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CIRCULARLY CHAINABLE CONTINUA 

L. FEARNLEY 

1. Introduction. In a recent paper (5), the author has established the 
Euclidean spaces of least dimension in which the topological products of finite 
collections of ^-cell-like continua can be embedded. Specifically, it was shown 
that, for each pair of positive integers k and n, the topological product of any 
collection of n ^-cell-like continua can be embedded in Euclidean space of 
dimension k(n + 1). This result includes a theorem of Bennett (1) that the 
topological product of any finite collection of n snakelike continua can be 
embedded in Euclidean space of dimension n + 1. 

The purpose of the present paper is to extend the investigation of embeddings 
of topological products of continua that are normally defined in terms of 
cofinal sequences of open coverings whose nerves are members of characteristic 
classes of complexes. Such continua have been discussed by Mardesic and 
Segal (7) and shown to be topologically equivalent to inverse limits of inverse 
systems whose co-ordinate spaces are members of corresponding classes of 
polyhedra, a result that will be used in this study. The principal theorem of 
this paper is the following solution of the embedding problem for topological 
products of circularly chainable continua. 

THEOREM. The topological product of any finite collection of n circularly 
chainable continua can be embedded in Euclidean space of dimension n + 2. 

This theorem gives an affirmative answer to a question raised by Bing in a 
research seminar at the University of Wisconsin, 1964. Furthermore, in a 
subsequent paper to be presented by the author it will be shown that for each 
positive integer n this principal theorem is the best possible result. 

In (2), Bing has considered the problem of embedding circularly chainable 
continua in Euclidean spaces and has established a characterization of circularly 
chainable continua that can be embedded in the plane. A difficulty arises in 
embedding circularly chainable continua in the plane, which does not occur 
in embedding snakelike continua; it concerns the circling number of refine­
ments in circular chains associated with the continuum in the sense of (4). 
In the present paper, the embedding of topological products of circularly 
chainable continua in Euclidean spaces also involves problems that are more 
difficult than those encountered in the corresponding study for cell-like 
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continua. Thus, we shall use somewhat more complicated techniques than 
were used in (5). 

2. Definitions and notation. The more standard terms used in this 
paper are defined in (3 and 9). In addition we give the following definitions 
of terms that are either special terms or terms that are frequently given 
different although equivalent definitions in the literature. 

A continuum K is said to be circularly chainable if K is homeomorphic with 
the inverse limit of an inverse system {St, ft} in which each co-ordinate space 
St is a simple closed curve and each bonding function /* is a mapping of Si+i 
onto S^ We note that, from the results of Mardesic and Segal (7), this defini­
tion of circular chainability is equivalent to that given by Bing in (2). 

A transformation / of a topological product space Si X S2 X . . . X Sn onto 
itself will be said to be a monovariant function (with respect to the topological 
product S\ X S2 X . . . X Sn) if there is an integer ky 1 < k < n, such that 
/ has the form 

f{Xi, X2, • • • , Xn) = (Xi , X2j . . . , Xjc—i, fic\%k) y Xjc+i, Xjc+2, • • • > Xn), 

where xt denotes a representative point of St, i = 1, 2, . . . , n, and fk is a 
continuous transformation of Sk onto Sk. 

A homeomorphism h of a compact subset C of a space 5 onto a subset h(C) 
of 5 is defined to be an extensible homeomorphism with respect to S if there is an 
open set U of 5 containing C and an extension of h to a homeomorphism of U 
into S. 

We define a homeomorphism h of a space ikfi with metric d\ into a space 
ikf2 with metric d2 to be distance decreasing if, for each pair of distinct points 
x and y in Ei, 

d2(h(x)1 h(y)) < di{xy y). 

In this development it will be important to distinguish between different 
metric functions for topologically equivalent spaces. The metric function d 
for a space M that is the topological product of a finite collection of spaces 
Mi, M2, . . . , Mn with metric functions di, d2j . . . , dn, respectively, will be 
the standard product metric function 

d((xh x2, . . . , xn), (yh y2, . . . , yn)) = ( ]T) dz-(xt-, ;y*)2 ) . 

In referring to the distance between functions it will be assumed that the 
functions have a common domain and that the usual function-space metric 
applies. 

The notation En will be used to denote Euclidean space of dimension n and, 
if a and b are points of a particular Euclidean space, the notation [a, b] will 
be used to denote the line segment with end points a and b. 
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3. Preliminary results. Before proceeding to give a proof of the principal 
theorem of this paper, a number of preliminary results are needed. First, we 
state two lemmas that will facilitate the construction of mappings from inverse 
limit spaces whose co-ordinate spaces are topological products onto inverse 
limit spaces whose co-ordinate spaces are subsets of an embedding space. It 
will be seen that both of these lemmas can be readily established using standard 
methods. 

LEMMA 1. If Si, S2, . . . , Sn is a finite collection of unit circles and M is a 
subset of Ek (k > 1), then there is a distance-decreasing homeomorphism h 
embedding the topological product Si X S2 X . . . X Sn X M in En+Jc. Further­
more, if M is an open subset of Ek, then h (Si X S2 X . . . X Sn X M) is an open 
subset of En+k. 

LEMMA 2. If S is a unit circle in Ez and f is a mapping of S onto itself, then, 
for each positive number e, there is an extensible homeomorphism h with respect to 
E3 such that the distance from f to h is less than e. 

Next, we state a result of McCord (8, §4, Theorem 8). 

LEMMA 3. Let S be a compact metric space, let {Sufi} be an inverse system in 
which each co-ordinate space St is a compact subset of S, and suppose, for each 
positive number e and each positive integer i, that there is an extensible homeo­
morphism h€i with respect to S having distance less than e from the bonding 
mapping fi. Then the inverse limit of {Sufi} can be embedded in S. 

In this development we shall be concerned with inverse limit systems of the 
form {Sufi}, where, for each positive integer i, St is compact, St = Si+i, and 
Si is contained in an embedding space 5 that is a subset of a particular Eucli­
dean space. It is observed that with these conditions the requirement in 
Lemma 3 that S be compact can be omitted. 

4. Embedding topological products of circularly chainable continua. 
The purpose of this section is to establish the principal theorem of this paper 
that the topological product of any collection of n circularly chainable continua 
can be embedded in En+2. The spaces of the inverse systems considered in this 
theorem will be simple closed curves and generalized tori and the spaces of any 
given inverse system will have identical point sets. However, for the purposes 
of describing the transformations developed in the proof of the theorem, it 
will be convenient to index otherwise identical spaces according to their 
positions in a given inverse limit sequence. 

THEOREM. If G, C2, . . . , Cn is a collection of circularly chainable continua, 
then the topological product Ci X C2 X . . . X Cn can be embedded in Euclidean 
space of dimension n + 2. 
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Proof. The proof will be presented in three sections. In the first section we 
shall show that the topological product C\ X C2 X . . . X Cn can be expressed 
as the inverse limit of a system {Pufi} in which each co-ordinate space Pt 

is the topological product of n unit circles and each bonding mapping is a 
monovariant function. Next, modifications will be made to {Piyfi} to produce 
a second inverse system {Qi, gt} such that the inverse limits of {Puft} and 
{Qii gi} a r e homeomorphic and {Qi, gt) has a form that will facilitate the 
construction of a corresponding inverse system with co-ordinate spaces in 
En+2. Finally, in the third section of the proof, we shall develop a further 
inverse system whose co-ordinate spaces are embeddings of the co-ordinate 
spaces of {Qu gt} in En+2 and whose bonding mappings are those induced by 
the corresponding bonding mappings of {Qugi}. It will be shown that the 
inverse limit of this third inverse system can be embedded in En+2. 

We now consider the first section of the proof. I t may be assumed that each 
circularly chainable continuum Cu t = 1, 2, . . . , n, is the inverse limit of a 
system {Srt1 brt}, r = 1, 2, 3, . . . , in which each co-ordinate space Srt is the 
unit circle and each bonding function bTt is a mapping of Sr+itt onto Srt. With 
these inverse limit systems we construct a new inverse system whose co­
ordinate spaces are topological products of n unit circles. 

First we define topological products 

{Prt:r = 1,2,3, . . . ;t = 1,2, . . . , » } 

in the following manner: 

Prt = Sr+l,l X Sr+i,2 X • . • X ^r+l.J—1 X ùrt X Or,t+l X . . . X <^rn-

In the case that t = 1 the defining equation for Prt is to be interpreted as in­
dicating that Prt = Sri X Sr2 X . . . X Srn. Next, the members of the collection 
{Prt} a r e ordered lexicographically with respect to their subscripts. To complete 
the definition of this inverse limit system we denote by xTt a representative 
element of Srt and define the bonding mapping frt of the successor of Prt onto 
Prt by the equation 

Jrt\%r+l,li #r+l ,2» • • • i %r+l,t, # r , H-b ^ r , i+2» • • • > %rn) 

= (X r 4- i , i , Xr-\-l,.2, • • • > brt\?Cr+l, t) y %r, t+U %r,t+2j • • • > %rn)' 

We denote the resulting lexicographically ordered inverse system by {Puft} 
and indicate the inverse limit space of this system by L. The first section of the 
proof will be established by showing that L is homeomorphic with the topo­
logical product G X C2 X . . . X Cn. 

To do this, note, since L is the inverse limit space of {P f , / j j , that each 
element of L has the form 

U = ( ( X n , #12, . • . , Xin), (#21 , Xl2, #13, • • • , # 1 « ) , • • • , 

\#r+l»l» ^ r+1 ,2 , • • • , # r + l , t—1> %rti %r, t+li • • • > ^7-wJ, 

( # r + l , l , ^ r + 1 , 2 , • • • , # r + l , l , # r , «+1, # r , «+2, • • • , Xrn), • • • ) • 
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We shall refer to the expressions enclosed in inner parentheses in this equation 
for u as * 'co-ordinate terms" of u and use the projection mapping notation to 
indicate the position of a particular co-ordinate term in the sequence of co­
ordinate terms. Thus TTI(U) would denote the first co-ordinate term 
(#11, #12, . . . , Xin). The individual entries, ignoring inner parentheses, of the 
right-hand side of the equation for u will be referred to as "elementary terms." 
Thus #n would be the first elementary term of u. 

Now, in the expression for u, 

brt(xr+itt) = xrt for r = 1, 2, 3, . . . ; t = 1, 2, . . . , n. 

Furthermore the expression 

V = ( ( # 1 1 , # 2 1 , # 3 1 , • • . ) » ( X 1 2 , # 2 2 , # 3 2 , . . . ) > • • • > ( # l w , #2rc, #3rc, • • • ) ) > 

where 

Xrt = brt(xr+i,t) for r = 1, 2, 3, . . . ; t = 1, 2, . . . , », 

represents a point of the topological product C\ X C2 X . . . X Cn. We define 
a transformation h of L onto C\ X C2 X . . . X Cn by setting 

&(w) = v. 

It is easily verified that h is a one-to-one transformation of L onto 

Ci X C2 X . . . X C«. 

To see that h is also a continuous transformation we note, since the co-ordinate 
spaces of {Pu ft] are uniformly bounded metric spaces, that the product-space 
metric described in (6, Theorem 14, pp. 122-123) induces a topology for L 
equivalent to the usual Tychonoff topology. Hence, if ui, u2, u%, . . . is a 
sequence of points of L converging to a point u of L and i is a positive integer, 
then iri(Ui), TiÇuz), Ti(uz), . . . converges to Tt(u). Furthermore, if (xTt)t is 
an elementary term of ut, i = 1, 2, 3, . . . , then (#r*)i, (#r^2, (xTt)z, • • • 
converges to the elementary term xrt of u. It follows that^(^i ) , h(u2), h(uz), . . . 
converges to h{u). Thus h is a continuous transformation, and we conclude 
that the inverse limit space L is homeomorphic with the topological product 
C\ X C2 X . . . X Cn. 

The second section of the proof involves the modification of the inverse 
system {Pt, /<} to produce a second inverse system {Qiy gi} having the properties 
described in the first paragraph of the proof. Let 5 denote the unit circle in Ez 

with cylindrical co-ordinate representation {(r, 6, z) : r = 1, z = 0}, let T 
denote the solid open torus in Ez with cylindrical co-ordinate representation 
{(r, 6, z) : (1 — r)2 + z2 < J}, and let D denote the open disk that is obtained 
by intersecting T with the half-plane {(r, 6, z) : 0 = 0}. Then, if p is a point 
of S and c is a point of D, the ordered pair (p, c) can be considered as identifying 
a point of T whose 6 co-ordinate is determined by p and whose r, z co-ordinates 
are determined by c. Thus, if i and j are integers, 1 < i, j < n, Si, S2, . . . , Sn 
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are copies of the uni t circle S and Tu T j are copies of the open solid torus T such 

t h a t Ti and T j are associated with St and Sj, respectively, then there is a 

homeomorphism Wij of 

S i X 02 X . . . X Oj_i X Ti X »Si+i X Oi+2 X . . . X Sn 

onto 

01 X 02 X . . . X o^_i X i ^ X ^>;+i X ^j+2 X . . . X o n 

such t h a t the restriction of w^ to S i X 52 X . . . X 5W is the ident i ty mapping. 
In part icular, we m a y choose wtj to have the form 

Wij(Ph P21 • • • > />*-l> (Pi» C)> Pi+li Pi+2, • • • , Pn) 

= (pi, p2, • • • J Pj-h (Pj, C), pj+l, Pj+2, • • • , pn)j 

where pt is a representat ive point of 5 t , J = 1, 2 , . . . , n, and c is a representat ive 
element of D. T h e homeomorphisms 

{wtj : i = 1, 2, . . . , n\j = 1, 2, . . . , n) 

are now used in the construction of the inverse system {Qu gt} in the following 
manner : 

(1) Each co-ordinate space of {Qu gt} is defined to be the topological 
product of n uni t circles. 

(2) T h e bonding mappings with odd subscripts of {Qif gt} are defined by the 
relationship ft = g2i~i, i = 1, 2, 3, . . . . 

(3) T o define the bonding mappings with even subscripts of {Qu gt} we 
express each of the functions fu i = 1, 2, 3, . . . , in the a l ternat ive double-
subscript iormfTiti described in the development of the inverse system {Pu ft}. 
Then \lfTiu a n d / r i +1,u +1 are successive bonding mappings of the system {Pu f t } , 
we define g<n = wu+uti1 i = 1, 2, 3, . . . . 

I t is observed t h a t the co-ordinate spaces of {Qt, gt} are identical with those 
of {Pi,fi}, the bonding mappings of {Qu gt} form a sequence 

fll, W2hfl2, W32,fld, • • • ,fln, Win, /2I, • • . 

in which the bonding mappings of {Piy fi} a l te rnate with homeomorphisms of 
the collection 

{Wij : i = 1, 2, . . . , n;j = 1, 2, . . . , n), 

and the members of this collection are ident i ty mappings on the co-ordinate 
spaces of {Qi} gt}. T h u s it follows t h a t the inverse limits of {Pu /*} and {Qu gt] 
are topologically equivalent. T h e reasons for the part icular choice of the 
homeomorph isms 

{Wij : i = 1, 2, . . . , n;j = 1, 2, . . . , n) 

will become apparen t in the next section of the proof. 
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We now consider the final section of the proof. In this section each co-ordinate 
space Qt of the system {Qu gt} will be assumed to be represented as the topo­
logical product Si X S2 X . . . X Sn where each space St} t = 1,2, . . . , n, is a 
copy of the unit circle 5. Now, if i is an odd integer, gt is a monovariant function, 
so that we may choose a corresponding integer kt with the property that gt can 
be expressed in the form 

gi\X\, %2, • • • , Xn) = (Xi, X2, . • • , Xja—i, giki{Xjci)j #*» + l> #* ;+2 , • • • , Xn) 

where xt is a representative element of St, t = 1, 2, . . . , n, and giki is a con­
tinuous transformation of Ski onto Ski. For each even integer i, we define a 
corresponding integer kt by the relationship kt = kt-\, i = 2, 4, 6, . . . . Let 

Bt — S\ X S2 X . . . X St-.i X Tt X Sf+i X •5/+2 X . . . X 5n, 

/ = 1,2, . . . ,w, 

where Tt is a copy of the solid open torus T such that 7% is associated with St. 
Then, by Lemma 1, there are distance-reducing homeomorphisms 

{et: t = 1,2, . . . , n] 

such that et(Bt) is an open subset of En+2. With the homeomorphisms 
{et:t = l,2,...,n} and integers {k{ : i = 1, 2, 3, . . .}, we construct a 
mapping of the inverse limit of the system {Qu gi) onto an inverse limit space 
whose co-ordinate spaces are contained in En+2. 

We define the required mapping by means of the following inverse-limit 
diagram. 

\eki 

e * i ( 0 i ) 

g i 

0*2 

e*lgtf*2 X 
0*2(Q2) 

0*2^2^*3 

<2a 

U*8 

0*3 (Os) 

0*4 

0*4 ( ( W *" 

Then, from the normal interpretation of this diagram, it follows that the inverse 
limit space of the system 

{0* i(Qt),0*^z0* i+r1} 

is homeomorphic with the inverse limit space of the system {Qu gt}. Further­
more, each co-ordinate space eki(Qt) of the former system is a compact subset 
of En+2. In addition, since each embedding homeomorphism eki, i = 1, 2, 3, . . . , 
is characterized by the requirement that it be a homeomorphism of Bki into 
En+2

y we may assume without loss in generality that, for each pair of positive 
integers i and j , eki = ekjwkikj. Thus it will be supposed that 

0*1 (<2i) = 0*2 (ÇW = 0*3 (CW = 
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The proof of the theorem will be completed by showing that the inverse limit 
of the system 

can be embedded in JEW+2. 
We choose e to be a positive number and consider two cases. 

Case I: i is an odd integer. In this case gt is a monovariant function with the 
form previously described, where giki is a continuous transformation of the 
unit circle Ski onto itself. Then, by Lemma 2, there is a homeomorphism Hiki 

of an open set Giki of Ez into E3 such that Giki contains Ski and the restriction 
hiki of Hiki to Ski has distance less than e from giki. I t may be assumed that 
the domain and range of Hiki are each subsets of the solid open torus Tki. 
We now define homeomorphisms ht and Ht related to hiki and Hiki, respectively, 
in the following manner: 

The function ht has domain Si X S2 X . . . X Sn and satisfies the equation 

Xjci+li Xki+2i • • • ) Xn). 

The function Ht has domain 

Si X 02 X . . . X Sfo—i X Giki X o^i+i X ofci+2 X . . . X Sn 

and satisfies the equation 

Hi(Xij X2, . . . , Xw) = (Xi , X2, . • • , #fc,-_l, Hiki(xk), Xki + iy Xhi+2, • • • » ^n)« 

It is observed that ht and iJ^ are homeomorphisms, Hi is an extension of hu 

and g* has distance less than e from /^. Now, by the second assertion of Lemma 
1 and the fact that Giki is open with respect to £3 , it follows that the image 
under eki of the domain of Hi is an open subset of En+2. Furthermore, since 
eki = eki+1 and the domain of Ht contains Qi+i, the image under eki+l of the 
domain of Hi is an open subset of En+2 which contains eki+1(Qi+i). In addition, 
the image under eki of the range of Ht is an open subset of En+2. Hence, the 
composite function ekihieki+l~

l with domain eki+l(Qi+i) is an extensible 
homeomorphism with respect to Ew+2. Finally, the functions eki gt eki+l~

l and 
eki hi eki+l~

l with domain eki+1(Qi+i) have distance apart equal to the distance 
from ekigi to ekihi. Therefore, since eki is a distance-reducing homeomorphism 
and gi has distance less than e from hit we conclude that the extensible homeo­
morphism ekihte ki+l~

l with respect to En+2 has distance less than e from 
ekigi eki+l~

l. 

Case II: i is an even integer. In this case gi has the form described in 
condition (3) of the definition of the inverse system {Qiy gi}. Now, let j be the 
integer such that i = 2/ and note, from condition (2) of the definition of the 
inverse system {Qugt}, that fj = gt^i and fj+i = gi+1. Hence from the 
equations that define the form of the bonding mappings of the inverse systems 
{Pufi} and {Qugi}, it follows that k{-i = tj and ki+i = tj+i. Furthermore, 
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since i is an even integer, ki-i is also equal to kt. Thus, from these last three 
equalities and the fact that gt = wtj +ltp we obtain the result that the bonding 
mapping gt is equivalent to the homeomorphism wki+l1Ci. Now, by Lemma 1, 
eki+1(Bki+1) is an open subset of En+2 containing eki+l(Qi+i). In addition, since 
Wki+iki(Bki+i) = Bki and eki(Bki) is an open subset of En+2, it follows that the 
image under the homeomorphism eki wki +lki eki +1

-1 of the set eki+l(Bki+l) is 
contained in En+2. Therefore, the restriction of eki wki+lki ^ i + 1

_ 1 to eki+l(Qi+i) 
is an extensible homeomorphism with respect to En+2 having distance zero from 
the restriction of eki gt eki+~l to eki+1(Qi+i). 

We conclude, by Lemma 3 together with the observation following Lemma 3, 
that the inverse limit of the system {eki(Qi), eki g* e^+i-1} can be embedded 
in En+2. Therefore, the topological product d X Ci X . . . X Cn can be 
embedded in En+2. 
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