgroupsKi of Ḡi of the following form: there is a simple

stratum[Ai , ni,0, βi] in EndF (W̄ i) such that

H 1(βi,Ai) ⊂ Ki ⊂ J (βi,Ai ).

(ii) We haveτM̄ =
⊗

i τi , for an irreducible representationτi ofKi whose restric-
tion toH 1(βi,Ai ) is a multiple of2i(Ai ).

(iii) (KM̄, τM̄) is anM̄-cover of(KM, τM).

8.2. We now construct aG-cover(K, τ) of (KM̄, τM̄). This will provide the cover
of (KM, τM) announced in 1.5. We will work inductively on the integerq of 8.1,
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noting that, in the caseq = 1, we haveM̄ = G, a case which has been dealt with
in Section 7.

In order to state our inductive hypothesis, we need to introduce a new concept,
that of acommon approximationto a collection of simple characters. We use the
same data as in 8.1: we are givenF -vector spacesW̄ 1, . . . , W̄ q and, for eachj ,
a simple stratum[Aj , nj ,0, βj ] in EndF (W̄ j ), with Aj corresponding to a strict
lattice sequence3j of periodej . We are also given a simple characterθj = 2j

(Aj ) ∈ C(Aj , 0, βj ), 1 6 j 6 q. We form the lattice sequence3 = 31 ⊕ 32 ⊕
· · · ⊕3q in V =∐ W̄ j (see 2.8), and write

e = lcm(ej ), n = max(nje/ej ).

Suppose we are given an integerm with 0 < m < n. The characterθj |H 1(βj )∩
um+1(3) determines an endo-class2m(j). Let us consider the case where these
2m(j) are all the same. We can then find a simple stratum[3,n,0, γ ] and a simple
characterθ ∈ C(3,0, γ ) with the following properties. First, all of thēWj are
F [γ ]-subspaces ofV . We decompose the groupH 1(γ,3) and the characterϑ in
the manner of Proposition 5.2, relative to the Levi subgroupM̄ . We then demand
the properties:

Hm+1(γ,3) ∩ Ḡj = H(m+1)ej /e(βj ,3
j ),

ϑ |H(m+1)ej/e(βj ,3
j ) = θj |H(m+1)ej /e(βj ,3

j ),

for all j . Under these circumstances, we say that([3,n,0, γ ], ϑ,m) is acommon
approximation to the system(θj ) of levelm.

We note that the characterϑ is trivial on Hm+1 (γ,3) ∩ N̄ , whereN̄ is the
unipotent radical of any parabolic subgroup with Levi componentM̄ .

We remark that the system(θj ) admits a common approximation of level zero
if and only if theθj are equal (or, rather, endo-equivalent). In our present situation
8.1, this amounts toq = 1.

In general, suppose we have common approximations([3,n, 0, γi], ϑi,m), i =
1,2, withm < n. We then haveHm+1(γ1,3) = Hm+1(γ2,3), and the characters
ϑi coincide on this group.

We now give the most precise statement of our main result.

MAIN THEOREM (final version).There exists aG-cover(K, τ) of (KM̄, τM̄) with
the following properties:

(i) un+1(3) ⊂ K ⊂ u(3).
(ii) Suppose that(θ1, θ2, . . . , θq) admits a common approximation([3,n,0, γ ],

ϑ,m), m < n. ThenK contains and normalizes the groupHm+1(γ,3) ·
Hm(γ,3) ∩ M̄ . The restriction ofτ to Hm+1(γ,3) is a multiple of ϑ
and its restriction toHm(γ,3) ∩ M̄ is a multiple ofθ1⊗ · · · ⊗ θq .
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In particular, (K, τ) is an s-type, and also a cover of the pair(KM, τM)
of 1.5.

If P is any parabolic subgroup ofG with Levi componentM, the associated al-
gebra homomorphismjP :H (M, τM)→ H(G, τ) is an isomorphism which pre-
serves support of functions:supp(jP (f )) = K supp(f )K, f ∈ H(M, τM). In par-
ticular, the G-interwining of the representationτ is given by IG(τ) =
K · IM(τM) ·K.

We give the proof in the next paragraph. Note, however, that the final assertion
follows from the earlier ones and [9] 8.5, 12.1. Also, in the caseq = 1, the cover
constructed in 7.2 satisfies these extra conditions. In other words, the first case
q = 1 of the induction has been done.

8.3. We now assume thatq > 1. As we have already observed, the system(θj )
does not admit a common approximation to level 0. We deal first with the case
where(θj ) does not admit a common approximation to leveln−1. We need to
describe this situation in more detail:

LEMMA. Let (θ1, θ2, . . . , θq) be as above. For eachj , let [Aj , nj , nj − 1, αj ]
be a simple stratum equivalent to[Aj , nj , nj − 1, βj ], let ϕj(X) ∈ kF [X] be its
characteristic polynomial, and letfj (X) be the unique irreducible factor ofϕj(X).
The following conditions are equivalent:

(i) (θj ) admits a common approximation of leveln−1;

(ii) n1/e1 = n2/e2 = · · · = nq/eq andf1(X) = f2(X) = · · · = fq(X).

Proof.This simply says that the endo-equivalence class of the simple character
ψαj ∈ C(Aj , nj − 1, βj ) is determined by the ‘normalized level’nj/ej and the
polynomialfj (X): see [5] (2.6.1). 2
Under our present hypothesis, we can renumber theθj to achieve the following
situation:

8.3.1. There is an indexj0, 16 j0 < q, such that either:

(i) n1/e1 = n2/e2 = · · · = nj0/ej0 > nj0+1/ej0+1 > · · · > nq/eq , or else

(ii) all nj/ej are equal,f1(X) = · · · = fj0(X), while fk(X) 6= f1(X) for any
k > j0.

We now letY1 = W̄ 1 ⊕ · · · ⊕ W̄ j0, Y2 = W̄ j0+1 ⊕ · · · ⊕ W̄ q ; we setG′i =
AutF (Yi). Let us setLi = KM̄ ∩ G′i, so thatKM̄ = L1 × L2; the representation
τM̄ likewise decomposes as%1 ⊗ %2, for an irreducible representation%i of Li.
By inductive hypothesis, there exists aG′i-cover(K ′i , %

′
i) of (Li, %i) satisfying the

requirements of the theorem.
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Let us make these conditions explicit. First, let3′1 = 31 ⊕ · · · ⊕3j0, let e′1 be
the period of3′1, and define an integern′1 by n′1/e

′
1 = n1/e1. We have (by inductive

hypothesis)

un′1+1(3
′
1) · un(3) ∩ M̄ ∩G′1 ⊂ K ′1 ⊂ u(3′1),

and the restriction of%′1 to the first group here is a multiple ofψb1, for a 3′1-
invertible elementb1 of leveln′1. The characteristic polynomialϕ1(X) of the stratum
[3′1, n′1, n

′
1−1, b1] is a product of powers of thefj (X) for j 6 j0. In the other com-

ponent, we form the direct sum3′2 of the3j for j > j0 and denote the period of3′2
by e′2. We define the integern′2 byn′2/e

′
2 = maxj>j0 nj/ej . We haven′2/e

′
2 6 n′1/e′1.

If this inequality is strict,un′2+1(3
′
2) containsun(3) ∩ G′2; we haveK ′2 ⊂ u(3′2)

and%′2 is trivial onun(3)∩G′2. If, on the other hand, we have equality, the situation
is analogous to that in the first component, but the characteristic polynomialϕ2(X)

is relatively prime toϕ1(X). We letPu, P` be the parabolic subgroups ofG with
Levi componentG′1×G′2. We denote their unipotent radicals byNu,N`. We define
the groupK by

K = un+1(3) ∩N` ·K ′1 ×K ′2 · u(3) ∩Nu,

and we extend%′1⊗ %′2 to a representationτ of K which is trivial on the unipotent
factors. This has the required covering properties by Corollary 3.9. The groupK

certainly lies betweenu(3) andun+1(3), so it satisfies the first part of the inductive
hypothesis. The second part is empty here, so we have produced the required cover
(K, τ) in this case.

8.4. We now prove the Main Theorem in the case where the system(θj ) does
admit a common approximation([3,n,0, γ ], ϑ) to levelm, with 0< m < n. We
choose this approximation so as to minimizem. As in 8.3, there are two cases. First,
we know that somemej/e is an integer: otherwise, we would haveHm(γ,3) =
Hm+1 (γ,3) and this would contradict the minimality ofm.

Suppose, for a fixedj , thatmej/e is an integer,mj say. We then have

Hm(γ,3) ∩ Ḡj = Hmj (γ,Aj ) = Hmj (βj ,Aj ),

Hm+1(γ,3) ∩ Ḡj = Hmj+1(γ,Aj ).

Comparing the charactersθj , ϑ on the first of these groups, we get an elementcj
such thatθj = ϑψcj . WriteBγ = EndF [γ ](V ) and fix a tame corestrictionsγ on
A relative toF [γ ]/F . The stratum[Aj ∩Bγ ,mj,mj−1, sγ (cj )] is then either null
or simple (4.7). Its characteristic polynomial (relative toF [γ ]) is a power of an
irreducible polynomialfj (X) ∈ kF [γ ][X] (and, possibly,fj (X) = X). In the null
case, we can adjustϑ by conjugation to getϑ = θj onHmj . In the cases where
mej/e 6∈ Z, we setfj (X) = X, cj = 0. With this convention, we see that not all
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fj (X) can be equal toX: otherwise, we could contradict the minimality ofm. This
gives us:

LEMMA. There existsj0, 16 j0 < q such that one of the following holds:

(i) all mej/e are integral,f1(X) = f2(X) = · · · = fj0(X) 6= X, whilefk(X) 6=
f1(X) for anyk > j0;

(ii) for all j 6 j0, the quantitymej/e is integral andfj (X) 6= X, whilefk(X) =
X for all k > j0.

We use this indexj0 to define spacesYi, groupsG′i, lattice sequences3′i , etc.,
i = 1,2, as in 8.3. By inductive hypothesis, we have covers(K ′i , %

′
i) satisfying the

conditions of the theorem. We define the groupK by

K = Hm+1(γ,3) ∩N` ·K ′1×K ′2 · u(a(3) ∩ Bγ )(1+Mm(γ,3)) ∩Nu,

whereu(a(3)∩Bγ ) (1+Mm(γ,3)) is theu(3)-normalizer of(Hm+1(γ,3), ϑ),
as in 5.6. We extend%′1⊗ %′2 to a representationτ of K by making it trivial on the
unipotent factors. The pair(K, τ) has all the required properties, by Corollary 6.6.

This completes the proof of the Main Theorem. 2
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