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Spontaneous autophoretic motion of isotropic
disks
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It is theoretically known that an isotropic chemically active particle in an unbounded
solution undergoes symmetry breaking when the intrinsic Péclet number Pe exceeds a
finite critical value (Michelin et al., Phys. Fluids, vol. 25, 2013, 061701). At that value, a
transition takes place from a stationary state to spontaneous motion. In two dimensions,
where no stationary state is possible in an unbounded domain, a linear stability analysis
in a large bounded domain (Hu et al., Phys. Rev. Lett., vol. 123, 2019, 238004) reveals
that the critical Pe value slowly diminishes as the domain size increases. Motivated by
these findings, we here consider an unbounded domain from the outset, addressing the
two-dimensional problem of steady self-propulsion with a focus on the limit Pe � 1. This
singular limit is handled using matched asymptotic expansions, conceptually decomposing
the fluid domain into a particle-scale region, where the leading-order solute transport
is diffusive, and a remote region, where diffusion and advection are comparable. The
expansion parameter is provided by the product of Pe and U, the unknown particle
speed (normalised by the standard autophoretic scale). The problem is unconventional
in that the scaling of U with Pe must be determined in the course of the perturbation
analysis. The resulting approximation, U = 4 exp(−2/Pe − γE − 1)/Pe (γE being the
Euler–Mascheroni constant), is in remarkable agreement with the numerical predictions
of Hu et al. in the common interval of validity.

Key words: active matter, coupled diffusion and flow

1. Introduction

The prevailing continuum model of phoretic motion of chemically active particles in liquid
solutions was introduced by Golestanian, Liverpool & Ajdari (2007). In that model, the
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solute undergoes diffusional transport. The chemical activity at the particle boundary is
represented by a prescribed distribution of solute flux. The mechanical interaction of the
solute with that boundary, in turn, is represented by diffusio-osmotic slip. Typically, fluid
flow is animated by an imposed asymmetry in either the flux distribution or the particle
shape. The particle instantaneously acquires the appropriate velocity so as to remain force-
and torque-free.

Within that standard framework, a homogeneous isotropic particle in an unbounded
liquid domain remains stationary, surrounded by a spherically symmetrical solute cloud.
This situation changes dramatically when solute advection enters the picture (Jülicher
& Prost 2009): introducing nonlinearity into the model, it may trigger a symmetry
breaking. Indeed, Michelin, Lauga & Bartolo (2013) showed that when the intrinsic Péclet
number Pe exceeds the critical value 4, the stationary state becomes unstable, resulting in
spontaneous motion. The possibility of spontaneous motion in free solution has attracted
significant attention in recent years (Saha, Yariv & Schnitzer 2021; Hu et al. 2022;
Kailasham & Khair 2022; Peng & Schnitzer 2023; Schnitzer 2023), partly because of
the linkage to active drops (Michelin 2023).

The prospect of spontaneous motion is particularly intriguing in two dimensions.
With the Green’s function of Laplace’s equation varying as the logarithm of distance,
a quiescent state in an unbounded domain is incompatible with the requirement for the
solute concentration to approach an equilibrium value at large distances. In the absence of
a stationary solution, it is impossible to detect spontaneous motion of an isotropic disk via
a conventional stability analysis, as done in three dimensions. To circumvent this obstacle,
Hu et al. (2019) introduced an artificial circular boundary of large radius (200 particle
radii), centred about the particle. Since a stationary particle is an admissible solution for
any Pe value in such a domain, Hu et al. (2019) were able to carry out a linear stability
analysis, predicting a critical Péclet number (≈0.466 for that geometry) beyond which
spontaneous motion emerges. The nonlinear problem governing that motion was solved
numerically in that bounded domain. For yet larger Péclet numbers, Hu et al. (2019) found
further transitions, first to meandering motion, then to circular motion and eventually to
chaotic motion.

These two-dimensional (2-D) modes of spontaneous motion are theoretically attractive
as they provide a simple set-up for complex phenomena. For example, Kailasham &
Khair (2023) used a 2-D model to illustrate non-Brownian diffusion. It is therefore
desirable to supplement the existing numerical simulations by analytic approximations.
In pursuing that direction, it is natural to consider an unbounded configuration, as in
the original three-dimensional (3-D) analysis of Michelin et al. (2013). This avoids the
introduction of a superfluous parameter – the domain size. It should be emphasised that an
artificial remote boundary is not required when analysing steady spontaneous motion: the
advective–diffusive problem associated with that motion is expected to be well posed for
any non-zero Pe (Sondak et al. 2016). That observation further suggests the consideration
of the asymptotic limit Pe � 1, which provides a useful handle for a perturbation analysis.
Since setting Pe = 0 reproduces the ill-posed problem, this is a singular limit.

We accordingly consider here steady spontaneous motion in an unbounded 2-D domain,
focusing upon the limit Pe � 1. The problem of ‘conventional’ (non-spontaneous) steady
2-D autophoresis in that limit was handled in the literature (Yariv 2017; Yariv &
Crowdy 2020; Saha & Yariv 2022) using singular perturbations, with separate asymptotic
expansions in a particle-scale region and a remote Oseen-like region. The main difference
between these asymptotic analyses and classical investigations of forced-convection
problems (Acrivos & Taylor 1962; Frankel & Acrivos 1968) has to do with the
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Spontaneous autophoretic motion of isotropic disks

velocity field. In forced-convection problems, it is effectively prescribed; in autophoresis
problems, it is driven by solute-concentration asymmetry. The need to solve for the flow
and solute concentration simultaneously is essentially a technical difficulty, but it implies
that the intrinsic Péclet number does not necessarily provide a true estimate of advective
effects.

In the present context of spontaneous motion, that technical difficulty is amplified to a
real challenge, since the flow is determined, not by any imposed asymmetry (absent for
an isotropic particle), but rather by the need for an internal consistency of the asymptotic
scheme. In particular, the very scaling with Pe of the particle velocity is unknown to begin
with. This results in an unconventional asymptotic scheme where the dependence of the
expansion parameter upon Pe is not known in advance; rather, it must be found throughout
the analysis.

2. Problem formulation

We consider an idealised 2-D problem, with a circular particle (radius a∗) freely suspended
in an unbounded liquid solution. The particle activity is modelled by a uniform solute flux
j∗ emanating from its boundary. The flow is driven by diffusio-osmosis, with the solution
slipping along that boundary with a velocity provided by the product of the slip coefficient
b∗ (assumed uniform) and the surface gradient of the solute concentration. In addition
to being passively advected by that flow, the solute diffuses in the liquid with a uniform
diffusivity D∗. Following previous predictions of spontaneous motion (Michelin et al.
2013), we restrict the analysis to the relevant case where j∗ and b∗ have the same sign, so
b∗j∗ > 0.

Our interest is in the possibility of spontaneous motion, and in particular the steady-state
speed U∗ that the force-free particle acquires. Owing to the underlying isotropy, any
direction is equally likely for the particle motion. We capture it using the unit vector ı̂.

We employ a standard dimensionless notation, using a∗ as a length scale, j∗a∗/D∗ as
a concentration scale and U∗ = b∗j∗/D∗ as a velocity scale (Michelin et al. 2013). We
formulate the problem in a particle-fixed reference frame, using polar coordinates (r, θ)

with origin at the particle center and θ = 0 in the upstream direction.
The excess concentration c, relative to the equilibrium concentration at large distances

from the particle, is governed by: (i) the solute-transport equation,

∇2c = Pe u · ∇c for r > 1, (2.1)

wherein

Pe = a∗U∗

D∗ (2.2)

is the intrinsic Péclet number; (ii) the imposed flux at the particle boundary,

∂c
∂r

= −1 at r = 1; (2.3)

and (iii) the decay condition,
lim

r→∞ c = 0. (2.4)

The velocity field u is governed by: (i) the continuity and Stokes equations (the former
tacitly employed in (2.1)); (ii) the slip condition,

u = ∇s c at r = 1; (2.5)
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(iii) the far-field approach to a uniform stream,

lim
r→∞ u = −U ı̂, (2.6)

wherein U = U∗/U∗; and (iv) the requirement that the particle is force-free. The latter, in
conjunction with (2.5) and (2.6), provides the particle velocity as a quadrature (Squires &
Bazant 2006),

U = 1
2π

∫ π

−π

∂c
∂θ

∣∣∣∣
r=1

sin θ dθ. (2.7)

By the definition of ı̂, U is positive. The nonlinearly coupled problem governing c and u
depends upon the single parameter Pe, which is strictly positive.

3. The limit Pe � 1

The underlying isotropy might appear to suggest a stationary state where c is radially
symmetric, the velocity field vanishes and U = 0. Such a state, however, is incompatible
with the decay condition (2.4): in two dimensions, the solution of Laplace’s equation with
a finite flux diverges like ln r at large r. Fortunately, the nonlinear advective mechanism
suggests the possibility of symmetry-broken solutions corresponding to spontaneous
motion. With such motion, the advective term in (2.1) does not vanish. We claim that these
solutions exist for arbitrarily small Pe values. To that end, we consider the asymptotic limit
Pe � 1.

At this stage we do not know the scaling of U with Pe. In what follows, we proceed
subject to an a posteriori verification that

Pe U � 1 for Pe � 1. (3.1)

Since u is of order U (see (2.6)), it is evident from (2.1) that the relative magnitude of
solute advection is Pe U, rather than Pe. (Note that Pe U = a∗U∗/D∗ represents the Péclet
number associated with particle motion, cf. (2.2).) To reflect this estimate, we employ the
rescaled velocity v = u/U. Thus, the advection–diffusion equation (2.1) becomes

∇2c = Pe U v · ∇c for r > 1; (3.2)

the slip condition (2.5) reads

v = U−1∇s c at r = 1; (3.3)

and the streaming condition (2.6) is simply

lim
r→∞ v = −ı̂. (3.4)

With the latter being parameter-free, v is expected to be ord(1) in the limit Pe → 0. Given
(2.3), so is c.
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With the pertinent small parameter in the problem being Pe U, we pose the generic
asymptotic expansion,

f = f0 + Pe U f1 + · · · . (3.5)

We see from (3.2) that c0 satisfies Laplace’s equation,

∇2c0 = 0. (3.6)

The solution of (3.6) that satisfies (2.3) and is least singular at large r is the radially
symmetric distribution,

c0 = A0 − ln r. (3.7)

That solution is incompatible with the decay requirement (2.4). To overcome this
obstacle, we note that the (presumably subdominant) advective term in (3.2) becomes
comparable to the diffusive term at distances of order (Pe U)−1. Following this
observation, we employ the method of matched asymptotic expansions (Hinch 1991). Thus,
the fluid domain is conceptually decomposed into two asymptotic regions: a particle-scale
region, r = ord(1), where solute transport is dominated by diffusion; and a remote region,
r = ord(Pe−1U−1), where the particle appears as point singularity. With that approach, the
‘inner’ expansion (3.5) is understood to hold at the particle region. The decay condition
(2.4) does not apply in that region; rather, the concentration there is determined by the
requirement of asymptotic matching with the comparable solution in the remote ‘outer’
region, which we address now.

4. Remote region

Defining the stretched coordinate,

r′ = Pe Ur, (4.1)

the remote region is where r′ = ord(1). Writing c(r, θ) = c′(r′, θ), we find from (3.2) that
the remote concentration c′ is governed by

∇′2c′ = v · ∇′c′, (4.2)

wherein ∇′ = (Pe U)−1∇ is the gradient operator in the stretched coordinates. In addition,
it satisfies the decay condition (cf. (2.4))

lim
r′→∞

c′ = 0. (4.3)

Unlike the solute-transport problem, the flow problem does not exhibit any form of
non-uniformity. Indeed, with a force-free condition, the Stokes equations hold throughout.
In fact, as the flow is coupled to the solute concentration only through the slip condition
(3.3), no need arises for a comparable rescaling of the flow variables in the remote region.
Rather, the flow there is simply extracted by replacing r with (Pe U)−1r′ and expanding for
small Pe U. In particular, it follows from (3.4) that, for r′ fixed, v possesses the asymptotic
expansion

v ∼ −ı̂ + · · · . (4.4)

Thus, the leading-order flow is uniform in the remote region.
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Given the above observation, the only asymptotic expansion required in the remote
region is that of the concentration. Employing an expansion akin to (3.5), we only seek
the leading-order concentration c′

0. Substituting (4.4) into (4.2) we obtain

∇′2c′
0 = −∂c′

0
∂x′ , (4.5)

where x′ = r′ cos θ is a stretched Cartesian coordinate in the direction of ı̂. The solution
of (4.5) that satisfies (4.3) and is least singular at the origin is (Wilson 1904)

c′
0 = Q

2π
K0(r′/2) exp(−x′/2), (4.6)

in which K0 is the modified Bessel function of the second kind. The source magnitude Q,
appearing in (4.6), remains to be determined.

Using the small-argument behaviour of K0 (Abramowitz & Stegun 1965), we find

c′
0 ∼ − Q

2π

(
ln

r′

4
+ γE

)
as r′ → 0, (4.7)

wherein γE = 0.57721 . . . is the Euler–Mascheroni constant. The asymptotic error in (4.7)
is ‘algebraically small’ in r′, i.e. smaller than some positive power of r′. Thus, application
of ord(1) : ord(1) Van Dyke matching gives

c0 ∼ − Q
2π

(
ln

Pe Ur
4

+ γE

)
as r → ∞. (4.8)

Comparison with (3.7) gives Q = 2π and

A0 = ln
4

Pe U
− γE. (4.9)

In our analysis we allow for the respective coefficients in both (3.5) and the comparable
outer expansion to depend weakly upon the expansion parameter through its logarithm (as
in (4.9)). This practice enables the use of the Van Dyke matching rule (Van Dyke 1964)
subject to Fraenkel’s principle (Fraenkel 1969), according to which distinct asymptotic
orders are separated only by the powers of the expansion parameter, while asymptotic
terms that differ by its logarithm are grouped together.

5. Beyond radial symmetry

The radially symmetric distribution (3.7) does not result in fluid motion; see (3.3) (or,
equivalently, (2.7)). We therefore need to consider the next term in the inner expansion, c1.
Its asymmetry is driven by higher-order matching with the remote concentration. Indeed,
expanding (4.6) at small r′ up to ord(r′) yields the following refinement of (4.7),

c′
0 ∼ −

(
ln

r′

4
+ γE

) (
1 − 1

2
r′ cos θ

)
as r′ → 0, (5.1)

where the relative asymptotic error is algebraically small compared to r′.
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Thus, the leading-order correction c1 satisfies the far-field condition,

c1 ∼ 1
2

(
ln

Pe Ur
4

+ γE

)
r cos θ as r → ∞, (5.2)

which follows from Van Dyke ord(1) : ord(Pe U) matching. In addition, it is governed by
the differential equation (see (3.2))

∇2c1 = −v0 · êr

r
for r > 1, (5.3)

and the no-flux condition (see (2.3))

∂c1

∂r
= 0 at r = 1. (5.4)

Equation (5.3) couples c1 to the leading-order velocity field v0. That field, in turn, is
governed by the continuity and Stokes equations together with the slip condition (recall
(3.3)),

v0 = Pe ∇s c1 at r = 1. (5.5)

Given the absence of scale separation in the flow problem, v0 is subject to the streaming
condition (cf. (3.4))

lim
r→∞ v0 = −ı̂. (5.6)

Last, v0 must be compatible with the force-free condition at leading order. The latter is
equivalent to the requirement (cf. (2.7))

Pe
∫ π

−π

∂c1

∂θ

∣∣∣∣
r=1

sin θ dθ = 2π, (5.7)

or, following integration by parts,

Pe
∫ π

−π

c1|r=1 cos θ dθ = −2π. (5.8)

6. An apparent contradiction and its resolution

With Pe � 1, (5.5) may appear to imply that v0 actually satisfies a no-slip condition.
Such a condition, however, is incompatible with (5.6): there is no solution to the Stokes
equations in two dimensions that satisfies both conditions – this is the well-known Stokes
paradox (Leal 2007). A related apparent contradiction is evident from (5.8), which seems
incompatible with the underlying limit Pe � 1.

These incompatibilities may be traced back to the original problem. With c0 given by
(3.7), it is clear from (3.5) that the deviation of c from a radially symmetric distribution is
of order Pe U. Then, the slip condition (2.5) (or, equivalently, the force-free constraint
(2.7)) suggests that U is of the same order. It may therefore appear that Pe must be
ord(1), contradicting our starting point Pe � 1. Of course, when Pe is of order unity there
is no perturbation parameter in the problem, so the entire asymptotic analysis becomes
meaningless.

The resolution of these apparent conflicts has to do with the interpretation of
logarithmically small terms when adhering to the asymptotic practice of separating by
powers of the expansion parameter. Thus, if it turns out that Pe is ‘logarithmically small’
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with respect to the expansion parameter Pe U, no contradiction arises. To see that this
is indeed the case, we note that (5.2) suggests that c1 is of order ln(Pe U), while (5.5)
necessitates it to be 1/Pe. Balancing these terms, we conclude that

Pe U = ord(e−const./Pe), (6.1)

wherein the positive constant is as yet unknown. Thus, 1/Pe is indeed of the order of
the logarithm of the small expansion parameter Pe U. Incidentally, (6.1) provides an
a posteriori justification for (3.1).

The scaling (6.1) suggests the following expansion,

U = exp(−k(Pe)/Pe)
Pe

+ · · · , (6.2)

where the function k(Pe), which remains to be determined, has a non-zero limit as Pe → 0.
We anticipate that the asymptotic error in (6.2) is exponentially small in Pe. The

asymptotic behaviour (5.2) now reads

c1 ∼ 1
2

(
ln

r
4

− k
Pe

+ γE

)
r cos θ as r → ∞. (6.3)

7. Irrotational-flow solution

At this stage we need to solve two mutually coupled linear problems: the asymmetric
concentration problem, governed by (5.3), (5.4) and (6.3); and the flow problem, governed
by the continuity and Stokes equations together with (5.5), (5.6) and the force-free
condition, equivalent to (5.8). We emphasise that Pe, which appears in these problems,
is now interpreted as a logarithmically small term. We do not (and should not) make use
of its smallness in solving these problems.

Given the no-flux condition (5.4), the surface-gradient operator in the slip condition
(5.5) may be replaced by the standard gradient operator, giving

v0 = Pe ∇c1 at r = 1. (7.1)

Following classical treatments in phoretic motion (Morrison 1970), it is then tempting to
seek an irrotational flow, of the form Pe ∇c1, which would trivially satisfy the above slip
condition, as well as the Stokes equations and force-free constraint. However, such a form
would violate the continuity equation, since c1 is not harmonic – see (5.3).

It turns out that the irrotational ansatz is nonetheless instrumental in constructing the
solution, but some care is needed. Thus, we postulate

v0 = ∇ϕ, (7.2)

where the velocity potential ϕ is defined to within an arbitrary additive constant, which is
physically irrelevant. The continuity equation implies that ϕ is harmonic,

∇2ϕ = 0 for r > 1. (7.3)

The Stokes equations are then trivially satisfied (with nil pressure), as is the force-free
condition. The slip condition (5.5) implies that ϕ satisfies the homogeneous Neumann
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condition,
∂ϕ

∂r
= 0 at r = 1, (7.4)

while the far-field streaming (5.6) implies that

ϕ ∼ −r cos θ as r → ∞. (7.5)

The solution of (7.3)–(7.5) is simply

ϕ = −
(

r + 1
r

)
cos θ. (7.6)

The associated velocity field (7.2) is

v0 = −êr(1 − r−2) cos θ + êθ (1 + r−2) sin θ. (7.7)

Inspired by (7.1), we write

c1 = Pe−1ϕ + χ, (7.8)

where
χ = const. at r = 1, (7.9)

so that (7.2) guarantees the satisfaction of the slip condition (5.5). In what follows, we seek
the ‘adjustment’ χ . From (5.3), (7.3) and (7.7) we see that it is governed by the Poisson
equation,

∇2χ = (r−1 − r−3) cos θ for r > 1. (7.10)

From (5.4) and (7.4) we further observe that it satisfies a homogeneous Neumann condition
at r = 1. The solution of the above problem that satisfies (7.9) is

χ = 1
2

(
r ln r − r + ln r

r
+ 1

r

)
cos θ + const. (7.11)

Given (7.6) and (7.9), constraint (5.8) is trivially satisfied. This was to be expected, as that
constraint follows from the combination of the slip and force-free conditions; these have
already been enforced.

Comparing (7.6), (7.8) and (7.11) with the dictated asymptotic behaviour (6.3), we
observe that the terms proportional to r ln r trivially match, while agreement of the terms
proportional to r itself necessitates

k = 2 + Pe(1 + γE − ln 4). (7.12)

This completes the analysis at ord(Pe U). In principle, the constant appearing in (7.11) may
be obtained using higher-order asymptotic matching. Its value, however, is immaterial to
our goal – the calculation of U.

8. Phoretic speed

Plugging (7.12) into (6.2) yields the requisite approximation

U = 4 exp(−2/Pe − γE − 1)

Pe
. (8.1)

The constant in (6.1) is 2. The remote scale (Pe U)−1 is of order exp(2/Pe).
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0 1 2
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Figure 1. Spontaneous speed as a function of Pe. The solid curve is the present (8.1). The dashed curve
represents the straight-motion speed displayed in figure 1 of Hu et al. (2019).

We can now understand the prediction of a critical Pe by Hu et al. (2019), who
introduced an artificial boundary at r = R. For the remote transport at distances exp(2/Pe)
to be captured in a finite region r < R, one roughly needs Pe � 2/ln R. For smaller Pe,
no spontaneous motion can be predicted. For a given R, the associated critical Pe merely
indicates the transition to a geometry where the bounded problem indeed emulates the
unbounded one. It is interesting to note that Hu et al. (2019) derived the same estimate for
the critical Pe using their stability analysis in the finite-domain problem.

In figure 1 we compare the present (8.1) with the spontaneous speed predicted by Hu
et al. (2019), who took R = 200. For that value, 2/ln R is roughly 0.4. The critical Péclet
number found by Hu et al. (2019), ≈0.466, is indeed close to that value. For larger Pe,
we observe in figure 1 an interval where the present (8.1) and the prediction of Hu et al.
(2019) are virtually indistinguishable. (While the present approximation is strictly valid for
Pe � 1, it is remarkably accurate up to about Pe = 1.) When Pe is larger still, the small-Pe
approximation (8.1) becomes irrelevant, and the two predictions separate off.

9. Concluding remarks

Given the absence of a reference stationary state, the concept of a critical Pe in 2-D
unbounded domains becomes vague. This is corroborated by the numerical predictions
(Hu et al. 2019) of a critical Péclet number that diminishes slowly to zero as the distance
to the remote boundary is enlarged. The prediction of a critical Péclet number, based upon
a linear stability analysis, is accordingly irrelevant for the unbounded problem. Moreover,
the nonlinear advection–diffusion problem governing spontaneous motion is expected to
be well posed in the unbounded configuration for any finite Pe.

We therefore advocate for the use of unbounded domains in theoretical investigations
of 2-D spontaneous motion, mimicking the idealised configurations studied in three
dimensions. Adopting this conceptual approach, we have addressed herein the unbounded
problem from the outset. Our work reveals that spontaneous motion occurs for arbitrarily
small Péclet numbers. This is fundamentally different from the 3-D case (Michelin et al.
2013).

The present analysis may be extended to incorporate more realistic descriptions of
interfacial activity, where the prescribed flux is replaced by a first-order kinetic model
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(Ebbens et al. 2012; Li 2022). Since that model still gives rise to a logarithmic divergence
with distance in a 2-D diffusive transport (Yariv 2017; Yariv & Crowdy 2020; Saha &
Yariv 2022), the stationary state remains ill posed. It is therefore anticipated that, even
with a more realistic interfacial description, spontaneous motion emerges at arbitrarily
small Péclet numbers.

Funding. E.Y. was supported by the United States–Israel Binational Science Foundation (Grant No. 2019642).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Rodolfo Brandão https://orcid.org/0000-0002-1544-1162;
Ehud Yariv https://orcid.org/0000-0003-0398-2954.

REFERENCES

ABRAMOWITZ, M. & STEGUN, I.A. 1965 Handbook of Mathematical Functions, 3rd edn. Dover.
ACRIVOS, A. & TAYLOR, T.D. 1962 Heat and mass transfer from single spheres in Stokes flow. Phys. Fluids

5 (4), 387–394.
EBBENS, S., TU, M.-H., HOWSE, J.R. & GOLESTANIAN, R. 2012 Size dependence of the propulsion velocity

for catalytic Janus-sphere swimmers. Phys. Rev. E 85 (2), 020401.
FRAENKEL, L.E. 1969 On the methods of matched asymptotic expansions. Part 1. A matching principle. Proc.

Camb. Phil. Soc. 65, 209–231.
FRANKEL, N.A. & ACRIVOS, A. 1968 Heat and mass transfer from small spheres and cylinders freely

suspended in shear flow. Phys. Fluids 11, 1913–1918.
GOLESTANIAN, R., LIVERPOOL, T.B. & AJDARI, A. 2007 Designing phoretic micro-and nano-swimmers.

New J. Phys. 9, 126.
HINCH, E.J. 1991 Perturbation Methods. Cambridge University Press.
HU, W.-F., LIN, T.-S., RAFAI, S. & MISBAH, C. 2019 Chaotic swimming of phoretic particles. Phys. Rev.

Lett. 123 (23), 238004.
HU, W.-F., LIN, T.-S., RAFAI, S. & MISBAH, C. 2022 Spontaneous locomotion of phoretic particles in three

dimensions. Phys. Rev. Fluids 7 (3), 034003.
JÜLICHER, F. & PROST, J. 2009 Generic theory of colloidal transport. Eur. Phys. J. E 29 (1), 27–36.
KAILASHAM, R. & KHAIR, A.S. 2022 Dynamics of forced and unforced autophoretic particles. J. Fluid Mech.

948, A41.
KAILASHAM, R. & KHAIR, A.S. 2023 Non-Brownian diffusion and chaotic rheology of autophoretic disks.

Phys. Rev. E 107 (4), 044609.
LEAL, L.G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes.

Cambridge University Press.
LI, G. 2022 Swimming dynamics of a self-propelled droplet. J. Fluid Mech. 934, A20.
MICHELIN, S. 2023 Self-propulsion of chemically active droplets. Annu. Rev. Fluid Mech. 55, 77–101.
MICHELIN, S., LAUGA, E. & BARTOLO, D. 2013 Spontaneous autophoretic motion of isotropic particles.

Phys. Fluids 25 (6), 061701.
MORRISON, F.A. 1970 Electrophoresis of a particle of arbitrary shape. J. Colloid Interface Sci. 34,

210–214.
PENG, G.G. & SCHNITZER, O. 2023 Weakly nonlinear dynamics of a chemically active particle near the

threshold for spontaneous motion. II. History-dependent motion. Phys. Rev. Fluids 8 (3), 033602.
SAHA, S. & YARIV, E. 2022 Phoretic self-propulsion of a slightly inhomogeneous disc. J. Fluid Mech. 940,

A24.
SAHA, S., YARIV, E. & SCHNITZER, O. 2021 Isotropically active colloids under uniform force fields: from

forced to spontaneous motion. J. Fluid Mech. 916, A47.
SCHNITZER, O. 2023 Weakly nonlinear dynamics of a chemically active particle near the threshold for

spontaneous motion. I. Adjoint method. Phys. Rev. Fluids 8 (3), 034201.
SONDAK, D., HAWLEY, C., HENG, S., VINSONHALER, R., LAUGA, E. & THIFFEAULT, J.-L. 2016 Can

phoretic particles swim in two dimensions? Phys. Rev. E 94 (6), 062606.
SQUIRES, T.M. & BAZANT, M.Z. 2006 Breaking symmetries in induced-charge electro-osmosis and

electrophoresis. J. Fluid Mech. 560, 65–101.
VAN DYKE, M. 1964 Perturbation Methods in Fluid Mechanics. Academic Press.

972 R3-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://orcid.org/0000-0002-1544-1162
https://orcid.org/0000-0002-1544-1162
https://orcid.org/0000-0003-0398-2954
https://orcid.org/0000-0003-0398-2954
https://doi.org/10.1017/jfm.2023.740


R. Brandão and E. Yariv

WILSON, H.A. 1904 On convection of heat. Proc. Camb. Phil. Soc. 12 (5), 406–423.
YARIV, E. 2017 Two-dimensional phoretic swimmers: the singular weak-advection limits. J. Fluid Mech. 816,

R3.
YARIV, E. & CROWDY, D. 2020 Phoretic self-propulsion of Janus disks in the fast-reaction limit. Phys. Rev.

Fluids 5 (11), 112001(R).

972 R3-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

74
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.740

	1 Introduction
	2 Problem formulation
	3 The limit Pe1
	4 Remote region
	5 Beyond radial symmetry
	6 An apparent contradiction and its resolution
	7 Irrotational-flow solution
	8 Phoretic speed
	9 Concluding remarks
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


