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Abstract. This paper is concerned with the smooth representation theory of the general linear group
G = GL, (F) of anon-Archimedean local fieldl. The point is the (explicit) construction of a special
series of irreducible representations of compact open subgroups, called semisimple types, and the
computation of their Hecke algebras. A given semisimple type determines a Bernstein component of
the category of smooth representationg;othat component is then the module category for a tensor
product of affine Hecke algebras; every component arises this way. Moreover, all Jacquet functors and
parabolic induction functors connectidgwith its Levi subgroups are described in terms of standard
maps between affine Hecke algebras. These properties of semisimple types depend on their special
intertwining properties which in turn imply strong bounds on the support of coefficient functions.
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This paper is concerned with the smooth (complex) representation theory of the
general linear group GI(F) of a non-Archimedean local fielH. As such, it builds

on and in a certain sense completes our earlier work [5]. On the other hand, it may
be seen as carrying out for Glthe program, initiated in [9], of analysing the
category of smooth representations of a reductivedic group via the method of
types Let us begin by briefly reviewing this program.

1. LetG be the group off-points of some connected reductive group defined
over F and writeSR(G) for the category of smooth complex representation§ of
Let L be anF-Levi subgroup ofG and denote by (L) the group ofunramified
quasicharacter®f L, i.e., smooth homomorphisnis — C* which vanish on all
compact subgroups df. Then given an irreducible supercuspidal representation
o of L, we may, following [1], associate to the pdif., o) a full subcategory
R (G) of R(G) by decreeing that a smooth representationf G will be an
object inR&-9)(G) if each of its irreducible subquotients appears as a composition
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factor oft§ (o ® x), for somey € X (L) and some parabolic subgro@#pof G with
Levi factor L; here§ is the functor of (normalized) parabolic induction. We recalll
two basic results from [1]:

(1) Let(L;,07),i =1, 2 be as above. Then
%(Llﬁl)(G) — f)q(Lz,Gz)(G)

(as subcategories dR(G)) if and only if the pairs(L;, o;) are G-inertially
equivalent: that is, there is a quasicharactgr € X (L) so that the pairs
(L1, 01) and(L,, 02 ® x) are G-conjugate.

We denote th&-inertial equivalence class of., o) by [L, o]s and writeRlE-ole
(G) in place of A9 (G). We denote the set @f-inertial equivalence classes of
pairs(L, o) by B(G).

(2) We haveR(G) = [T,cp6) R (G).

Suppose now thak is a compact, open subgroup Gfand that(p, W) is an
irreducible smooth representation &f Let (5, W) be the representation contra-
gredient to(p, W) and let# (G, p) be the space of compactly supported, E¢#f)-
valued functionsf on G which satisfy f (hxk) = p(h) f(x)p(k),x € G, h,k €
K. Then we may view# (G, p) as an algebra under convolution once we have
fixed a Haar measure o@. Let (;r, V) be a smooth representation 6f, set
V, = Homg (W, V) and letV” = Z¢ev,, ¢ (W), denote byr,(G) the full subcat-
egory of R(G) whose objectgr, V) have the property thal is generated a&-
representation by ”. ThenV, is naturally a left?# (G, p)-module (see Section 2 of
[9]), and the magr, V) — V, induces a functor Mt R,(G) — #(G, p)-Mod.

The significance of this construction resides in the following [9] Section 4:

(3) Let (K, p), (L, o) be as above, set= [L, o]g, and suppose thak*(G) =
MR,(G). ThenM, is an equivalence of categories.

If R*(G) = R,(G), then we say thatX, p) is ans-type.

(4) Let(K, p), (L, o) be as above and suppose that the categdie&5), R, (G)
have the sam®(G)-irreducible objects. The(k, p) is ans-type.

2. Theimmediate aim of the present paper is the constructionsfygre (K, o5)
for everys € B(GL,(F)).

Such a construction will only be useful, however, if the algelf#idss, p,) have
well-understood module categories. In the case of the types constructed here, we
show that the algebra® (G, p;) are naturally isomorphic to tensor products of
affine Hecke algebras of type A.

It is also desirable to have a module-theoretic interpretation of the functors of
normalized parabolic induction and Jacquet restriction. Consideration of this in a
general context led us to introduce the notion afoaer, which we now briefly
review ([9] Section 8).
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Let M be a Levi subgroup of;, let K, be a compact open subgroupMfand
oy an irreducible smooth representationof;. Then aG-coverof (Ky,, o) is
a compact open subgroup of G together with a smooth irreducible representa-
tion p of K, the pair(K, p) satisfying the following properties for each parabolic
subgroupQ of G with Levi factor M:

i) KNM =KyandK = KN N, - Ky - KN Ny, whereN, = Ny(Q) is the

unipotent radical ofQ and N, = N,(Q) is that of the opposite t@ relative to

M;

(i) K NNy, K N Ny are contained in the kernel gf while p| Ky = pur;

(i) there exists a K, Q)-positive element in the center,Z(M), of M and an
invertible elementf, € #(G, p) with supportKzK.

(An elementz € Z(M) is said to be(K, Q)-positiveif the sequences(K N
Nwz7%, z7%(K N Ny)z* tend monotonically to 1 als — c0.)

We may now state one of the principal results of [9]. lse= [L,o]ls €
B(G), and letM be a Levi subgroup ofi which containsL. The pair(L, o)
then determines an element = [L, o]y € B(M). We have ([9] 8.4):

With notation as above, suppose tl&ly,, o)) IS ansy-type inM and that
(K, p) isaG-cover of(Ky, py). Then(K, p) is ans-type inG. Further, there
is for each parabolic subgrou@ of G with Levi factorM a unique injective
algebra homomorphism

Jo: HM, py) — H(G, p)

such that the following diagram commutes:

RM (M) —> FH(M, py)—Mod

g (o)

R (G) —=— #(G. p)—Mod,

where(j ;). is the ring-theoretic induction functor given by, .

(In fact, the statement in [9] 8.4 refers to the-normalizedinduction functor;
however, only a trivial modification is required to treat the normalized one.)

3. We can now describe the results of this paper. We first rephrase those of [5]
in the language of types and covers. So, from here on@u& GL,(F). The

book [5] is largely concerned with the case of thase- [L,o]g € B(G) for
which L = GL.(F)*, rs = n,ando = 79 ® --- ® m, for some irreducible
supercuspidal representatiary of GL,(F). One of the main accomplishments

of [5] was the explicit construction of a compact open subgrdupf G and an
irreducible smooth representatianof J such that the categoriésd®(G), fR;.(G)

have the same irreducible objects. From (4) above, therefdre,) is ans-type.
Moreover,# (G, 1) is a Hecke algebra of affine tyjleid. 5.6.6.
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In particular, there exists a tyfgdp, Ag) for the inertial equivalence clag6L.,
(F), moleL,(r) € B(GL,(F)). If, in the original context, we sef;, = [L,o]. €
B(L), we obtain ars; -type (K, 7,) in L by setting

K, =JoxJgx---xXJog, T =A2QRAAR - - Ao.

The types(J, 1) are referred to (with some prescience) in [S]sasple types.
However, they cannot be constructed in the appropriate way as covers, and are not
the most convenient choice here. We therefore use [5] Ch. 7, where we constructed
a modified version of the simple tygé, A); thisis a G-cover of (K, ;) (and has
the same Hecke algebra @s 1)). We explain this more fully in Section 1 below.

Now we pass to the case of a generad B(G), which is the central concern
of this paper. A choice of representatiye, o) for s determines a Levi subgroup
M which may be described as the smallest Levi subgroup which containg-the
normalizer (in the obvious sense) ©f. The classes considered in [5] may then
be characterized by the property thdt= G. In the general case, the arguments
outlined above yield am/-cover (K, 1)) of (K, 7). The main result of this
paper asserts:

(i) There exists &-cover (K, t) of (K, T)). In particular, (K, t) is ans-type
in G and aG-cover of(K;, 11).

(ii) If Q is a parabolic subgroup of; with Levi factorM, the associated algebra
homomorphisny ,: #(M, ©y) — F(G, 7) is an isomorphism and preserves
support of functions. In particulat (G, t) is a tensor product of affine Hecke
algebras.

4. Much of the significance of this result flows from the fact that we construct
the types(K, t) explicitly. Their particular form is well-adapted to constructing
types in the group Sl indeed, it was our earlier work [6], [7] on that group which
originally motivated our search for semisimple types in,GA totally different
application connects semisimple types with results from [13] to gkmicit for-
mulasfor Plancherel measure and conductors of Rankin-Selberg convolutions [10].
However, such matters must be treated elsewhere.

5. The proof of the above theorem is quite elaborate and involves several new
ideas, along with most of the machinery of [5] and some of its elaborations in
[4]. The simple types of [5] are built from parahoric subgroupsGotvith their
standard filtrations.It is clear from the outset that this framework is inadequate
for the construction of semisimple types: a reader familiar with the methods of [5]
might consider the problem when, for example,= GLs, the Levi subgroup.
is GL, x GLgs, and the associated supercuspidal representations Hf@&l; are
given by totally ramified field extensions &f. This necessitates the introduction of
nonstandard filtrations attached to ‘lattice sequences’, as in Section 2 below. These
generalize the standard filtrations attached to latticans.

Next, it is clear that the difficult part in the construction of a cover is achiev-
ing the condition (iii). This, however, can be made to follow (in the right cir-
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cumstances) from intertwining properties of comparatively straightforward repres-
entations of certain subgroups of the requid€dIt is the construction of these
subgroups which takes up most of the paper.

Lattice sequences are introduced in Section 2. The key point is that lattice
sequences, unlike chains, admit a reasonable definition of direct sum. Using this
property, we construct in Section 3 a first family of compact open subgroups with
the essential intertwining property. The next step is to extend some of the ma-
chinery of [4], [5] concerning simple characters (terminology of [5] Ch. 3) to the
context of lattice sequences. This takes up Section 4 and Section 5. The main family
of subgroups (with the intertwining property) is then treated in Section 6. Finally,
we give the explicit construction of the desired covers in Section 7 and Section 8.

We conclude this Introduction with words of thanks to our colleagues. During
the writing of this paper, we have received substantial benefit and encouragement
from their comments. In this context, we wish to mention Guy Henniart, Marie-
France Vignéras, and, particularly, Corinne Blondel. Her detailed criticisms of an
earlier draft were extremely helpful to us.

Notation: The following notation will be standard throughout, and is chosen
to be consistent with [5], to which we shall often refer. FirBtdenotes a non-
Archimedean local field with discrete valuation ring. We writep  for the max-
imal ideal ofo, andtr = og/pr for the (finite) residue field of.

We write[x] for the integer part of a real numberthus[x] is the largest integer
< x.
If V is afinite-dimensionaF -vector space, we adhere to the convention that an
or-lattice in V is a finitely generated-submodule o which spansV over F.

We fix a continuous charactefr, of the additive group of’, with conductor
pr. If V is as above, and = Endz(V), we putyy = Ypo tryp. If a € A, we
write ¥4 4, Or justy,, for the functionx — Y4 (a(x — 1)), x € A.

Let [, n, m, B] be a simple stratum in EpdV). (See [5] Section 1.5 for this
term.) The symbol$y (8, 20), J (8, 0), H™ (B, ), J(B, ) and their variations
have the same meanings as in [5] Section 3.1. The simple charac®Rset:, 8)
is asin [5] Section 3.2. In particular, the element€d®(, m, B) are (rather special)
abelian characters of the gro@p” (8, ).

It will be convenient to have as standard the following ‘block matrix’ notation.
Let V be a finite-dimensionak-vector space, and writd = End-(V). Suppose
we have subspacég', V2 of V such thatV = V1@ V2. Let1 denote the projection
V — Vi with kernel V/, j # i, and putAY = 1' - A -1/ C A. We identify
A7 = Homg(V/, V). We use the notation

All A12
A= (A21 Azz)

and sometimes abbreviaté’ = A’. If L is anoy-lattice inA, we setL’/ = LNAY.
We use analogous notations when there are more than two factors
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1. Main Theorem

Throughout this sectiorl/ denotes a finite-dimensionél-vector space and =
Autz (V). We use the notation of [9], as outlined in the introduction.

1.1. We give a preliminary version of the main result:

MAIN THEOREM (first version).Lets € B(G). There exists an-type inG.

We shall give a more refined statement after we have examined a sequence of
special cases. The final explicit form is Theorem 8.2 below.

1.2. We assume in this paragraph that the inertial equivalence cclasuper-
cuspidal,i.e., of the forms = [G, 7], for an irreducible supercuspidal represent-
ationz of G. By [5] (8.4.1), there is a maximal simple tyjoé, 1) occurring ins,
unique up toG-conjugation. By [5] (6.2.3), an irreducible representatidrof G
containsi if and only if 7/ = 7 ® x o det, for somaunramifiedquasicharacteg

of F*. This says thatJ, 1) is ans-type.

1.3. We return to the case of a generad B(G). Thuss = [L, o]g, for some
Levi subgroupL of G and some irreducible supercuspidal representatiarn L.
There is a decomposition &f as a direct sum of nonzero subspaces

V=VigVvie..®V"

of which L is the G-stabilizer. Thus

L=1L[AutF(Vi), o =®m,
i=1

i=1

wherer; is an irreducible supercuspidal representation of the group Ati) =
GL,, (F). The class determines the integers up to permutation and the corres-
ponding factorsr; up to unramified twist.

By 1.2, there is a maximal simple tygé;, A;) occurring inx;, for eachi. We
set

KL:HJiv ‘L'L:®)\.i.
i=1 i=1
Immediately, we have

PROPOSITION. Defines; = [L,o], € B(L). The pair (K., ;) is then an
s, -typeinL.

The choice of representatiyé , o) of the inertial equivalence clasgjives rise
to another Levi subgroup off as follows. Writes; = [L,o]; € B(L). The
G-normalizer N; (L) of L acts on the seB(L) by conjugation.
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LEMMA. There is a unigue Levi subgrould of G which contains théNg (L)-
stabilizer ofs, and is minimal for this property.

This is obvious.

1.4. Inthis paragraph, we consider the case where the Levi subgfodggfined
in 1.3isG itself.

PROPOSITION. Suppose, in the situation df3, that M = G. Thes,-type
(K, tp) of 1.3 then admits aG-cover (K, 7). In particular, (K, 7) is ans-type
inG.

Proof. The hypothesis o implies thatL is isomorphic to Gl.,(F)", rng = n,
and thato may be taken in the formi = 7o ® - - - mp. Thes, -type (K, 7)) is then
necessarilyL-conjugate to one of the forv}, A5"), where(Jo, o) is @ maximal
simple type in Gl,,(F) occurring inmyo, [5] (6.2.4).

From this point, the argument is a re-interpretation of certain results in [5],
which have to be further generalized in Section 7 below, so we shall be brief.

The existence of asrtype is given by [5] (8.4.3). Indeedid. (7.3.12), (7.3.14)
say that this type may be taken to be a simple type.), associated to a simple
stratum[%(, n, 0, B]. In particular,/ = J(B,20). (There is also the possibility that
(J, 1) is ‘of level zero', i.e., of the form [5] (5.5.10)(b). In this case, the proof is
easier, and we omit the details.)

However,(J, A) is not a cover of K, 7;), as remarked above. We therefore
use [5] Theorem 7.2.17. That result produces a representatiofia subgroup/p
of J attached to a particular parabolic subgra®mf G with Levi componentL
(this Levi is M in the notation of [5]). The lwahori decomposition properties (i)
and (ii) in the definition of cover (see Introduction) are easy to check/fiprip).

To verify the third condition, we note that induces the representatiarof J loc.
cit. Thus we have an isomorphisi# (G, »p) = #(G, 1) of Hecke algebras. By
[5] (7.2.19), this isomorphism has the following property;fif € #(G, Ap) has
support/pgJp, for someg € G, thenitsimagef € #(G, A) has support/gJ. By
[5] (5.6.6), any such functiorf is invertible in# (G, 1), so fp is also invertible.
Thus (K, 1) = (Jp, Ap) is the cover we seek. (Alternatively, property (iii) of a
cover follows in this case from [5] (7.3.2) and [9] 7.14.) O

Continuing in the same situation, we recall ([5] 5.6.6) that the Hecke algebra
H(G, p) = FH(G, r) is isomorphic to araffine Hecke algebra# (G, 1) =
FH(r, q};), in the notation of [5]. HereE denotes the field’[8], the integerf is
determined by the relatidi'[8]: Flrf = n, andgg = |kg|. For further comments
on the associated algebra homomorphistt@., ;) — #(G, 1), see [5] 7.6.20:
in a certain sense, they depend only on the paramemnslqé.

https://doi.org/10.1023/A:1001773929735 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001773929735

60 C. J. BUSHNELL AND P. C. KUTZKO

1.5. We return to the general case, where the Levi subgfupefined in
Lemma 1.3 is possibly not equal . As an immediate consequence of Proposi-
tion 1.4, we have:

COROLLARY. Letsy = [L, o]y € B(M). There exists any-type(Ky, ty) in
M which is anM-cover of(K;, 11).

Let us make this explicit (as we will need this notation later). The Levi subgroup
M is theG-stabilizer of a decompositiol = W@ W?®-.-@® W' of V as a direct
sum of nonzero subspac#’. SetG}, = Autz(W/). We then havel. = []L;,
whereL; = L N Gﬁl (with the obvious abuse of notation). The typg;, ;)
decomposes as the tensor product of ty@és , 7..;), each of which admits G{Q-
cover(K},, ti,) asin 1.4. We put

t t
KM:HK’, rM:®r,{,,.
j=1 j=1
We then have

t
HM, ) = ) H(Gly Tip),
j=1

and each of the# (GJ,, t},) is affine.
We now give a more precise statement of our main result.

MAIN THEOREM (second version)There exists &-cover(K, t) of (K, tay).
In particular, (K, ) is ans-type inG and is aG-cover of(K;, ;).

The proof will occupy the remainder of the paper. Notice, however, that the
second and third assertions follow from the first, via [9] 8.3, 8.5 respectively.

If we choose a parabolic subgrogp of G with Levi componentM, we get a
homomorphisny ,: #(M, ty) — F(G, t) which realizes the induction functor
z‘Q;, as mentioned in the Introduction. In this cage, is analgebra isomorphism
which moreover preserves support of functions [9] 12.1:

Supdj o f) = Ksupp f) K, f e H(M, ty).

In particular,# (G, ) is a tensor product of affine Hecke algebras.

If we now choose a parabolic subgro@pof G with Levi componentZ, then
PN M (resp.Q = MP) is a parabolic subgroup @ (resp.G) with Levi com-
ponentL (resp.M). The algebra homomorphisy.: #(L, t,) — #(G, t) which
realizes the induction functef; then factors ag , = Jo©Jpams by [9]8.7. Thus
J p is the composite of a tensor product of standard maps between affine Hecke
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algebras and an algebra isomorphism. Further, we get a similar factorizatjon of
relative to any Levi subgroup @ containingL: this follows from the transitivity
property of covers [9] 8.5.

1.6. There is another striking consequence of [9] in the context of Theorem 1.5.
Using the same notation as above, we have

COROLLARY. An elemeng € G intertwines the representationif and only if
it is of the formg = kymk,, wherek,, k, € K andm is an element oM which
intertwinest,,.

This follows from [9] 12.2.

2. Lattice Sequences

The lattice sequences of the title generalize the lattice chains used extensively in
[5]. They give new filtrations of the parahoric subgroups of,Gt), somewhat
along the lines of the very general filtrations introduced in [12]. The present section
lays out their basic properties, generalizing the early parts of [2], [3].

Throughout,V denotes a finite-dimension&lvector space, and = Endg (V).

2.1. We start with a definition:

DEFINITION. An o-lattice sequence i is a functionA from Z to the set of
orp-lattices inV such that

() n > mimpliesA(n) C A(m);
(i) there existse = e(A) € Z,e > 1, suchthatA(n +e¢) = prA(n),n € Z.

2.2Remarks (i) Let A be a lattice sequence W, and definef, = {A(n):n €
Z}. Then L, is a nonempty set of lattices W which is linearly ordered under
inclusion and stable under multiplication By*. In other words, it is dattice chain
in the sense of [5] (1.1).

(ii) In the opposite direction, suppose we are given a lattice clfaim V. We
can index the elements df by Z, £ = {L;:j € Z},sothatL; 2D L;1, j € Z,
and define a functiom by A(j) = L;, j € Z. This is a lattice sequence with
L, = £ and the additional property that(j) # A(j + 1) for anyj. In other
words, an (indexed) lattice chain is the same as a lattice sequence winjeletise
as a function. We call such lattice sequensiit.

2.3. Recall that a lattice chaif in V determines a hereditary--order in A,
which we denote b@i(.L) or EncﬁF(QC), in the manner of [5]:

AL) ={x e A:xL C L,L € L}.
If A is a lattice sequence ivi, we define

a, =a,(A)={x e A:xA(m) CA(m+n),meZ}, nelZ.
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Note that, by definitiongg(A) = A(L ). Further, each,, (A) is anog-lattice in A
and also a bimodule ovag(A). Observe that ifA is strict, with.£ = £, then the
definition givesa, (A) = ", where3 is the Jacobson radical of the ord¥#¢.L)
(5] (1.1)).

The lattice sequenca determines a ‘valuation’ magp,: A — Z by
valx) =max{in € Z:x € a,(A)}, x €A,
with the usual understanding that (0) = co.

PROPOSITION.Let A be a lattice sequence ¥. We have:

() ag(A) = A(Ly), that is,ag(A) is the hereditary p-order in A defined by the
lattice chaint,.
(i) ar(A) is the Jacobson radical af(A).
(i) prag(A) = dyer)(N), k € Z.
(V) ax(A) - @ (A) Cax(A), k[ € Z.

Proof. Only (ii) requires any comment. Lef = L. ForL € £, let L' be
the largest element of such thatL’ C L. From the standard theory of lattice
chains and hereditary orders, we know that an elementA lies in the radical of
ag(A) = A(L) ifand only if xL ¢ L’ for all L € .£. On the other hand, i € Z
satisfiesA (m) = L, then we haveA(m + 1) = L or L’, the latter case occurring
precisely whenn is thelargestinteger such that\(m) = L. Thusx € A liesin
a;(A) ifand only ifxL c L' forall L € £. This proves (ii). 0

2.4. Suppose for the moment thatis a strict lattice sequence i. We may
therefore identifyA with its associated lattice chaig. In this case, the lattice
chainL and the orde®((.L) = ag(A) determine each other: the chaithis simply

the set of alRl-lattices inV. This cannot hold for lattice sequences in general. How-

ever, weaker versions of many related properties do generalize to this situation, for
example:

PROPOSITION. Let A be a lattice sequence W, and writee = e(A). The
natural map

0 (A) R e—1 o ( A(D) A+ ) )
| | M,
i=0

a;+1(A) AG+D AG+j+D

is an isomorphism, for alj € Z.

Proof. By periodicity and the definition of;, this map is certainly injective. It
is enough therefore to show that dim; /a;,1 = ¢ d;d;,, for all j € Z, where
we have written?; = dimy, (A(i)/AG + 1)).
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This injectivity property shows that

e—1
dimy, (a;(A)/aj41(A) < Y didiyj, j € Z.
i=0

This implies
e—1 e—1
Z dimkFaj/aHl < Z d,'d,'+j.
j=0 i,j=0

The left hand side here is digg/a, = dim, ag/prag = N2, whereN = dimzV.
By periodicity, the right hand side reduces (B/_,d;)> = N?2. It follows that
dimy,.a;/a;11 = £¢d;d;,; for 0 < j < e — 1. The same equality then holds for
all j by periodicity, and the proposition is proved. O

Using this Proposition, it is easy to find examples of lattice sequeAc@sth
a;j(A) = a;;1(A) for somej € Z.

2.5. Ifwe have a lattice sequengeand an integer, we can define another lattice
sequenceh+t by (A+t)(n) = A(n + t), n € Z. We refer toA++ as atranslate
of A. Of course, the lattice sequencas A++ have many properties in common.
In particular, we have:;(A+t) = a;(A) for all j € Z. We next show that the
converse of this property holds.

PROPOSITION.Let A, A’ be lattice sequences ¥, and suppose that;(A) =
a;j(A"), forall j. There is then an integersuch thatA = A'+¢.

Proof. The relationng(A) = ag(A’) shows that the associated lattice chaihgs
L are equal.

Assume for a contradiction that is not equal to any translate &f . Replacing
A, A’ by translates, we can therefore assume we have the following situation:
A(—1) # A0) = A'(0) £ A’'(—1) and, for some nonnegative integgrA(j) =
AQQ) = A'(j)= A +21),while A(j+1) # A(j). Letl > 1 be the least integer
such thatA’(j) # A’(j +1+ 1). If we number the lattice chaify, = {L;:k € Z}
so thatLg = A(0), we then haveA(j +1) = A'(j +1+ 1) = L,. Sincej > 0,
we havea;1(A) = aj11(A") C B, whereB is the radical of the hereditary order
defined by.L ,. We identify

e(Lp)—2

B/P°= [] HOM(Li/Lis1. Lis1/Lis2).

i=—1

and consider the image of,.1(A) here. By construction, this mags_1/Lg
trivially to Lo/L4. However, by (2.4), the image af,,.1(A’) contains an element
mapping L_1/Lg nontrivially to Lo/L,. Thus we have a contradiction and the
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Proposition follows. O

2.6. If we are given a lattice sequenaen V, we can extend\ to a function on
the real lineR by settingA(r) = A(n), r € R, wheren is the integer defined by
the relationn — 1 < r < n. Equivalently,

A =A== =JAm = (] Am).

nzr n<r+1

We still have the relatiom\(s) C A(r),r,s € R, r < s. It will also be useful to
likewise extend the domain of definition of the functiom> a,(A). In this regard,
the following is helpful.

PROPOSITION.Let A be a lattice sequence . Letr € R and sets = —[—r].
For an elemenk € A, the following are equivalent:

(i) x € a,(A);

(i) xA(s) C A(n+s) forall s € R;
(i) xA(m) C A(r +m) forall m € Z;
(iv) xA(s) C A(r + ) forall s € R.

Proof. The implication (i)= (ii) is easy, and (iix= (iv) because: +s > r + .
On the other hand, (iii) is a special case of (iv), so it remains only to show that (iii)
implies (i).

To do this,wenotethat — 1 <r <n,son+m—-—1<r+m < n+mfor
all integersn. ThusA(r + m) = A(n + m) andxA(m) C A(n + m) for all m, as
required. O

Forr € R, we now definai, (A) to be the set of € A which satisfy the conditions
of the Proposition; in other words,

Clr(A) = a,[,r](A), reR.
As an immediate consequence of this definition, we have

Pra(A) = arqen) (D),

r,s € R.
ar(A)as(A) C ar-‘,—s(A)’

2.7. The main reason for introducing lattice sequences is that, unlike lattice chains,
they admit a natural notion of direct sum. To define this, we first need an operation
of ‘scaling’ on lattice sequences. This is the subject of the present section.

DEFINITION. Let A be a lattice sequence i and letk be a positive integer.
Define a functiork A from Z to the set ob r-lattices inV by

kA:m+— A(m/k), m eZ.

https://doi.org/10.1023/A:1001773929735 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001773929735

SEMISIMPLE TYPES 65

PROPOSITION.Let A be a lattice sequence W andk € Z, k > 0. Then:

(i) kA is alattice sequence Witk A) = ke(A);
(i) we havekA(r) = A(r/k), forall r € R;
(i) a,(kA) = a,/k(A), forall r € R.

Proof. The functionk A: n — A(n/k) is an order-preserving map frofto the
set of lattices invV. Moreover,
A(n/k)if k divides n,

kA(n) =
) A1+ [n/k]) otherwise

The first assertion is now clear.

In (i), we letn be the integer such that— 1 < r < n. ThuskA(r) = kA(n) =
A(n/k). We writen = mk — I, for integersm, [ such that 0< [ < k. We then
havem — 1 < r/k <n/k <m,sothatkA(r) = A(m) = A(n/k) = A(r/k), as
required.

For (iii), we takex € A. Thenx € a,(kA) ifand only if xA(s/k) C A(s/k +
r/k) for all s € R. If s is of the formmk with m € Z, this condition implies
x € a,/.(A) by Proposition 2.6(iii). Thusi,.(kA) C a,,x(A). The opposite con-
tainment is clear. O

Letv, be the valuation map attachedAg as in 2.3. The Proposition yields:

COROLLARY. Let A be a lattice sequence i and letk be a positive integer.
Thenva = kVA.

2.8.  We now define thdirect sunof two lattice sequences. Foe= 1, 2, letV' be
afinite-dimensionalF -vector space and’ a lattice sequence ivi'. We abbreviate
e; = e(A"), and set

e = lcm{eq, eo},
Aler) = At(err) ® A%(eor), reR.
Thus A, which we tend to denote
A =A'® A
is an order-preserving function froRito the set of lattices iv?! @ V2.

PROPOSITION.We have:
(i) A =A@ A?is alattice sequence iW! @ V2 of periode;
(i) A=A 0 A%
(iii) if A’ is a lattice sequence iW’, fori = 1, 2, 3, then
(M B A A=A e (A2 e A%,
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(iv) the transposition isomorphisi® @ V? — V2 @ V! induces an isomorphism
(A*® A?)(r) = (A2 ® AN,
forall r € R.
Proof. Straightforward. a
EXAMPLE. Suppose we have two lattice chatis;}, {L’} with the same period

e. We can view these as corresponding to strict lattice sequencsrespectively.
The sumA @ A’ is then strict of perio@, and the corresponding lattice chain is

-+ DLo®LyDL1®LD---DL,DL,D---.

On the other hand, there is an obvious way of sticking these lattice chains together
to get a chain of periode2 namely

- DLo®LyD L@ LI DL1®LI DL ®L,D -

This is the lattice chain associated to the strict lattice sequaricehere A” =
(2A-1) @ 2A'.

2.9. We continue with the same notation, andéet V1@ V2, A = Endz (V).
We use our standard block matrix notation (see ‘Notation” above), and start with a
simple general observation.

LEMMA. LetX be anog-lattice in A. The following are equivalent:

() 1.-X -V cx,foralli,j;
(i) - X -2/ =xnAY, foralli, j;
(i) X =11, X NAY.

The proof is straightforward.

PROPOSITION.For i = 1, 2, let V' be a finite-dimensional-vector space and
let A’ be a lattice sequence Wi’ of periode;. Definee and A as in2.8,and use
the other notation above. We hatiec ag(A), i = 1, 2. Consequently,

a,(A)NAY=1"0a() -V, 1<ij<2

a.(A) =[] aa)nay,

1<i,j<2

and, further
ar(A) m Ai - are,-/e(Ai)’ l - l’ 2’

forall r € R.
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Proof. For the first assertion, the definition gives U\ (r) = Ai(eir/e) C
A(r), sol’ € ag(A). Sincea, (A) is a bimodule ovetip(A), the first two relations
are then consequences of the Lemma. The third follows from (2.6). O

2.10. We now take a finite-dimensionBtvector spacé/, with A = Endg(V),
and form the charactef, = v o try,r Of A, as in our list of general notations. If
S is a subset oft, we write

S*={ye A:s(xy)=1,x € S}.

PROPOSITION. Let V be a finite-dimensionaF-vector space and\ a lattice
sequence V. We then have

0,(A)* = a1, (A), neZ. (2.10.1)

Proof. Abbreviatee = e¢(A), and letW be anF'-vector space of dimensianLet
Ayw be astrict lattice sequence i of periode. SetX = VO W, Ax = AD Ay.
The lattice sequencd y is then strict of period. Proposition 2.9 gives us the
relation

an(A) = a, (Ax) NENdp(V) = 1ya, (Ax)ly

for all m € Z, wherely denotes the obvious projectidh — V.
Next, we writeAy = Endr(X) and use/r to define the analogue of the ‘star’
operation inAy:

ST={yeAx:ya,(xy) =1, x €5},

whereS C Ay andyra, = Yrotra, r. If Sis anop-lattice, we haveS' N A =
(1y S1y)*. SinceAy is strict, we can use [2] p. 190 to get

a,(Ax)" =a1,(Ax), neZ.
Thus
a1, (A) = a,(Ax)TNENds(V)
= (Lya,(Ax)1y)"
= a,(A)*
as required. O

Remark The relation (2.10.1) doe®t hold for real indices. Indeed, we have

0, (A)*=a_,(A), reRr¢Z. (2.10.2)
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3. Split Strata

We need to generalize the notion of stratum (as in [5] Chapter 1) to the context of
lattice sequences. The main result is Theorem 3.7, together with its Corollary 3.9;
this is the first real step in our construction of semisimple types.

3.1. LetV be a finite-dimensionaF-vector space and put = Endr(V). A
stratumin A is now a quadrupléA, n, s, b], where A is anop-lattice sequence
inV,neZ, s € Rwiths < n, andb € a_,(A). Two strata[A, n, s, b;] are
equivalent denoted A, n, s, b1] ~ [A, n, s, by], if by = b, (Moda_g(A)). To all
intents and purposes therefore, there is no real distinction betiveen [s], 4]
and[A, n, s, b], but it will be useful to have the more general grading structure.

A stratum denoted?, n, m, b] in [5] (with m, n € Z) is the same as what we
here call[Ag, n, m, b], where Ag denotes the strict lattice sequence determined
by the hereditary orde¥. We shall, however, continue to use the notation of [5]
alongside its extension to lattice sequences: this is useful when we are working
with strict lattice sequences and wish to emphasize the fact.

3.2. Asinthe standard case, we can definetiaacteristic polynomiap, (X) €
kr[X] of a stratum A, n, s, b]. To do this, we need to choose a prime element
of F, and we writee = e(A), g = gcdn, e). The elemenby = n;/gbe/g then
lies in ag(A). Its characteristic polynomial as an endomorphisniVois monic
and lies inoz[X]; we defineg, (X) as the reduction mogl- of this characteristic
polynomial. We observe that,(X) depends only on the equivalence class of the
stratum[A, n, n — 1, b] or, equivalently, that ofA, n,n — e, b] forany 1> ¢ > 0.

We have to remember here the possibility, (A) = a;_,(A). If this happens
and we have a stratup, n, n — 1, b], then the elemerity above lies im;(A) and
op(X) = XV, whereN = dimgV.

3.3. LetV be afinite-dimensionak’-vector space; we writd = Endr(V), G =
Autz (V). Let A be a lattice sequence In, as in Section 2. We write

u(A) =uo(A) = ap(A)™,
u.(A)=1+4+a.(A), reR,r>0.

If 2 denotes the hereditary order mdefined by the lattice chai 5, i.e.,2l =
ag(A), we haveu(A) = UQD). If B = a,1(A) is the radical ofA, we further have
u.(A) = UN) = 1+ P when 0< r < 1.

The sef{u,,(A):n € Z, n > 1} gives afiltration of the parahoric subgrolg2()
of G by open normal subgroups; this, however, is not usually the standard filtration
of U () by the principal congruence subgroug8(2) = 1+ 8", n > 1.

3.4. Now letx € G = Autz(V), and abbreviater = v, (x), v = va(x71)
(notation of 2.7). For € R, we have by definition

A(r) =x"A() CxPAG +v) C A+ v +0),

https://doi.org/10.1023/A:1001773929735 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001773929735

SEMISIMPLE TYPES 69

whencev + v < 0. We havev + v/ = 0 if and only if the containments above are
equalities for all-. We say thatr is A-invertible if it satisfies this condition, i.e.,
va(x™h) = —va(x).

PROPOSITION.

(i) Letx € G. Thenx is A-invertible if and only ifxA(r) = A(r +vA(x)), for all
r e R.
(i) If x € G is A-invertible andv = v, (x), we havexa,(A) = a,(A)x =
a,,(A), forall n € Z.
(i) The setR(A) of A-invertible elements af; is a subgroup otz which normal-
izes and containa(A).

Proof. Immediate. 0

Remarks (i) The lattice chaint, determined byA is certainly stabilized by
R(A), in the sense thatL € £, wheneverg € R(A) andL € L. ThusKR(A) is
contained in the5-stabilizer of.L 5. The G-stabilizer ofL, is the group

A = {x € G:x71Ax = A},

where2l is the hereditary ordaty(A) defined by.L 5. (We recall thatR(2) is also
the G-normalizer of the grou/ () = u(A).) We thus have

KA D R(A) D FXUA,

but, in general, both containments here may be strict.

(ii) The definitions imply thati(A) normalizes the filtration subgroups (A)
or, equivalently, the lattices,(A), r > 0. Proposition 2.5 shows that we can
recover the lattice sequenge up to a translation, from the lattice-valued function
n+ a,(A),n € Z,n > 1, whence it follows thaR(A) = (1,5 Ne(u,(A)),
where N denotes normalizer.

3.5. We now return to the extended notion of stratum 3.1.

PROPOSITION.Let[A, n, s, b] be a stratum. Then:

(i) If some element’ € b + a;_,(A) is A-invertible withv, (") = —n, then we
have(@)a;_,(A) # a_,(A),and(b) b+a,_,(A) = bu;(A) and every element
of this set isA-invertible of valuation—n.

(iiy The stratuniA, n, s, b] satisfies the properties i) if and only if the charac-
teristic polynomiakp, (X) is not divisible byX.

The proof is immediate. We temporarily call strata satisfying these conditions
nondegenerate.

3.6. We shall need a notion dfrect sumfor strata, corrresponding to the direct
sum operation on lattice sequences given in 2.8.
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Fori = 1,2, let V! be a finite-dimensionaF-vector space anfA’, n;, n; —
1, b;] a stratum in End(V?). We can form the lattice sequense= A' @ A?in
V = V@ V2 Settinge = e(A) = lcm (e(AY), e(A?)), n = maxn;e/e(A)), we
get a stratunmiA, n,n — 1, b] in Endr(V), whereb = by @ b».

In this situation, it is easy to compute the characteristic polynomjék) of
the stratum A, n,n — 1, b]:

LEMMA. Assume (by symmetry) that/e(A') > no/e(A?).

(i) 1f ni/e(AY) = na/e(A?), we havep,(X) = @p, (X) @, (X).
(i) If ny/e(AY) > ny/e(A?), we havep,(X) = ¢, (X)X™, wherem = dim(V?).
In this case, moreover, we hai&, n,n — 1, b] ~[A,n,n — 1, by ® 0].

We will be particularly interested in a special case of the foregoing. The follow-
ing notation will be standard for some time:

NOTATION. Fori = 1,2, Vi is a finite-dimensional -vector space and/ =
Vi@ V2. We letA’ be a lattice sequence ivi’, and setA = A @ A2. We write
V=V®V2andA = End:(V). Leth; € A" = Endp (V') satisfy

(i) vp1(by) = —n1 < 0andby is Al-invertible
(ii) eitherv,2(by) > —n1e(A?)/e(AY), or else all the following conditions hald

(@) va2(bp) = —np = —nje(A?)/e(AY),
(b) b, is A%-invertible,
(c) gcdgs,, ¢p,) = 1.

We use our standard block matrix notatian= @ A, and put

by O
b=b,®b,= .
1D b <0 b2>

As above, we have, (b) = —n = —nqe (A)/e(AY) e Z. For this value ofi, we
define a pair ob -lattices inA:

by ( (@)™ (ag)t? )

(an+l)21 (an)ZZ

B ( (anp)™ (ag)t? )
hy = 22):

(an+l)21 (g1

(3.6.1)

We also putd; =1+ b;,i =1, 2.

PROPOSITION.

(i) The setdH;,i = 1, 2, are compact open subgroups@f
(i) The mapc — 1+ x induces an isomorphism 6f/h, with H,/ H.
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(i) We have

hi _ ((al—n)ll (a—n)12>’

(al)21 (al—n)zz

b = ((a_n)“ <a_,1>12).

(al)21 (a—n)zz

Proof. These are straightforward computations, based on 2.9 and 2.10.0
We takeyr, ¥4 as usual, and form the charactey of the groupH,. Thus

Up(1+x) = Pa(bx), x € b (3.6.2)

This is indeed a character &f; which is trivial on H, by (2.10).

3.7. We use the notation introduced in 3.6. We wilitgy,| H,) for the set of
g € G which intertwine the charactef, of the groupH;. We also writeG; =
Autz (V) andM = G, x G, regarded as a Levi subgroup Gf= Autz (V). We
also tend to identify, e.gG; with its canonical imagé&; x {1} in M.

THEOREM. We havels(y,|Hy) C Hy- M - H.
Proof. The characten), of H,, and hence also the intertwining sety;,) =
I (Y| Hy), depends only on the equivalence class of stratmm, n — 1, b]. We
can therefore assume that, when we are in case (ii) of Notation 3.6, we actually
haveb, = 0. The elemenk then isA-invertible if and only ifb, # O.
We need a sequence of preliminary results.

PROPOSITION.Under the hypotheses above, det a;_,(A) N A%! and define a
mapd.: A — A2byd.(x) = bix —xbo+xcx, x € A2 Thend,.(ag(A)NAL?) =
a_,(A) N A2,

Proof. We need some lemmas.

LEMMA 1. The map = 9o mapsa, (A) N A*? ontoa,_, N A*?, for all r.

Proof. It follows from the A-invertibility of by thata,_,(A)NA? = by(a,(A)N
A'?). This gives the result in the cage = 0. Suppose then th@ # 0, and
consider the map: x > b; *xb,. We have

0 1 0 1,

and sinceb is A-invertible, it follows that our map takesa, N A*? to itself. We con-
sider theeg-th power of this map, wherey = e/gcd(n, ¢). Since the polynomials
oy, are relatively prime, no eigenvalue &P (in some splitting field) is a 1-unit. It
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follows that the map — x —§(x) has only unit eigenvalues (in the splitting field),
and therefore maps. (A) N A'? bijectively to itself. The lemma now follows. O

LEMMA 2. We haved.(ag(A) N A?) + ai(A) N A2 = a_,(A) N A2 for all
integersk > —n.

Proof. Sincec € a;_,(A) N A%, we haved, (ag(A) N A C a_,(A) N A? and
the lemma holds ik = —n.

We therefore assume that the assertion holds for some fixed irkegern.
Takey € a_,(A) N A and choose € ag(A) N A'?, z € a;(A) N A2 such that
9. (x) +z=y.

By Lemma 1, there exists; € aiy,(A) N A2 such thatdp(x;) = z. Also,
X1CX1 € O2(k+n)+1—n (AN Al? C Clk+]_(A) ﬂAlz, while the element$cx1, X1CX
both lie ina;,1 (A) N A, It follows thatd,.(x + x1) — y € a1(A) NAY?, and the
lemma holds by induction. a

Thus, ify € a_,(A)N A andk > 1, there existsy € ag(A)N A'? such that
.(y) — vy € a(A) NAY. The setap(A)N A is compact, sqy,} has a con-
vergent subsequendey, }. The limit, call it y.,, of this subsequence then satisfies
9.(y0) = v, and we have proved the Proposition. O

We now prove the Theorem. We writé for the algebrad® @ A% c A, so that
M = M*. We first need:

LEMMA 3. Letx = b+ y, y € b}. There existsr € H; such thathxh™ €
b+bhNM.
Proof. We writex in the form

b/
X = 1 @ .
()

For an elemenk € A2, we have

<1 u) b} —uc 0 1 —u by 9.(—u)
01 c by + cu o 1/ \e¢ b, '
The element above lies in(a_,)'%, so we can apply the Proposition to get an

element: € (ag)*? such that.(—u) = a. The matrix 1+ u lies in H;, SO we have
reduced to the case wherds lower triangular,

b/
=)
c b,

LEMMA 4. The mapy — yb;—b,y,y € A%, induces anisomorphista,,)?! =
(a,)? forall r € Z.
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Proof. It is enough to show that the map is surjective. The dase= b,
b, = by is essentially identical to Lemma 1, so we omit the details. In general,
we write §, 8’ for the mapsy — yb1 — boy, y — yby — b,y respectively. For
y € (au4r)?t, we haves’(y) = 8(y) (mod (a,,1)?%, from which it follows that
(a,)%r = 8'(a,1,) + (a,41)?1. The lemma follows immediately. 0

In particular,y — yb; — b,y gives a surjectiora, 1)?* — (a;)?L. We have

CAEDE D

y 1)\e p)\—y 1 c+yb,—by by’

For suitable choice of € (a,,1)?%, this matrix is diagonal, while & y € Hy. This
proves Lemma 3. a

We now prove the theorem. For elementary reasons, an elgmet intertwines
the charactet,, if and only if g=1(b + b})g N (b + b) # B. Thus, ifg intertwines
¥, we have elements, y € b} such thag=1(b + x)g = b + y. Lemma 3 allows
us to replace by highy, h; € Hq, and assume that y € b N M. We put

b+ (b/l 0 b+ (b/l/ 0
X = s = s
0 b, Yo w

and write out the equatiof + x)g = g(b + y). Comparing (1,2)-entries, we have
big12 = gi2b5. The upper triangular analogue of Lemma 4 shows that the map
A2 — A2 given byz — b)z — zb} is injective, sog;, = 0. Likewise gy, = 0,
whenceg € M as required. O

3.8. We will also need an approximate version of Theorem (3.7). For this, we
simplify our block matrix notation (3.6.1) in the obvious way.

COROLLARY. In the situation 0f3.7,let ¢ be an integer witltD < ¢ < », and
define a group by

a, Qg
qu =1 +
Ant1 ay.

An elemeng € G then intertwines the charactef,|, H, if and only if there exist
X,y € (a,ﬂrl_q)21 such that(1 + x)g(1 + y) intertwinesy, | H;. In other words,

1 0 1 0
IG(Wb|qH1) C H]_MH]_ .
an+lfq 1 Cln+1,q 1

Proof. It follows from 3.7 Lemma 1 that, under the conditions (3.6), the group
1+ (a,41-4)?* acts transitively (by conjugation) on the set of characterg/pf
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agreeing withy;, on the subgroup H;. Thus, if¢ temporarily denotes the repres-
entation ofH; induced by, |, H1, the G-intertwining of£ is:

(L4 (O41-) DT ) (L + (@r1-9)7D.

This is the same as th@-intertwining of |, H1, So the result follows. O

3.9. We continue in the situation of 3.7. We now give a corollary of Theorem 3.7,
which is one of our major results.
We suppose given, for ea¢ha subgroupX; of u(A’) containingH; N G;, and
an irreducible representatien of K; whose restriction t&; N H; is a multiple of
Y, there. It will also be useful to have the notation

All A12 1
Puz(o AZZ)HG’ Nu:l+A )

All 0 1
Pg:(AZl AZZ)DG, N, =1+ A“~

In these circumstances, we have the following. (For the notion of cover, see the
Introduction above or [9] (8.1).)

COROLLARY.

() The setk = (K; x K») - Hy is a group.
(ii) There is a unique irreducible representatiprof K which is trivial onK N N,
K N N,, and whose restriction t&; x K> is equivalent t@; ® 0».
(i) The pair(K, o) is aG-cover of(K; x K2, 01 ® 02).

Proof. We haveK; x K, C u(A) N M, from which it follows that the group
K, x K, normalizesH;. Assertion (i) follows, and assertion (ii) is immediate.
To prove (iii), we first have to check that there is an lwahori decomposition

K=KNN;,-KNM-K- Ny,

and this follows from the definition oK. The outer factors here are certainly
contained in the kernel qf.

SinceP,, P, are the only parabolic subgroups@fwith Levi componentM, it
remains only to verify the following. (As usual, we wri# (G, o) for the convo-
lution algebra of compactly supportedspherical functions o)

LEMMA. Letxr be some prime element Bf and define

7TFOM
=\lo o)™
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Let f € H(G, o) have supportk¢ K. Then f is invertible in #(G, o) and its
inverse is supported ok ¢ K.

Proof. First we note that the functiorf is uniquely determined, up to scalar
constant factor, by the condition supp= K¢K. We may as well assume that
f(¢) is the identity map (denote 1) on the space underlying the contragredient of
0. Likewise, there is a unique functiofi € #(G, o) with supportK¢ 1K such
that f/(¢~1) = 1. We computef’ x f.

The support of this convolution is contained in

K 'KcK =K -t 'KenNy- K.

Now letx € N, intertwinep. By the lwahori decomposition fok and 3.7, there
existky, k; € Hy N Ny such thatkyxk, € P,. We deduce that the intertwining of
in Ny is contained ink N Ny, = HyN Ny. In other words, the support gf x f must
be contained irK . A simple computation shows thdt = f(15) is of the formc1l,
for somec > 0. Thusf is left invertible in# (G, o). It follows that f is invertible
(cf. [9] proof of (7.14)), with inverse~ f'. O

4. Ps-Characters and Endo-Classes

In this section, we are concerned only with the standard situation relating to lattice
chains, rather than lattice sequences. We recall one of the basic concepts of [5],
namely that osimple characte( ibid. Chapter 3), and some developments of the
idea in [4].

4.1. LetE/F be afinite field extension, angl € E* an element such thé =
F[B]. The algebrad(E) = Endr(E) contains a unique hereditasy--order2((E)
with the propertyR(2((E)) D E*; indeed (E) is the hereditary order defined by
the lattice chair{p-g:j € 7Z}. Attached to this is the quantitiy(8, A(E)) € Z U
{oo}, whose definition we now recall. Wrigg(E) for the radical ofA(E), andag
for the mapx — Bx —xB, x € A(E). Thenky(8, 2A(E)) is the least integet such
thatB(E)* Nag(A) C ag(A(E)), with the understanding thag(s, 2A(E)) = —oco

in the caseE = F. (See [5] (1.4.11).)

Here, we prefer to use the briefer notation

ko(B, A(E)) = kr(B).

Write v for the standard additive valuation di We thus have either-(8) =
—oc or elsekr (B) = ve(B).

More generally, ifV is a finite-dimensionak -vector space ardl is a hereditary
og-order in Eng-(V) with E* C &(21), we can defindg(8, 2) in the same way
loc. cit. We have the relation

ko(B, ) = kp(B)e(Ulop)/e(E|F).
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4.2. Inthe language of [4] Section 1sanple pair(k, 8) over F consists of an
integerk and a nonzero elemegtgenerating a finite field extensidn of F such
that

—k > maxkr(B), ve(B)}.

Let (k, B) be a simple pair oveF with k > 0. LetV be some finite-dimensionai-
vector space, and ¢, n, m, 8] be a simple stratum ([5] (1.5)) iA = Endr(V),
with m > 0. Thus, in particularm < —ko(B,2) and the simple character set
C®A, m, B) of [5] (3.2) is defined. We recall that the elementsci®l, m, B) are
certain abelian characters of the graliff*1(8, ) defined in [5] (3.1).

It will be convenient to extend our indexing as in earlier sections.rFerR,
r > 0, we define

H'(8,2) = H7(B, ), CELrp =CAIrl,p.

Fori = 1,2, let V; be a finite-dimensional vector space over= F[3],
and let[%;, n;, m;, 8] be a simple stratum in EpdV;) with m; > 0. Sete; =
e(RU;lor)/e(E|F). Suppose we have

mi i mo .
(4] B (] -
By [5] (3.6.14) there is a canonical bijection

Toy 20,51 C(QAr, my, B) — C(a, ma, B). (4.2.1)

For anyr € R, we have

). =]

€1 €2

S0 4.2.1 gives a bijectionry, o, g: C(RA1, 7, B) = C(™Up, rez/eq, p) for any real
r > 0.

4.3. The bijections of 4.2.1 exhibit a strong coherence property which is most
conveniently expressed via a notion from [4] Section 8.

We start with a simple paitk, 8) in whichk > 0, and writeE = F[B]. We
suppose given a tripleV, 98, m), where

(i) V is afinite-dimensionaE-vector spacge
(ii) 2B is a hereditaryog-order in Endg (V),
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(iii) m is aninteger such thdin/e(Blog)] = k.

To this data, we can attach the hereditaprorder?( in Endr(V) defined by the
same lattice chain &8. If we putn = —vg(8)e(B|og), the stratuni{(, n, m, 8]

is simple. Moreover, for any two choices mfsatisfying (iii), the simple character
setsC (2, m, B) are in canonical bijection (4.2.1).

A ps-character(attached to the simple paik, 8), k > 0) is then a triple
(®, k, B), where® is a simple-character-valued function as follows: to each triple
(V, 9B, m) as aboveP attaches a simple charact®n() € ¢, m, 8). We call
this therealization of ® on 2 of level m. These realizations are subject to the
following coherence condition: if we have two realizatia®$2(;) of (©, k, 8) on
orders?l;, i = 1, 2, they are related by

O®A2) = o, 2,0 (2p).

Thus, for example@® (21,) is completely determined b (2l;) (and the element
B). Given the simple pai¢k, 8), the ps-characti®, k, B) is therefore determined
by any one of its realizations.

Now suppose we are given ps-characi@s, k;, 8;) over F, i = 1, 2. We say
they areendo-equivalentjenoted

(O1, k1, B1) = (O2, ka, f2),

if there exists arF-vector space/, hereditaryo --orders2|; in Endz(V), and real-
izations®, (2;) of the ®; of the same levekuch thatl; = 20, asor-orders, and
such that the simple characte®s(2;) intertwine (hence, by [5] Theorem 3.5.11,
are conjugate) in Ayt(V). We then know ([4] (8.7)) that any realizations of the
given ps-characters on isomorphic orders in the same endomorphism algebra must
intertwine.

In particular, endo-equivalence is an equivalence relation on the set of ps-
characters oveF. We refer to the equivalence classeseasgo-classesf simple
characters.

Comment. This definition of endo-equivalence is not quite the same as that
given in [4]; however, it is easy to see (using [4] (8.3)) that the two definitions are
equivalent.

4.4. ltis convenient to extend this terminology by admitting a trivial ps-character
©0: if 2 is a hereditary z-order in some Eng(V), the realization of9° on 2 is

the trivial character oU1(2l). This ps-characte®® is not endo-equivalent to any
nontrivial ®.

4.5. Letrw be an irreducible supercuspidal representation of the g@up-
Autz(V). Thenz contains a maximal simple type, 1), which is uniquely de-
termined up taG-conjugacy ([5] Theorem 8.4.1).
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If 7 contains the trivial character &*(2(), for some hereditary z-order2l in
Endq-(V), we say thatr is of level zercand set9,, = {©°}.

Otherwise, there is a simple stratuf, n, 0, 8] in Endr(V) such that/ =
J(B,2) and a simple charactére C(, 0, 8) such that.| H%(B, 2) is a multiple
of 6. This characteé determines a ps-charact@, 0, 8) and hence an endo-class
which we denote®,,. The uniqueness of/, A) implies that the endo-clas®,
depends only on the equivalence class ofndeed, replacing by 7 ® x, where
x is an unramified quasicharacter, has no effecbgrand so:

PROPOSITION. The endo-clas®,, defined above depends only on the inertial
equivalence clasi’, 7l € B(G).

4.6. We need to recall an ‘approximation’ property of simple characters. We are
given simple strat@l, n, 0, 8;]1 in someA = Endr(V),i = 1, 2, and an integer

m such that 1< m < n. We further have a simple stratuf, n, m, y], such that
H™(y, ) = H™ (B;,0) andC &, m, y) = C, m, B;). (This arises if, for
example[2A, n,m, y] ~ [, n, m, B;].)

In these circumstances, one kno#& (y, ) = H™(8;, %) ([5] (3.1.9) plus [8]
2.11). Thus, if we take characteise C(,m—1, 8;), 9 € C(R, m—1, y) which
agree onH™"*1, we get elements; € P~ (where is the radical of) such
thato, = vy, for eachi. We letB,, = 2 N Endgp,,1(V), and we choose a tame
corestrictions on A relative toF[y]/F (see [5] Section 1.3). Thus we get strata
[sBy, m,m—1,5(c;)] in Endp[y](V).

PROPOSITION. For i = 1, 2, the stratum[*B,,, m,m — 1, s(c;)] is either null
or equivalent to a simple stratum. The strafa,, m, m — 1, s(c;)] have the same
characteristic polynomials (relative to some prime elemerf pf]) if and only if
the ps-characters defined by the characterare endo-equivalent.

This follows from [8] 2.8 and the observation [5] (proof of (2.6.1)) that the
conjugacy class of a simple stratum is effectively determined by its characteristic
polynomial.

5. Simple Characters for Lattice Sequences

In this section we generalize the notion of simple character to the context of lattice
sequences. To do this, we require a substantial technical result (5.2 below) general-
izing [5] (7.1.19). First, however, we need to extend some basic concepts from [5]
Chapter 3.

5.1. LetE/F be some finite field extension, and letbe ano-lattice sequence
in a finite-dimensionaF-vector spacé’. ThenA is also aro --lattice sequence in
the F-spaceV, and the extension of to a function orR, as in 2.6, is independent
of the base field. We have the period relatigiA) = ez (A)e(E|F). We write
a.(A), r € R, for theog-lattices inA = Endr (V) defined in 2.6. Using the same
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definitions relative to the base field, we get a sequence of;-latticesb, (A) in
B = End: (V) along with the relatiorh, (A) = a,(A)N B, r € R.

Suppose we are now given an elemgnte E* with E = F[B]. If A is
an E-lattice sequence, we can then define an intdg€s, A) by ko(B, A) =
kr(Blee(N).

DEFINITION. LetV be a finite-dimensionaf-vector space, and sat= Endr(V),
G = Autp (V). Astratum[A, n, r, B]in A is simple if

(i) the algebrak = F[B] is a field, andA is anog-lattice sequence;
(i) va(B) = —n;
(i) r < —ko(B, A).

Note that condition (iii) here is equivalent fo] < —kq(B, A), so this definition is
consistent with the standard one [5] (1.5) for lattice chains.

5.2. We can now state the central result of the section. We first need a system of
notation; this will remain standard for some time.

HYPOTHESES.Let E/ F be afinite field extension. For each intege® < i <1,
let Vi be a finite-dimensionak -vector space and’ anoz-lattice sequence if'.
Write

ei=ep(A), 1<i<t, e=ep(AD.

We assume that

(a) the lattice sequenca? is strict;
(b) ¢; dividese, 1 < i <t.

We set
v=VvleVvie. ... oV,
A=A@pAl® - - @A,
A=Ende(V), G =Autp(V),
A=End (£1), P =radd,
B = Endz(V),
B=ANB, Q=PNB.

(5.2.1)

Thus A is a strictog-lattice sequence ifY whoseog-period ise. (We note here
that the definition of direct sum of lattice sequences is independent of the choice
of base field.)

In this situation, we can use our standard block notation,

AY =Homg(V/, V), 0<i, j<t.
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Thus we get a parabolic subgrouy of G by P, = G N ([ [,-; AY) with Levi
componentM = [];_, Aut FV' and unipotent radicaV, = 1+ [[,_; AY. We
write P, = M N, for the opposite ofP, relative to the Levi factoM.

PROPOSITION.Suppose we have an elem@grguch thatE = F[B] and integers
n > m > 0such thaf2(, n, m, 8] is a simple stratum im. Letd € C (X, m, B).

(i) The groupsH™+1 = H™+1(B, 2A) and J"+1 = J"*+1(B, ) then have Iwahori
decomposition relative to the paiM, P,):

H" ' = " AN, - H"™ ' n M - H" ™ n N,
Jm+l — Jm+l m N( . Jm+l m M . Jm+l m Nu.

(i) The character®|(H™*1 N Ny), 6|(H"* N N,) are both trivial

(i) We haveH" (B8, ) N Autz (V% = H"T(B, A%, whereA® = A(A9).
Moreover, the charactef® = 0| H™ (8, A°) lies in @(A°, m, B) and indeed
00 = To 0 4(6).

Proof. We haveH” ! = 1+ ¢! where$"*! = ¢+ (8, ), in the notation
of [5]. The lattice$y"** is a (%8, B)-bimodule (see [5] (3.1.9)) and the canonical
projectionV — V' (i.e., the one with kemne] [,_; V/) lies in B, as in (2.9).
Thus $"** is the direct sum of its intersections with the/, and the Iwahori
decomposition follows immediately. The proof fét'+* is identical.

The proof of the second assertion requires some technical preparation, which
we give in the next section.

5.3. We generalize the notion afW, E)-decomposition’ from [5] (1.2). For this
purpose, we fix a finite field extensiafi/F and a finite-dimensionak-vector
spaceV. Consistent with (5.2.1), we plt = Endg(V), A = Endr (V).

We also writeA(E) for the F-endomorphism ring oF (viewed asF-vector
space) an@((E) for the unique hereditary-order in A(E) which is normalized
by E*; the orderRI(E) is attached to the lattice chajp’: k € Z} in E.

Let W be someF-subspace oV such that the canonical m@d®; W — V is
an isomorphism. This induces an algebra isomorphiii)® r Ende (W) = A,
and so give¥ the structure of lefd (E)-module.

We observe tha#A(F) is, in a natural way, a righk-space. The trivial obser-
vations A(E) ® E = A(E), EQr Ends(W) = B combine with the algebra
isomorphism above to give an isomorphism

AE)®zB= A (5.3.1)

of (A(E), B)-bimodules.
Next, let A be anog-lattice sequence . We can view this as ar-lattice
sequence iV, and define the latticas.(A) in A, b,.(A) in Basin5.1.
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LEMMA. Suppose that the vector spaBehas anF-basis{ws, wo, ..., w,} with
the following property: forj € Z, there are integerg (k), 1 < k < m, such that

A(J) = p]é(l)wl 52 p]E(Z)wZ D ---P p]é(m)U)m.

The isomorphisn(5.3.1) then restricts to an isomorphis®i(E) ®,, b,(A) =
a-(A), for everyr € R.

Proof. Suppose first that the lattice sequenteis strict. The assertion then
strengthens [5] (1.2.10), but the same proof applies. In the general ca3eet
2A(A), andB = 2N B. By the first case, we ha##(E) ® %6 = 2. On the other
hand, we certainly hav&l(E) ® b, C a,. The result then follows on comparing
indices via Proposition 2.4. O

If the subspacéV of V satisfiesE @ W = V and the conditions of the lemma, we
say that it is ingeneral position relative ta\ over E. When this holds, we have
AEUE) ®1C R(A).

We now take an elemegtsuch thatt = F[8] and a simple stratu\, n, r, 8]
in A.

COROLLARY. Letn > s > r, s € R. There exists a simple stratum, n, s, y]
in A which is equivalent tdA, n, s, 8]. Moreover, given W, E)-decomposition
A = A(E) ® B with W in general position relative ta\ over E, we may choose
y € REA(E)) ® 1.
Proof. The argument is exactly the same as that given on p. 66 of [5], in the
proof of ibid. Theorem (2.4.1). O

We now complete the proof of Proposition 5.2. For eaclwve choose arfF-
subspace¥’ of V' in general position relative ta’ over E. The spac&_, W' =
W c Visthenin general position relative toover E. Using thisW to decompose
A asA(E) ® B, the canonical projectiong — V' then commute with the implied
action of A(E) on V. Given this, we simply imitate the proof of [5] (7.1.19) to
obtain the result. O

5.4. We continue in the same situation as bLi,we assume for the moment that
t = 1. We now define a filtered lattic& (8, A) in A by
(B, AN = 1B, A) N AT (5.4.1)

(Observe that this is consistent with 2.9). We can do the same thingJyviih
obtain groups

H B, A =1+9"(8,AY,  J(B,AH=1+3 (B, AD,

for realr > 0. We also get a group(8, AY) = J(B8, A1) Nu(Al). We remark that
the lattices°(B8, A) is a ring, even am-order, and they" (8, Al) are ideals of
H(B, AY): this follows from the corresponding property for strict lattice sequences.
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LEMMA. In the situation 06.2,suppose that = 1 and that the lattice sequence
Alis strict. Let! denote the hereditary order defined hy. We have:

(i) 978, M) NAM = gre/e(g, Ay,
(i) for & € €A, —(1+ [—r]), B), the characterd® = 9|H /¢, A) lies in
CAL, —(1+ [—rex/e]), B) andOt = Ty g1 46.

Proof. We recall thatA is strict of periode, and thaie; dividese. The method
of [5] (7.2) (see especially (7.2.18)) reduces us to the case where,, and that
case is treated iibid. (3.6.14). O

PROPOSITION.The definitions above 6§ (8, AY), 3" (8, A') depend only o8
and the lattice sequenag!. In particular, they are independent of the choice of the
strict lattice sequence®.

Proof. Suppose first that the lattice chait is strict. Let* denote the heredit-
ary ox-order defined by the lattice chaif,:. The group$y” (8, A'), as defined by
5.4.1, is the same as (8, A') for all r, by the lemma.

Reverting to the general situation, suppose we have another stretitice
sequence\’ with oz-periode divisible bye;. We can defingy” (8, AY) relative to
A°. We have to show that these two definitions coincide. To do this, we choose a
strict o z-lattice sequenceé? of o »-periodé divisible by bothe andé. We consider
the strictoz-lattice chainA’ = A°@® A% @ A°. We can formA” = A’ & AY, and
write 2" for the associated hereditasy:-order. Our two definitions ofy” (8, A1)
are then both equal to the intersectionsif/e1 (8, A”) with Endg(V1). O

5.5. Inthe situation of 5.2, we consider the charadi¢rs” (8, 20N Autz (V?),
0 < i < t,where6 € G, m,B). Again it is only the case = 1 which
immediately interests us. Let us assume for the momentttieatiattice chain
Al is strict. We then haveH (8, 2) N Autp(VY) = H™*L(B,AY), where
Al = EnoEF (L 1), andm is the integefime;/e]. Lemma 5.4 shows that the
charactep® = 9|H™ ™ (B, At) lies in C (AL, m1, B) and that! = 79 91 4 (6).

We can perform this same construction without the hypothesisatha strict.
To express its invariance properties, itis convenient to use the notsiafaracter
recalled in Section 4. In those terms, the same argument used to prove Proposi-
tion 5.4 gives us:

PROPOSITION.Use the notation db.2,and sett = 1. Letd € C (2, m, B), and
let 6 denote the restriction af to the group

HmDele(g ALy — g8, 2A) N Autp (VD).

The characte? then depends only on the ps-character defineby:, 8), and
not on the choice oA°.
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If (®, k, B) denotes the ps-character defined®ym, g), we can think ob! as
therealization of® on A%, and use the notatioft = ®(AY).

The proces® — 6|H™/“1(B,0)N Autz(V?') defines a set of characters of
the groupH’ (B, A'). In the case where is not integral, we denote this set by
C(AL, r, B). We extend to integer parameters by

C(ALr B) =CAL[r,B), reRNZ.

This is consistent with the conventions of Section 4 for the standard case. Our
construction above then gives us a map

CAr B) — C(AY rei/e,B), reR,

which is surjective by definition.

5.6. We conclude by recalling and extending some more notation from [5]. Sup-
pose, for the moment, we have a simple straffiqm, m, 8] in someA = Endg(V),
wheren, m are integers witlm > 0. Write E = F[B], B = Endz(V), B = AN B.
If B denotes the Jacobson radicaRgfthen = P N B is the radical ofB.

We writeag for the adjoint map: — Bx —xp, x € A. We set

M(B, A) = {x € Lag(x) e B}, keZ

We putr = —ko(B, ) and then seft(8,2) = MN_, (B, ). This is a(*B, B)-
bimodule, and ang-lattice in A.

If we takef € C (2, m, B), the setl;(0) of g € G = Autr(V) which intertwine
0is ([5] (8.3.2))I(0) = (L +9M,,) - B* - (1L + M1,,), where we have abbreviated

M, = M, (B.2) = 2.2 + 3l g, 2.

We extend this notation to a simple stratyim, n, m, 8] attached to a lattice
sequenceA in V. We choose a simple stratup?, n, m, 8], for a strict lattice
sequenceA® in a spaceV?, with ¢(A%) = e(A); we form the strict lattice se-
quenceA = A° @ A and the simple straturhA,n,m, ] in VO & V. Let A
be the hereditary --order defined byA and®B the corresponding z-order. The
lattice 901, (8, 1) is then a(®B, B)-bimodule and so its projection t equals the
intersectiordt,, (8, 20) N A. We then definét,, (8, A) to be this projection. As a
direct consequence of the corresponding property for strict lattice sequences, we
get:

PROPOSITION. Let [A, n, m, B] be a simple stratum, for nonnegative integers
m,n. Seta = ag (A), b = anN B, in the notation above. L&t € C(A, m, B).

An elementx € u (a) normalizes the paitH" (B8, A), 6) if and only ifx e
u(6)(1+ M, (B, A)).
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6. Relatively Split Strata

We seek a generalization of Corollary 3.9 to a certain class of extensions of simple
characters attached to lattice sequences. These are sharper versions of certain of
the ‘split types’ of [5] Chapter 8. The main definitions come in 6.1, and the main
resultis Corollary 6.6, which gives the most important step in the proof of the Main
Theorem 1.5.

6.1. Fori = 1,2, we are given a simple stratum’, n;, 0, 8] in A’ = Endg(V?).

We form the lattice sequence = A' @ A% in V = V! @ V2, we thus obtain
a simple stratumA, n, 0, 8] in A = End-(V). We fix an integein of the form
m =mie(A)/e(AY), m1 € Z,0 < m < —ko(B, A). We write

All A12
A= <A21 Azz)
in our standard block matrix notation.

Let us abbreviatdy? = $H7(B, A), b = bp(A), M, = M. (8, A) (in the
notation of 5.6). We consider the lattice

( b™ b+ M, )
E= . (6.1.1)

hm-‘,—l hm

More preciselyg is the direct sum of the intersectiofd = £ N A"/, with ¢! =
(h™* etc. In particular, the diagonal blocks are respectiv@fit (8, A'), and
ﬁme(Az)/e(A) (B, AZ).

The groupu(b)(1 + 99t,,) normalizesH™ = H™(8, A) (as follows from [5]
(3.1.9)) and so the set

K=1+¢ (6.1.2)
is a compact open subgroup Gf= Autz (V).

PROPOSITION. Letd € C(A,m, B) and choosé € C(A,m — 1, B) which
extendsd. There exists a unique charactér of K which agrees witld on the
groupK N H™(B, A) and is trivial on1 + (b + 91,,)2.

Proof. The unigueness assertion is clear. To prove existence, it is enough to
treat the case wher&! is a strict lattice sequence of period divisible &iyA?): to
achieve this, we replaca® by A° @ A*, whereA® is a suitable strict lattice se-
guence. This done, the assertion follows readily from the commutator calculations
in [5] Section 3.2. O

6.2. We continue with the notation of 6.1. We now define a chardgcterd
of K, for a special kind of elemeritas follows:
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NOTATION. Lets be a tame corestriction od relative to the field extension
F[B]/F.Leth; € a_,,(A) NA", and seB; = s(b;) € b_,, (A)N A", i =1,2. We
assume that the paii,, §,) satisfies the conditions 8f6relative to the base field
E = F[B]. We put

b=b1®byeca_,(N), §=s5b)=86@5 b_,(A).

Note that the restriction of to A’ is again a tame corestriction off! =
End-(V?) relative toF[B]/F.
We now form the charactér = 9, of the groupk .

THEOREM. Letx € A'? be such thatl + x intertwines the charactef of K.
Thenx € £n A2

6.3. We first observe that it is enough to prove Theorem 6.2 under the assumption
that A is a strict lattice sequence of period divisible diyA?): to achieve this, we
replaceA® by A° @ Al andb; by by ® b1, where AL is strict of period divisible

by bothe(A’) and by is chosen so that the paiby @ by, b,) still satisfies the
conditions in 6.2. If the result holds in this case, it holds in the original one, simply
by intersecting withA.

We henceforward assume, therefore, thatis strict of period divisible by
e(A?). In particular, A is a strict lattice sequence of the same periodhdsWe
therefore use the standard notation of [5], and wiitior the hereditaryw --order
ap(A). We also seE = F[B], B = Endg(V), 8 = 2N B. We denote the radicals
of A, B by B, Q. We setr = —ko(B8, ).

Using this notation, we recall some results from [5]. LekKOg < r, and let
® € C*, q, B). According to [5] (3.3.2), th& -intertwining of the characte® is
given by

IG(©) = (1+9M,) - B* - (1+My),

where

r+1
o, =y, m=ngw. =3l Fle,
We use the standard abbreviatigfh = $'(8, ). We observe that, in the case
g < [5], we havemt, = [5] (3.1.10).
6.3.1. Letg, k, £ be positive integers satisfying

E]<q<n k4+€>qg+1,  k+20>r+1

Letx € QN +i, y € Q+jand® € C(, ¢, B). The commutatofl+x, 1+ y]
then lies inHYtt and O[1 + x, 1+ y] = ¥ 140)-1p100-p (1 + ).
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Proof. This combines [5] (3.2.6), (3.2.8) and (3.2.12). O

6.3.2. Lett, g be positive integers satisfying

t
t<r, |:§:|<q<t,

and let® € G, g, B). Letg e G intertwine the restriction 0B to H'**. Then,
forh € g7 HI g N HI*1, we haveds (h) = O (h) Y -15, 4(h).
Proof. This is the second assertion of [5] (3.3.9). O

We also need a collection of exact sequences, derived from [5] Section 3.1. Recall
that we have chosen (in our definition &fabove) a tame corestrictionon A
relative toE/F. We use ‘star’ to denote duals with respect/tp, as before. We

also useM to denote the group At V1Y) x Autp(V?).

LEMMA. Let0 < g < r. The following sequences are exact:

0 o mq ap (sy)q-i-l)* s 07 0;

0 Qq+l 5’)'1+l ag m; s Qq+l—r . 0;

SN £ B ) I £ B
If 0— L - b — I3 — [, > 0denotes any of these sequences, the sequence
O—=tyr+lh -1 Mot +lh— et +l3—> 17 gt +1,— 0
is exact, for any € B*. -
For any choice of [, we havel, = [[; ; i N AY. We writel! = [, N AV If
t € B* N M, we further have
Mt + L) NAY =7 41
and the sequence
0— 7 M{r+1] > e+ > '+ e+ -0
is exact, for all choices af j and (I3, [, I3, [4).
Proof. The exactness of the first sequence is [5] (3.1.16). That of the third is
given byibid. (3.1.22). The second sequence is simply the dual of the first: the

canonical inclusionB — A and the tame corestriction A — B are mutually
dual, while the dual ofig: A — A is simplya_g.
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Now let us assuméy, [, [3, ls) = (Q"77, M, (H7tH*, 979). The sequence
Ot Mt +lh =t Mor 4+t et +l3—> 1t +1,—>0

is certainly a complex, and exactness at the ends is clear. To get exactness at the
second place, we have to show that

My +MHNB =129 + Q7.
We have containment in the directianhere. On the other hanfi, C "¢, and
PPN B =171+ QT

by [5] (1.3.16).
It remains, in this case, to establish exactness at the third place. Dualizing, this
is equivalent to showing that

17100t QI 5 gt 0 et L e N
is exact. This is equivalent to the relation
[_155(”_]1 ) ~(ﬁti-i-l NB = l_qu+1t N Qq-i—l’

which follows easily, as before.
A simple ‘Snake Lemma’ argument now shows that the sequence

0=t Nl —t Nl =t MarNlg—t Nl —0

is exact, where thé are as in the first case above. Dualizing, this gives the exact-
ness of the sequence in the second case

(I, I, I3, ) = (Q7F, 9778 e, QI+,

The final case is similar to the first one, so we omit the details.
To prove the remaining assertions, it is enough to observe that dJl #ie -
bimodules, and the canonical projectioris— V' both lie inB, cf. 2.9. O

6.4. We now prove Theorem 6.2 in the case wherg: [5]. Let us write&, for
the restriction of to the groupk N H™. Thus&y = 0, on this group.

LEMMA. Letg € G intertwine the characteg,. Theng liesinl" - B*NM - T,
wherel" denotes the group

1+Q+M, B+ M,
Q+M,_1 1+ 9+, .
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Proof. It will be convenient to have the notation
P,=M-1+ A, N,=1+ A2
P,=M- -1+ A%, N, =1+ A%,

and also the abbreviatioh = K N H™. Our groupI’ has Iwahori decomposition
with respect tq Py, M), and the subgroup, = I N P, normalizes the paifL, &p).

Any g € G which intertwinesé, on L must also intertwine the restriction of
£o to the groupH” ! = H™+1 (B, 2). This restriction lies in®(2, m, B), sog €
A+M,)B* (1+2M,,). Absorbing factors intd’,, we may assumg has the form
(14 x)t(L+y), withr € B* andx, y € 9, N A?L. The elements % x,1 + y
normalize L and fix the characte¢;, on L. On the other hand, the commutator
relation 6.3.2 gives ug**|L = DYy L and likewise with(1—y) = A+y)~tin
place of 14 x. By definition, our elementintertwines the charactegs™*, £1-Y of
L, and so intertwines their restriction £ N L. The factorsf,, ., Y,y restrict
trivially here. Also by definition, there existse € (2, m—1, ) such thaty|L =
6|L. By the definition [5] (3.2.3) of simple character, the restrictig#/” N B*
factors through the determinant map gl — E*, so the same applies toon
B* N L. In particular, it is intertwined by every element Bf. We deduce that
intertwines the charactef,|B> N L.

However, we can recognize the charaatgfB* N L in different terms. Let be
the tame corestriction oA used in the definition of. There is then a charactér;
of B, of the formygo trg g, such thaty,|B = ¥ s, for anya € A. In particular,
we havey,|B* N L = ¥ s|B* N L. Corollary (3.8) now shows that

telO 1%BXlio 1 %
Q1 0 1 Q1 0 1)
We can absorb the upper triangular factors ifitand B* N M, and we may now
takeg = (L+x)t(L+y), witht € BXNM, x,y € (Q + 9M,) N A% Our

adjustments do not alter the hypothesis thattertwiness,.
In particular, this elemeny intertwines the restriction df to the group

5,3m+l fjm
K' =1+ ( ) :

y)erl 5,3m+l

The factory, is trivial on this group, sg intertwines®|K’. This last is the re-
striction ofd € € (A, m—1, B) as above. We now apply 6.3.1 foto show that,

as characters ok'® N K, we haveys = 9y,-15,_5. We next use this relation to
show that

g=A+xDt+y), X,y e Q+M, 1) N A%
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To do this, let us writel’ = 1+ . Since, by hypothesis, the elemerintertwines
# on K', the relation above says thatintertwines the coset + ¢, in the sense
thatg=%(B + €")g N (B + ¥*) # ¥. We have, for example,

A+ NBE YA+ =B —agy) + 7,
so this formal intertwining condition amounts to
t tag(x)t +ag(y) =0 (modt 1¢*r +¢7).

The latticet’ decomposes as the direct sum of its intersections with the bl/éks
so the same applies . Sincer € M, in particular, we have

4 = ]_[(fle’*t +¥HNAT = ]_[(fle’*t N A7) + (€% N A7),

just as in Lemma 6.3. We can therefore examine this congruence relation ‘block by
block'. Sincex, y € A%, it is automatically satisfied in all blocks except’. Itis
therefore equivalent to

t~tag(x)t +ag(y) =0 (modiz~th*r 4+ b*) N A%,

where we have abbreviatéd= $™. We can now use 6.3 Lemma 3 to produce
elementst’, y’ € M,,_1 N AL such thatug (1 ~2x't + ') = ag(t~xt + y). In other
words,r~1x't +y' —t~1xt — y lies in the(2, 1) block of

CHQ+M)r+Q+M,) NB =110+ Q.

In all, there exist elements”, y” € (Q + M,,_1) NA?! such thatg = (14+x")
t(1+y"), as required. This completes the proof of the Lemma. O

Let us now deduce 6.2 from the Lemma, in the present ease[5]. Letg € N,
intertwine&. We thus have = yry’, forsomer € B* N M andy, y’ € T'. The
groupI” has lwahori decomposition = TN N,-I'N M -T' N N,. We accordingly
write y = yu yuve, ¥\ = vy, ¥V, In the obvious notation. (We get this second
decomposition by applying the Iwahori decompositiory to'.) We thus gel, g
ylj’l = yt’ y,, for somer’ € M. The first of these elements lies iy, and the
second inP,. We deduce thayu‘lgylj’l =1, whenceg e NN T = NyN K, as
required.

6.5. We now prove Theorem 6.2 in the remaining case, whete iz < [g]
Here we havélt,, = j and the grougX is given by
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We define the group” exactly as in 6.4.

Let ¢ € G intertwine&. The groupl', normalizest, so we may as well take
g =1 +x)t(1l+y),witht € BX andx, y € jn A%L Consider the restriction &f
to the group

SR
K'=1+ 57)m+1 57)m ’

Here, the charactet agrees with a charact& € C (2, 0, 8). The characte® is
invariant under conjugation by %+ j. We deduce that intertwines the character
V¥ s On the group

K’mBX=1+< ar 2 )

Qm—i—l Qm
Therefore, by (3.8), we have

1+9 ‘B 1+9 B
te -B*NM - .
Q 1+ 9 Q 1+9
Thereforeg e I'- B* N M - T', and the Theorem follows in this case, just as before.
This completes the proof of 6.2. O

6.6. We now give what will be the crucial consequence of Theorem 6.2. We
remain in the same situation, but it will now be convenient to abbrevte=
Autz(V7), so thatM = G* x G2. In particular,K is the group defined by 6.1.2.

NOTATION. Fori = 1, 2, we suppose given

(i) an open subgroug; ofu(A’) containing and normalizing the groug™ (8, A)N
G';

(i) anirreducible smooth representati@n of K; whose restriction t&; N K is a
multiple of¢ |K; N K.

Under these conditions, we have

COROLLARY.

() The se(K1 x K») - K = K is a group.

(i) There is a unique irreducible smooth representatioof K which is trivial on
K NNy, K N N, and whose restriction t&; x K, = K N M is equivalent to
01®02. -

(iii) The pair(K, o) is a G-cover of the painK N M, 01 ® 02).

Proof. The groupk is contained ine(A') and normalizeg?™ NG*. It therefore
normalized"** NG! = u,,1 (A)NH™NG?; it also fixes the restriction df to this
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group. The restriction of to this group lies inR(A%, m4, B). By 5.7, the normal-
izer of such a character is the intersection v@thof the normalizew (b)(1+9%,,)
of our original characte? € C(A, m, B). Itfollows thatK; normalizes bottK NN,
andK N N,. The argument foK is the same, and this proves (i). Assertion (ii) is
now immediate.

Since P,, P, are the only parabolic subgroups Gfwith Levi componentM,
the Iwahori decomposition properties required by (iii) are immediate¢ ldetnote
the element

TF 0 M

[ = ( ; 1) e .
Here,nr is some prime element df. There is a unique functioif € F#(G, o)
supported orK ¢ K whose value af is the identity transformatiofi (of the space
underlying the contragredient p). To complete the proof of (iii), it is enough to
show thatf is invertible in#(G, o) and that its inverse is supported &t 1K .
To do this, we letf’ € #(G, o) have suppork ¢ 1 K with f/(¢™1) = 1= £(¢).
The convolutionf’ » f has support contained in

KKtk =K - t7*KnNy¢ - K.
However, by 6.2, the intertwining &f, and hence o, in N, is preciselyK NN, =

K N Ny (cf. the proof of 3.9). We deduce that the supportf6k f is contained
in K. An easy direct computation shows théitx f(1;) = c1, for some positive

constant.
We deduce thaf is left-invertible in# (G, o); it follows easily (cf. the proof
of [9] (7.14)) thatf is in fact invertible, and its inverse is therefare! f'. O

7. The Homogeneous Case

In this section, we prove the Main Theorem 1.5 in a special case; this will serve as
the first step in the general inductive argument of Section 8.
We use the notation introduced in Section 1. In particulas the G-stabilizer
of a decompositiorV = | [,;., V' of V as a direct sum of nonzero subspatés
and we seG' = Autz(V'). Thus we can write = @), ., 7;, for an irreducible
supercuspidal representatianof G'.
The representation; determines an endo-claés = @, of simple characters
as in 4.5. For the remainder of this section, we assume®hat ©, = --- =
e, = 0.

7.1. We return to the,-type (K., t,) = ([[ J;, @ 4;) of 1.3, and give a more
detailed description of the maximal simple types, A;). (We are just summar-
izing the definition [5] (5.5.10).) Our hypothesis on tlg says that we may
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take the maximal simple typ€/;, 1;) in G/ in the following form. There is an
elementg and, for eacly, a simple stratuni?(;, n;, 0, 8] in Ends(V/) such that
J; = J(B,2;); moreover, the restriction of; to H1(8, ;) is a multiple of some
0; € C (;,0, ), and they; are all realizations of the same ps-charac¢ér0, 8)
(of endo-clas®).

Let us abbreviateE = F[p]. The og-orderB; = A;N Endg(V/) is max-
imal, since(J;, 1;) is a maximal simple type. We hawg(B, 2,)/JX(B, ;) =
U(%j)/Ul(%j) = GLy, (kg), for some integerf;. In particular, the orderg(; all
have the samer-period, namely(E|F).

The representation; is given as follows. First, there is a unique irreducible
representatiom; of J1(8, 2;) whose restriction td7*(8, 2,) is a multiple of6;.
The representation; extends to a representatien of J; which is intertwined by
every element of;/ which intertwinesy;, i.e., I (x;) = J;- Autg(V/)-J;. (Inthe
language of [5] Section 5.2,is a ‘B-extension ofy;’.) We then have.; = «; ®p;,
wherep; is the inflation of an irreducible cuspidal representation of;Gty).

7.2. Itis now our task to assemble thg, 1 ;) of 7.1 into the desireg-type. First
we need some more notation. LRtbe the parabolic subgroup 6f stabilizing the
flag{0} c V1 c V1@ V? C .... ThusP, has Levi componenk; we write N, for
its unipotent radical an®, = L N, for its opposite relative td..

We write £/ = {L;:k € Z} for the lattice chain attached @,; we assemble
these into a lattice chaisf = {L,:k € Z} in V, of op-periodre(E|F), according
to the rule:

Lo=Ly®Li® - @ Ly,
Li=LioLlie---oL e L],
Ly=L}oLl2o- oLy ?eL e L,

and so on. This defines a hereditaprorder2l in Endr(V); we put® = 20N B.
We now follow the procedures of [5] (7.1), (7.2). The set

K=HYWB, 2NN, -J(B, MNP,
is then a group containing *(8, ). It admits an irreducible representatiomwith
the following properties:
7.2.1.

(i) the restriction ofc to H%(B, 2) is a multiple ofd = O (A);
(i) «istrivialon K N Ny, K N Ny;
(i) KNL=K,andk|K_ is of the formc; ® - - - ® «;, for someB-extension¢’

We can choose the decomposition= «; ® p; above so that; = «’; for all j;
we assume this has been done. '
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The quotientk /K N J(B, 2A) is canonically isomorphic to the product of the
Ji/JYB, A = GLy, (kg); we can therefore inflate; ® - - - ® p, to a representation
p of K and formt =k ® p.

THEOREM. The pair(K, 1) is aG-cover of(K, t;), and hence an-type inG.
It is, moreover, aG-cover of the painK,,, t)s) of 1.5.

Proof. The second assertion of the theorem implies the first, by [9] (8.5).

In the case where the; are all inertially equivalent, i.e., the cade = G of 1.4,
the construction above yields the pait, t) of 1.4. In the general case, we have
K NM = K andt|Ky; = 1. The Iwahori decomposition properties @, 1)
relative toM are easy to establish; to prove the theorem, it is enough therefore, by
[9] (7.2), to show that the&5-intertwining of the representation is contained in
KMK.

To do this, we can use the technique of [5] (5.3) to showkhét) = KI5 (p)K,
whereH = Autg (V) and we viewp as an irreducible representation Bf8) =
K N H. A pleasant exercise along the lines of [5] (5.5.5) (or an appeal to the very
general result [11] 7.12) shows thiat(p) Cc U (B)-M N H -U (*B), and the proof
is complete. O

8. The General Construction

8.1. We retain the notation of Section 1 as used in Section 7. In partiddlar,
is the G-stabilizer of the decompositioll = [],,., W'. To eachW’, we can
associate an endo-class of simple characters, na@efgr any j such thatv’/ c
Wi. Let®(1), ©(2),...,0(g) be the distinct endo-classes arising here. For each
k, let W¥ be the sum of thos&/ whose associated endo-classg, is © (k). Write
G/ = Auty, W/, M = I1; G/. We choose a ps-charact@;, 0, ;) of endo-class
O ).

Theorem 7.2 gives us aM -cover (K ;, t;;) of (K., r;) with the following
properties:

8.1.1.

() Kj; =T1; K, for subgroupsK; of G' of the following form: there is a simple
stratum[%;, n;, 0, B;1in Endz (W') such that

HY (B, 2) C K;i C J(Bi, 2y).

(i) We haver;; = &), t;, for an irreducible representation of K; whose restric-
tion to H(B;, 2;) is a multiple of®; ().
(iii) (K, T57) is an M-cover of (K, ty).

8.2.  We now construct &-cover(K, t) of (K, t;;). This will provide the cover
of (Ky, t)) announced in 1.5. We will work inductively on the integeof 8.1,
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noting that, in the casg = 1, we haveM = G, a case which has been dealt with
in Section 7.

In order to state our inductive hypothesis, we need to introduce a new concept,
that of acommon approximatioto a collection of simple characters. We use the
same data as in 8.1: we are givEnavector spacesv?, ..., W7 and, for eachy,

a simple stratum;, n;, 0, ;] in Endx(W/), with 2(; corresponding to a strict
lattice sequence\’ of periode;. We are also given a simple charactér= ©;
() € C(;, 0,8)), 1 < j < g. We form the lattice sequence = A1 @ A2 &
@ ANV =]] W/ (see 2.8), and write

e = lcm(e;), n=maxn;e/e;).

Suppose we are given an integewith 0 < m < n. The characte¢’/|H(8,)N
u,,.1(A) determines an endo-clas®”"(j). Let us consider the case where these
®™(j) are all the same. We can then find a simple stratinm:, O, y] and a simple
characte® € C(A, 0, y) with the following properties. First, all of th&/ are
F[y]-subspaces of . We decompose the groui'(y, A) and the characte? in

the manner of Proposition 5.2, relative to the Levi subgrafipWe then demand
the properties:

H" Yy, AN G/ = H™ V(B &),
19|H(m+1)6]/e (ﬂ/a AI) = 91 |H(m+l)e]/e (ﬂ/, Aj),

for all j. Under these circumstances, we say fiat, n, 0, y], ¢, m) is acommon
approximation to the system’) of levelm.

We note that the character is trivial on H”*1 (y, A) N N, whereN is the
unipotent radical of any parabolic subgroup with Levi comporiént

We remark that the syste’/) admits a common approximation of level zero
if and only if thed’/ are equal (or, rather, endo-equivalent). In our present situation
8.1, this amounts tg = 1.

In general, suppose we have common approximatipfsn, O, y;1, ¥, m),i =
1,2, withm < n. We then haved”1(y1, A) = H"*1(y,, A), and the characters
©%; coincide on this group.

We now give the most precise statement of our main result.

MAIN THEOREM (final version).There exists &-cover(K, t) of (K ;, t;;) with
the following properties:

() upr1(A) C K Cu().

(i) Suppose thatd?, 62, ...,09) admits a common approximatiaA, =, 0, y 1,
®,m), m < n. ThenK contains and normalizes the groud”*(y, A) -
H™(y,A) N M. The restriction ofr to H"t1(y, A) is a multiple of ¥
and its restriction toH" (y, A) N M is a multiple o' @ - - - ® #4.

https://doi.org/10.1023/A:1001773929735 Published online by Cambridge University Press


https://doi.org/10.1023/A:1001773929735

SEMISIMPLE TYPES 95

In particular, (K, ) is an s-type, and also a cover of the paitKy, ty)
of 1.5.

If P is any parabolic subgroup af with Levi component/, the associated al-
gebra homomorphisni,: # (M, ty) — H(G, t) is an isomorphism which pre-
serves support of functionsupfjp(f)) = K supa /) K, f € # (M, ty). In par-
ticular, the G-interwining of the representationr is given by Ig(t) =

We give the proof in the next paragraph. Note, however, that the final assertion
follows from the earlier ones and [9] 8.5, 12.1. Also, in the case 1, the cover
constructed in 7.2 satisfies these extra conditions. In other words, the first case
q = 1 of the induction has been done.

8.3. We now assume that> 1. As we have already observed, the systém

does not admit a common approximation to level 0. We deal first with the case
where (8/) does not admit a common approximation to lexell. We need to
describe this situation in more detail:

LEMMA. Let (81,62, ...,69) be as above. For each, let[2;,n;,n; — 1, o;]
be a simple stratum equivalent [, n;, n; — 1, B;1, letp;(X) € kp[X] be its
characteristic polynomial, and lef; (X) be the unique irreducible factor ¢f; (X).
The following conditions are equivalent:

(i) (6/) admits a common approximation of lewel 1;
(i) ni/er =na/ep =---=n,/e; and f1(X) = fo(X) = --- = f,(X).
Proof. This simply says that the endo-equivalence class of the simple character

Ve, € C(RU;, n; — 1, B;) is determined by the ‘normalized level’;/e; and the
polynomial f;(X): see [5] (2.6.1). 0

Under our present hypothesis, we can renumbemth® achieve the following
situation:

8.3.1. Thereis an indexy, 1 < jo < ¢, such that either:

() ni/ex =nzlex=---=nj,/ej, > njr1/€jo41 = -+ = Ng/eq, OF €lse
(i) all n;/e; are equal, f1(X) = --- = fj,(X), while fi(X) # fi(X) for any
k > jo.

We now letY; = W@ .---@ Wi, Y, = Wotlg ... @ W9; we setG, =
Autgr(Y;). Letus setL; = K;; N G, so thatK;; = L1 x Ly; the representation
7;; likewise decomposes ag ® 0, for an irreducible representatian of L;.
By inductive hypothesis, there exist<Ga-cover (K, o;) of (L;, o;) satisfying the
requirements of the theorem.
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Let us make these conditions explicit. First, /&t = Al @ A, lete] be
the period ofA’, and define an intege, by n’ /e; = n1/e1. We have (by inductive
hypothesis)

w1 (AY) - u, (M) N M NGy C Ky Cu(Ay,

and the restriction op; to the first group here is a multiple af,,, for a Aj-
invertible elemenb, of leveln. The characteristic polynomigh (X) of the stratum
[A},n}, n1—1, b1]is aproduct of powers of thg; (X) for j < jo. In the other com-
ponent, we form the direct sun, of the A/ for j > jo and denote the period of,
by e;,. We define the integer, by n’, /e, = max;. j, nj/e;. We haven, /e, < n'j/e].
If this inequality is strictun/2+1(A’2) containsu, (A) N G5; we havekK; C u(A5)
andoj, is trivial onu, (A) N G5. If, on the other hand, we have equality, the situation
is analogous to that in the first component, but the characteristic polyngpii)
is relatively prime top,(X). We let P,, P, be the parabolic subgroups 6f with
Levi componenG; x G5. We denote their unipotent radicals By, N,. We define
the groupK by

K =u,1(A) NNy - Ki X K- u(A) NNy,

and we exten@’ ® o, to a representation of K which is trivial on the unipotent
factors. This has the required covering properties by Corollary 3.9. The dfoup
certainly lies between(A) andu,, . 1(A), so it satisfies the first part of the inductive
hypothesis. The second part is empty here, so we have produced the required cover
(K, 1) in this case.

8.4. We now prove the Main Theorem in the case where the sy&téndoes
admit a common approximatiaiiA, n, 0, 1, &) to levelm, with 0 < m < n. We
choose this approximation so as to minimizeAs in 8.3, there are two cases. First,
we know that somene; /e is an integer: otherwise, we would ha¥&" (y, A) =
H™ (y, A) and this would contradict the minimality of.

Suppose, for a fixed, thatme; /e is an integermn ; say. We then have

H"(y, ) NG/ = H" (y, ) = H" (B;, ),
Hm+l(]/, A) ) Gj — Hm./+l(y’ Q[])

Comparing the characteés, ¢ on the first of these groups, we get an element
such that’ = O, Write B, = Endr[y](V) and fix a tame corestrictios), on

A relative toF[y]/F. The stratuni?l; N B,, m;, m;—1,s,(c;)] is then either null
or simple (4.7). Its characteristic polynomial (relative Bpy]) is a power of an
irreducible polynomialf;(X) € kg, [X] (and, possibly,f; (X) = X). In the null
case, we can adjust by conjugation to getr = 6/ on H™J. In the cases where
mej/e & 7, we setf;(X) = X, c¢; = 0. With this convention, we see that not all
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fi(X) can be equal t&: otherwise, we could contradict the minimalityf This
gives us:

LEMMA. There existsp, 1 < jo < ¢ such that one of the following holds:

(i) all me;/e are integral, f1(X) = fo(X) = --- = fj,(X) # X, while fi(X) #
S1(X) for anyk > jo;

(i) forall j < jo, the quantityme; /e is integral andf;(X) # X, while fi(X) =
X forall k > jo.

We use this index, to define spaceg;, groupsG;, lattice sequencea;, etc.,
i =1, 2,asin 8.3. By inductive hypothesis, we have cové§ o;) satisfying the
conditions of the theorem. We define the gratiby

K = H" ™y, A)N N, - K x Ky-u(a(A) N B,)(L+ M, (v, A)) N N,

whereu(a(A)N B,) (1+9M,,(y, A)) is theu(A)-normalizer of( H™(y, A), 9),

as in 5.6. We extend; ® o5 to a representation of K by making it trivial on the

unipotent factors. The paiiK, t) has all the required properties, by Corollary 6.6.
This completes the proof of the Main Theorem. O
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