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COMPACTNESS OF THE FLUCTUATIONS 
ASSOCIATED WITH SOME GENERALIZED 

NONLINEAR BOLTZMANN EQUATIONS 

RENÉ FERLAND, XAVIER FERNIQUE AND GASTON GIROUX 

ABSTRACT. In this paper, we develop a new approach to obtain the compactness of 
the fluctuation processes for Boltzmann dynamics. Our method is applicable to Kac's 
model, already studied by Uchiyama, but it covers many other cases. A novelty worth 
mentioning is the use of the weak topology of a Hilbert space. 

1. Introduction. This work is concerned with the fluctuation problem for gener
alized nonlinear Boltzmann equations. A first successful work in this sense has been 
done in a very clever way by Uchiyama [27] for Kac's caricature. To get the fluctuation 
tightness, Uchiyama's main idea was to look for a Hilbert space whose dual contains 
the fluctuation and to control the norm of the fluctuations using some Fourier transform 
bounds. 

Later, Ferland [7, 8] observed that these bounds were also applicable to the Boltzmann 
energy equations which are scaling invariant. Unfortunately, it seems that the same ap
proach can not work for the non scaling invariant case. 

In this work we modify Uchiyama's approach to cover this last case. To avoid Fourier 
transforms we directly control the norm of the fluctuation by choosing a more appropriate 
Hilbert space. After that, instead of considering a Hilbert triple like Uchiyama, we put on 
the state space the weak topology and we obtain the relative compactness using a general 
criterion for processes with values in a Lusin space. 

We will first present our approach for Kac's caricature. Then we will apply it to Boltz
mann energy equations both scaling and non scaling invariant showing as such that our 
method is more generally applicable. 

2. The general set-up. We are studying real generalized Boltzmann equations with 
bounded interaction intensity. The interaction between two independent particles is de
scribed by a Markov kernel Q: R x R x (B(R x R) —> [0,1]. The latter is assumed to be 
symmetric in the sense that Q(x, y ; A x B) = Q(y, x ; B x A) for every x, y G R and 
A, B G *B(R). The generalized Boltzmann equation associated with Q is given by 

j-t(u(t)^) = MAt<t>)(x)u(t,dx) 
w(0) = [i 
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where 
(At<t>)(x) = / • [ / • U(x*) - 4>(x)}Q{x,y ; dx\df) 

JIR L-̂  IRx IR 
u(t,dy), 

(j> is a bounded measurable function and (w(r), </>) is the integral of <j> with respect to the 
probability measure u(t). Because the interaction intensity is bounded, this equation has 
a unique solution (see [2, 17, 22, 29] for details). 

The «-particles interacting process associated with Q is the Markov pure jump process 
(X"(0) >0 regulated by the infinitesimal generator: 

Gnf(xU...,Xn)=- £ (&Jf-f)(XU.-.,Xn) 
n l<i<j<n 

where 
0 ^ ! , . . . ,*„) = /" ffiJ(x*y)Q(xhXj ; </** rfy*) 

./iR >/[R 

andflJ(x*, v*) is obtained from/ by changing the variables JC/ and jty with JC* and y*. All 
the processes { ^ } ^ 2

 a r e supposed to be defined on a common complete probability 
space (£2, ̂ F, P) and the paths are right continuous with left hand limits. The probability 
law induced on W1 by X*(0 is denoted by un(t). Throughout this work un(0) is assumed 
to be permutation invariant. Since Gn commutes with the permutation of coordinates, the 
symmetry of un(0) is inherited by un(t). 

The link between {Xn}(^2
 anc* (M(0) >0 is given by the chaos propagation property 

which states that the empirical measures 

1 n 

converge weakly to u(t) provided org converge to w(0) [7, 12, 15, 25, 26]. 
The scaled fluctuation of a" about w(f) is ift — yfn(a" ~ w(0)- The process (ift)t>Q 

is a measure-valued temporally inhomogeneous Markov process. We name it the (n-
particles) fluctuation process. This work is concerned with the compactness of the fluc
tuation processes sequence. (See [4, 5, 13, 18, 19, 21, 23, 24, 28] for related works.) 

3. Kac's caricature. 
3.1 The state space. From the definition of rft, we see that if the fluctuation processes 
are to converge in law, the limiting process might not always be measure-valued. It means 
that we have to weaken the notion of convergence and thereby enlarge the state space. 

Let Ĉ be the set of all bounded continuous functions with a bounded continuous 
derivative in L2(1R). We define on Ĉ a semi-norm TV by 

This semi-norm is Hilbertian and the corresponding Hilbert space is noted 9{. The letter 
TV is used to denote both the norm in H and the dual norm in H'. 
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Recall that for Kac's caricature the kernel Q is given by 

r2ll — 

<2(v, w ; B) = / IB(V cos 9 — w sin9,vsin6 + w cos 6) dO 

where dO = dO/2TT. Since this kernel obviously preserves the energy, it is natural to 

take w(0) with a finite variance so that the mean energy \ J v2u(t, dv) is finite at any time. 

Under this condition on the moments, we now show that the fluctuation belongs to Of'. 

To this end, let us introduce, for each x, a functional Lx on ^C given by the formula 

Lx<j> — <\>(x) — 0(0). Schwarz inequality immediately gives the following lemma. 

LEMMA A. Lx is a continuous linear functional on 9£ of norm at most \x\] '2. 

COROLLARY. (ri")t>o is an 0(' -valued random process. 

PROOF. For any fixed UJ, n and t, the fluctuation r]n
t(uj) is in 0~i' because it is a multiple 

of the difference of two probability measures with finite moment of order 2 (and therefore 

also of order 1/2). Furthermore, (77", </>) is a real random variable for all </> in 9Q. Since 

3C generates the Borel cr-field of Of', this is enough to get the conclusion. • 

We conclude this section with another lemma. We shall use it in the next section to 

control the norm of the fluctuation, and that is the reason why we chose Of' as the state 

space for the fluctuation. For any given probability measure /1, the kernel Q defines a 

natural application L(\i) on %^ by the formula 

L{ii)(j){v) = f fi(dw) r £e(f)(v,w)d6 

where e9(j)(v, w) = </>(vcos 0 — w sin 0) + </>(v sin 0 + w cos 6) — </>(v) — 4>(w). 

LEMMA B. L(JI) is a continuous linear operator on %. 

PROOF. It is not hard to see that when <j> is in ^C, the function L(p)(f) is bounded, 

continuous, and has a bounded continuous derivative. Moreover, we have 

N(L(^f = j[^-L^)<t>{v))2dv 
^\dv 

2_ 

dO | -^( / ) (v ,w) 
dv 

< [ dv I a{dw) I 
m JR JO 

< J J *N(ee(t)(-,w)f^(dw)de. 

A simple calculation gives N ( Ê V ( - , W)Y ^ 9N(4>)2. The proof is complete. • 

REMARK. Lemma B is also true if ^ is a signed measure instead. The constant 9 

would have to be changed to 9|/i| where |/i| is the total variation norm of /1. 

3.2 Preliminary results. Let us introduce two conditions for {un(0)}^=2: 

(HO) s u p E [ - è | x ; ( 0 ) | 2 l < o o ; 
n L ÏI j = 1 J 

(HI) supE[N(r]n
0)

2] < 00. 
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The condition (HO) will be used to control the quadratic parts of the sequence of fluctu
ation process generators. To understand the role of (HI), let us note that if the processes 
{rf}™=2 a r e relatively compact, the same must be true for the random variables {T7O}£L2-

But with the help of (HI), one can choose for any e > 0 a constant M£ large enough to 
get P{7V(77g) > M J < e. Since the set {77 G H1 \ N{yj) < M j is weakly compact and 
the Borel a-field of 9(' is generated by its weak topology, we see that, under (HI), the 
sequence {T7O}£L2 *S relatively compact. It is the purpose of this work to prove that the 
conditions (HO) and (HI) are sufficient to get the relative compactness of the fluctuation 
processes sequence. 

In order to prove the previous statement, the main step will be to show that the finite-
ness of (HO) and (HI) propagates in time. This is true for (HO) as a consequence of the 
conservation of energy. But the case of (HI) is much harder and, in fact, the space 9~C 
has been chosen precisely to make this task feasable. 

Before we proceed any further, we need to introduce some ancillary quantities. Define 
for any </> in ^C, 

where 

$(</>) = M?(<l>)2 - j'o(l
n(<i>)ds 

- W ) = {rfl ® u(t), A,0) + ^rW, ® rfi.Arf) - (ccn„Ti<t>)} 
Lsjn 

1 r, . _ . . ,, 1 WW = - { « ® < h2(f>) - - « , r2</>> ) 

and rk(f>(v) = Ak(f>(v, v). These quantities are related to the fluctuation process generator 
and for more information we refer the reader to Uchiyama [27]. 

We know that the space 9i is separable and that a complete orthonormal set {0*}!£i 
can be found in %^. We will use this basis to express the dual norm of the fluctuation. For 
any (f>k we have 

E[«,</>*}2] < 2 E [ M ; , ( ^ ) 2 ] + 2 E [ ( ^ " ( ^ ) * ) 

= 2E[S?(&)] + 2E[£ d\4>k) ds\ + 2 E [ ( J T ^'(4>k) ds 

< 2E[S?(&)] +2 fonQ,"(<l>k)]ds + 2t £E[^{d>k)
2]ds. 

Since (S?(4>k))t>0 is a martingale (see [6, 27]), we also have 

E[S?(&)] = E[S"0(j>k)l = E [ | ( ^ , ^ ) | 2 ] . 
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Summing over k we get that EIW2^")] is bounded by 

E[tf2(7/5)] + 2 / V E [ Q ^ ) ] ds + 2f f £ E t W * ) 2 ] *• 
•^0 7, \1 JO 7^1 k>\ k>\ 

Upper-bounds for the last two terms are given in Lemmas 3.1 and 3.2 which are based 
on Lemmas A and B. 

LEMMA 3.1. For all t > 0 we have that 

X : E [ Q ^ ) ] < 6 E - £ | X ; ( 0 ) | 
*>I 

1 A vn/(\\\2 

lj=\ 

1/2 

PROOF. When v, w and 6 are fixed, we may use Schwarz inequality to show that 
e9<l)(v,w) is a continuous linear functional on %^ and the square of its norm in 0{' is 
bounded by 6(|v| + |w|). Parseval's identity gives 

£ | £ V ^ v v ) | 2 < 6 ( | v | + |vv|) 
k>\ 

and therefore the following inequality holds: 

r2i\ 

k>\ °̂ k>\ 
J2 A2<Mv, w) = t £ k % ( v , w ) | 2 ^ < 6(1 v| + |w|). 

On the other hand, Q,n(</>) is positive and bounded by (an
t ® a", À2</>)/2. Then we can 

write: 

£ E[Q"(4)] < ^ E E[(«? ® or?, A2<fc>] 
k>\ L k>\ 

<iE[«®af,EA2^)l 

< À Ê E [ E A 2 ^ ( X T ( 0 , ^ ( 0 ) 
z w iv=i Lfc>l 

< 4 ê E[|xf(o| + |x;(r)|] 
n^ . . . ^ 

<6E[-J-E|X;(O| 

< 6 E •ns+\\2 
EI*?C>I 

1/2 
= 6E 

1 " 
£W(0)|' 

•y=i 

1/2 

The last equality follows from preservation of energy. 

LEMMA 3.2. For allt>0 we have that 

E E[^ ' !(^)2] < 36E[iV(^)2] + —El- Ë |A7(0)|21 
1/2 
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PROOF. From the definition of -#f(</>) we have that 

TO)2 < 2(H <g> u(f\ AK/>)2 + -(rf! ® rf}, AK/>)2 + i « , r i 0 > 2 . 

But (77" ® w(0, Ai <j>) is linear in <j> and, because of Lemma B, we see that it is continuous. 
Moreover, 

|(r/?0ii(O,Ai0>| = |<77?,X(«(0)^>| <N{rf})N(L(u{t))<£) < 37V(̂ )7V((/>). 

Consequently, 

since the series is just the square of the norm in 9f' of the random functional. By the 
same token, 

Combining these inequalities we get: 

Finally, we obtain 

£ E [ ^ W ] < 3 6 E [ t f ( t f f i ^ 
k>\ n Vk>\ J 

E f e « , r i ^ > 2 l < E f ( « ? . E r 2 ^ ) l 

<E[lÊEr2MW 
l n j=lk>\ 

< 12E 
2 e 1̂ (01 

7=1 in 

'z 
;=1 

< 1 2 E [ - Ê | A ? ( 0 ) | 2 ] 
1/2 

We may now prove that the finiteness of (HI) propagates. 

PROPOSITION 3.3. Let us suppose that the conditions (HO) and (HI) hold. Then there 
exists a nondecreasing function Kt such that, for all t > 0, 

supE[7V(77?)2]<^. 

PROOF. Set f(t) = E[yV(r??)2]. Lemmas 3.1 and 3.2 give 

/ ( f ) < 2 / (0 )+12 r + 
2t2 

n J in 

1 JL 
Z\Xj(°t 
7=1 

1/2 
+ 72r jf/W*. 
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By Gronwall's lemma we have 

/ ( 0 < 12/(0)+12(f+ — )E 
It2 

1 A . ^ . ^ . V I 1 / * -n/ml 2 E 1̂ (0)1 exp(72r2), 

which proves the proposition. 

3.3 Compactness of the fluctuation processes. In this section, we look at the fluctuation 
processes on a fixed compact interval [0, T]. We first prove that the fluctuation trajectories 
are almost surely strongly cadlag in 0~C'. Then we show, using recent results in [9], that 
the fluctuation processes sequence is relatively compact when tH' is endowed with its 
weak topology. Finally, we obtain that any limiting process is strongly continuous. 

PROPOSITION 3.4. supn £*>i E[sup0<r<r(^, <j>k)
2] < oo. 

PROOF. Let M"(</>) be as in the previous section. Then (M"(</>)) is a martingale [6]. 

A martingale inequality gives E[sup0<KrMJI(</>)2] < 4E[M£(</>)2]. Therefore, we can 

write 

0<t<T 0<t<T 

< 1( 

E[ sup « , ^ ) 2 ] < 2E[ sup M ^ ) 2 ] + 2E[( [j\n(h)ds 
n<rt<rT J 0<t<T *- ^" ^ 

16E[«,(/>,)2]+ lST£E[J%(<l>k)
2]ds. 

It means that sup„ T,k>\ E[sup0<r<r(r/5
2, (j>k)2] is bounded by 

16supE[N(?7^)2l + 187 f supE[]T J^(4>k)
2} ds. 

The first term is finite by Proposition 3.3. The second is also finite because the integrand 
is bounded on [0, T] by Lemma 3.2 and Proposition 3.3. • 

PROPOSITION 3.5. The trajectories of the fluctuation processes are almost surely 
strongly cadlag in Of'. 

PROOF. Using Proposition 3.4, one can find a set £l0 such that P(£20) — 1, and 

VLJ e Q0, J2 sup (rft{u\<j>k)
2 < oo. 

k>\0<t<T 

Fix bj G Q0 and let tm [tin [0, T\. We must show that, for any e > 0, there exists m(t) 
such that 

m > m(E) => N(TII(LJ) - r]n
t(uJ)) < e. 

To do so, first choose N large enough to get 

£ sup(r,^),</>*)2<£
2 /6 

*>wo<Kr 
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then take m(k,e) such that m > m(k,e) => \{rf}m,<j>k) - (in^k)]2 < e1 /?>N. This is 
possible since 1i—» (T]"((JJ), <j>k) is right-continuous. Let m(e) = max\<k<Nm(k, e). Then, 
for m > m(e), we have 

# ( # » ~ Î/?(O;))2 = £ ( t f » - tf M>4>*>2 

< E(tf>)-tfM,<fc>2 + 2 E { « ( ^ ^ > 2 + (^M.^>2} 
* = 1 £>yV 

AT 

< £ £2/3N+2£2/6 + 2 ^ 2 / 6 = ^2-
£ = 1 

Thus the function / i—> 77" (CJ) is right-continuous. Now, if fm î f, a similar argument 
shows that {ift (UJ)}™=1 is Cauchy in 9{'. So t i—» TJ"(UJ) has left-hand limits and the 
proof is complete. • 

When the space H' is endowed with its weak topology it is no longer Polish but Lusin 
instead. However, because H' is then the weak dual of a separable Fréchet space, the 
space (D([0, 7], 9~C) (with the Skohorod topology, when we take the weak topology of 
9{') turns out to be a Lusin space also [9, Théorème 3.2.1]. Any probability measure 
on this path space is tight. This enables us to use a general compactness criterion for 
processes with values in a Lusin space (see [9, Théorème 4.4]). In our context, it says that 
the fluctuation processes sequence is relatively compact provided that the two following 
conditions are true: 

a) There exists a sequence (Km)m>\ of weakly compact subsets of H' such that 

Mm > 1, Mn > 2, Y{3t e [0, T] \ rft $ Km] < 2~m. 

b) For all <j> G ^C, the real processes {(rin, 4>)}%L2
 a r e relatively compact. 

But Proposition 3.4 shows immediately that 

(3. 1) M= supE[ sup Nirff] < oo 
n 0<t<T 

and therefore, the sets Km = {// G 9i' \ N(rj)2 < M2m} give the desired sequence for 
condition a). Condition b) follows from the next proposition [3, Theorem 15.5]. 

PROPOSITION 3.6. For any <j) e %we have 

(3.2) limsupPl sup \{rf,<t>)\ > M) = 0 
M]oo n 0<t<T 

and for all e > 0 one can find S > 0 andN > 2 such that 

(3.3) supPJ sup | ( ^ , ( / > ) - ( ^ , ( / ) ) | > ^ <e. 

\t-s\<6 

PROOF. Again, (3.2) is an easy consequence of (3.1). Now, in order to show (3.3), 
we are defining for each function/ in ©([0, T], R) a "modulus" V" as follows : 

V"(f,6) = sup{[A0 -f(r)\ A \f(r) -f(s)\ ; 0 < s < r < t < T,t - s < à}. 
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It is well-known [20, Lemma 6.4] that 

sup i/(r)-/(5) | <2V"(/\5)+ sup \f(t)-f(t-)\. 
s,te[0,T] 0<t<T 
\t-s\<5 

Thus, in order to prove (3.3), all we have to do is to choose N0 such that -4̂ ||</>||oo < e/2 
whenever n > No, and then show that 

(3.4) lim sup P{V//((77n, </>),6) > s/4} = 0. 
<H° n>N0 

This suffices since from the fact that the probability that more than two components of 
X"(0 change at the same time is zero, we have 

PJsup |W^>-(T??_^) |<4=W«>} = 1. 
[0<t<T Vn J 

Let T"M = M{t > 0 ; \S^(<t>)\ > M} and FJ1 = (77^ , </>). We have that 

(3.5) limsupP{7^ <T} = 0 
M]oo n 

since for cj) E Ĉ 

(3.6) supE[ sup |J^(0)|] < 00. 
n 0<t<T 

Indeed, the boundedness of <j> implies that \T\<j>\ < 4||(/>||00 and 

| ( a? , r i0> |<4 |H | o o . 

Moreover, in the proof of Lemma 3.2, we noted that 

1(1/7 0 1 1 ( 0 , ^ ) 1 <iN{rfl)N(<t>) 

and 

Since |^(</>)| is bounded by 

\{rf} ® M(0, Ai0)| + ̂ M 0 tf, A,0)| + - L | ( a ? , r , 0 ) | 

the result (3.6) follows easily from Proposition 3.3. Furthermore, since r^ is a stopping 
time, the processes 

M ' " = = y ' - / o ' A 7 ^ " W , ) * 

s? = (Af?)2-j£A7la"w<fc 
are martingales; hence, it is routine to see that: 

supE[(*7 - Yn
rf(Y

n
r - O 2 ] < constant x (t - s)2 

for 0 < s < r < t < T. This implies (see [3, Theorem 15.61) that: 

limsupP{V"(r\< 
<U° n>N0 

which is enough to get (3.4) in view of (3.5). 

lim sup V{V'(Yn,b) > £ / 4 } - 0 
<U° n>N0 
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THEOREM 3.7. Under (HO) and (HI) the fluctuation processes are relatively compact 
on £*([0, 7], !H') and any limiting process has strongly continuous paths. 

PROOF. Only the last part need to be proved. Let P be the law on 2>([0, T], H') of any 
limiting process and let E stand for the corresponding expectation. By Proposition 3.4, 
we have E[Eyt>i suPo<Kr(^' ^k)2] < oo, where Nt is the canonical projection at time t. 
Moreover, by Proposition 3.6, t \—> (Nh <^) is continuous on a P-null set, for any k. This 
is enough to show the continuity exactly as in the proof of Proposition 3.5. • 

4. Boltzmann energy equations. Boltzmann energy equations model the time evo
lution of the energy distribution for spatially homogeneous isotropic systems of identical 
particles [1, 14]. The energy distribution is a probability measure on R+ or N depending 
on whether the energy is supposed continuous or quantified. 

4.1 The scaling invariant case. Boltzmann energy equations on R+ are usually scaling 
invariant. By this we mean that the kernel Q may be written as 

Q(x9y;B) = J J^ lB(z\x + ziy,(\ - z\)x + (1 - z2)y)v(dz\,dz2) 

where x,y E R+, B G *B(R+ x R+), and v is a probability measure on [0,1] x [0,1]. 
The name "scaling invariant" comes from the fact that v does not depend on x and y. 
A famous example of such a kernel is given by the so-called continuous p-q model of 
Futcher and Hoare [10,11]. 

It is clear that scaling invariant kernels carry a strong resemblance with Kac's car
icature kernel. As a consequence, we will get Theorem 3.7 for those kernels in a very 
similar fashion. Indeed, we take the same Hilbert space but on R+ instead. Obviously, 
Lemma A is still true. Since the probability measure v is usually such that the energy 
is preserved, the solution of the Boltzmann energy equation will have its first moment 
finite at any time provided that it is true initially. Under this condition, the fluctuation 
processes are ^'-valued processes, as before. 

On the other hand, it is not very hard to see that Lemma B is also true. Essentially, we 
just look at the previous proof and replace everywhere the uniform measure on [0, 2TT] 
by v and the function ee<j)(x,y) by the function 

eZuZ2(j>{x,y) = (j)(z\x + z2y) + </>((l - z\)x + (1 - z2)y) - <t>{x) - </>(y). 

Therefore, if we assume that the following conditions hold: 

(HO) supE[-£jx;(0)| 
n .—: J l J = l 

< OO 

(HI) supE[N(r]n
0)

2] < o o 
n 

we can easily get the estimations of Section 3.2. Then, Theorem 3.7 for scaling invariant 
Boltzmann energy equations will follow. 
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4.2 The non scaling invariant case. Boltzmann energy equations on N are not scaling 
invariant because the kernels act on the integers. Nevertheless, we want to indicate that 
our approach still works. In view of what we said above, all we have to do is to find a 
discrete analogue for %^ and prove Lemma A and B. 

Consider the space 

with the hilbertian semi-norm 

I>(*+l)-<K*)|2<ooJ 

1/2 

N(4>)=(z\<t>(k+D-m\ 
Kk>0 

Again, Lemma A is true and proved in the same way. The problem is with Lemma B. 
We need some conditions on the kernel Q. Recall that when the energy is quantified, 
the kernel is on N x N x P̂(N x N) and the symmetry property reduces to Q(iJ ; 
{(I, i+j— 0}) = Q(j, i ; {0 +j — t, 0})' As before, we will suppose (and this is 
natural from a physical point of view) that energy is conserved, that is to say Q(i,j ; 
{(0, / +7), (1, / + 7 — 1), . . . , (/ +y,0)}) = 1. Additional conditions will be given in the 
statement of the lemma. 

In what follows we will simply write Q(i,j ; 1) for Q(i,j ; {(I, i+j — £)}) and for 
any function </> in %^ we put 

A<WJ)= Ei<l>(0-<l>(i) + <l>(i+J-0-<!>{J)}Q(iJ\0-

LEMMA B. Suppose that for all i, j and I we have that: 

a) z L o Q&J ; *) > £*=<> Q([ + w ; *)>a n d 

b) Q(Uj\0 = Q(Uj\i+j-l). 
Then, for any probability measure \i on N, the mapping 

£(M):<^£A(K-,7>(/) 

is a continuous linear operator on 9£. 

PROOF. L(JI) is clearly linear. We will show that N(L(p)<j>) < 6N((f))2 which means 
that L(fi) is both well-defined and continuous. We have the inequalities: 

N2(L(^) = £ |£QiW>(i+ 1) - L(^)<t>d)\2 

;>o 

= E | £ M ( / ) ( A < W + 1,7)-A(/>(U))|2 

/>07>o ' 

< Efe>0')|A<«i+ l,j) - \<KiJ))\f 

< EX>(/)|A<K'" + 1,7) - A<KiJ))|2 

i>0j>0 

;>0 
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We now prove that A^A</>(-,/)) < 6N((f))2. To this end, let us fix / and y for the moment 
and look at the difference: 

\A<Ki+l,j)-A<Ki,j)\ 

< ' E V ) G 0 " + i J ; 0 - E <Kt)QdJ ; 0 

+ 
'+/ 

E (/>(/+ i +y - «)G0' + i J ; 0 - E <Ki+J-t)QVJ ; 0 
£=0 £=0 

+ !</>(/+1)-(/>(/)!• 

For the first term of the right hand side we can write: 

X? <^)G0' + i J ; 0 - X>(«)G(U ; 0 
£=0 £=0 

= E ^ +1) - (/>(£)][E G(U ; *) - E GO' +i J ; *) 

Because of a), the term 

is positive for any £ = 0 , 1 , . . . , i+j. This implies that rf- — 72%0
 rfj(0 is precisely equal 

to the difference between the first moment of Q(i + 1, j , •) and that of Q(iJ, •)• Moreover, 
because of b), the kernel Q(iJ, •) is symmetric on {0 ,1 , . . . , i+j} and therefore, rf = 1/2. 
Thus, we can write: 

£ E <KOQd+ i J ; O - E <KOG(/J ; O 

EIE^^D-^O^O 
/>07=0 

l+J 

< E(^)2EW«+1) - ^(0]rg.(o/r; 
/>0 

< E(rfjf E l<w +1) - <KO\2rp)/rj 
i>0 1=0 

<^EEI^+O-0(O|2rg(O 
Z />0 £=0 

< ^ E I < ^ + D - < M O | 2 E ^ ( 0 

< 2 ^ ) • 
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Because of b), a similar argument gives 

$ 5 <Ki + l + j - OQd + i J ; 0 - E </>(/ +7 - 0 Q ( U ; 0 
1=0 1=0 

and finally we have: 

< 2^W) 

N(A<K',j)) = £ |A0(f + 1 J ) - A0(U)|2 

<3^N(<P)2+l-N(4)2+N(<t>y 

= 6N{(j)f. 

The proof is complete. • 

REMARK. Our approach works also for the discrete/?-# model [7, 11]. (The conclu
sion of Lemma B is still true since the the negative hypergeometric laws can be described 
by the Polya urn scheme.) 

REFERENCES 

1. M. F. Barnsley and G. Turchetti, A Study of Boltzmann Energy Equations, Ann. Phys. 159(1985), 1-61. 
2. R. O. Barrachina, Wild's Solution of the Nonlinear Boltzmann Equation, J. Statist. Phys. 52( 1988), 357-368. 
3. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968. 
4. T. BojdeckiandL. G. Gorostiza, Langevin equationsfor S' -valued gaussian processes andfluctuation limits 

of infinite particle systems, Probab. Th. Rel. Fields 73(1986), 227-244. 
5. D. A. Dawson, Critical dynamics and fluctuations for a mean field model of cooperative behaviour, J. 

Statist. Phys. 31(1983), 29-85. 
6. S. N. Ethier and T. G. Kurtz, Markov Processes. Characterization and convergence, Wiley, New York, 

1986. 
7. R. Ferland, Equations de Boltzmann scalaires : convergence de la solution, fluctuations et propagation du 

chaos trajectorielle, Thèse de doctorat, Université de Sherbrooke, 1990. 
8 , Fluctuations pour des équations de Boltzmann scalaires, Can. J. Math. 43(1991), 975-984. 
9. X. Fernique, Convergence en loi de fonctions aléatoires continues ou cadlag, propriétés de compacité des 

lois, Rapport CRM-1716, Centre de recherches mathématiques, Université de Montréal, 1990. 
10. F. J. Futcher, M. R. Hoare, E. M. Hendriks and M. H. Ernst, Soluble Boltzmann equations for internal state 

and Maxwell models, Phys. (A) 101(1980), 185-204. 
11. F. J. Futcher and M. R. Hoare, The p-q Model Boltzmann Equation, Phys. (A) 122( 1983), 516-546. 
12. J. Gartner, On the McKean-Vlasov limit for interacting diffusions, Math. Nachr. 137(1988), 197-248. 
13. R. A. Holley andD. V. Stroock, GeneralizedOrnstein-UhlenbeckProcesses and Infinite Particle Branching 

Brownian Motion, Publ. Res. Inst. Math. Sci. 14(1978), 741-788. 
14. M. H. Hoare, Quadratic Transport and Soluble Boltzmann Equation, Adv. Chem. Phys. 56(1984), 1-140. 
15. M. Kac, Foundations of kinetic theory, Proc. Third Berkeley Symp. Math. Statist. Prob. (ed. J. Neyman) 

3(1956), 171-197. 
16. G. Kallianpur and V. Perez- Abreu, Stochastic Evolution Equations Driven by Nuclear-Space-Valued Mar

tingales, Appl. Math. Optim. 17(1988), 237-272. 
17. H. P. McKean, An Exponential Formula for Solving Boltzmann's Equation for a Maxwellian Gas, J. Corn-

bin. Theory 2(1967), 358-382. 
18 , Fluctuations in the kinetic theory of gases, Comm. Pure Appl. Math. 28(1975), 435-455. 
19. K. Oelschlager, Limit theorems for age-structured populations, Ann. Probab. 18(1990), 290-318. 
20. K. R. Parthasarathy, Probability measures on metric spaces Academic Press, New York, 1969. 
21. T. Shiga and H. Tanaka, Central limit theorem for a system of Markov ian particles with meanfield interac

tions, Z. Wahrsch. verw. Gekiete 69(1985), 439-459. 

https://doi.org/10.4153/CJM-1992-071-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-071-1


FLUCTUATIONS FOR BOLTZMANN EQUATIONS 1205 

22. A.-S. Sznitman, Équations de type de Boltzmann, spatialement homogènes, Z. Wahrsch. verw. Gekiete 

66(1984), 559-592. 

23 ,Nonlinear reflecting diffusion process, and the propagation of chaos and fluctuations associated, 

J. Funct. Anal. 56(1984), 311-336. 

24 , A fluctuation result for nonlinear diffusions. In: Infinite dimensional analysis and stochastic pro

cesses, (S. Albeverio, éd.). Pitman Adv. Publ. Prog. (1985), 145-160. 

25 , Propagation du chaos, École d'été de probabilité de Saint-Hour, 1989. 
26. H. Tanaka, Propagation of chaos for certain purely discontinuous Markov processes with interaction, J. 

Fac. Sci. Univ. Tokyo Sect. IA Math. 17(1970), 253-272. 

27. K. Uchiyama, Fluctuations of Markovian systems in Kac's caricature of a Maxwellian gas, J. Math. Soc. 

Japan 35(1983), 477-499. 
28. , A fluctuation problem associated with the Boltzmann equation for a gas molecules with a cutoff 

potential, Japan J. Math. 9(1983), 27-53 . 

29. E. Wild, On Boltzmann's equation in the kinetic theory of gases, Proc. Camb. Phil. Soc. 47( 1951 ), 602-609. 

Université du Québec à Montréal 

Montréal, Québec 

Université Louis Pasteur 

Strasbourg 

France 

Université de Sherbrooke 

Sherbrooke, Québec 

https://doi.org/10.4153/CJM-1992-071-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1992-071-1

