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ON THE STRUCTURE OF FINITE T, + T; SPACES
SHAWPAWN KUMAR DAS

The object of this paper is to study some structural aspects of finite Ty + T,
and Ty + T spaces in order to establish certain recursion relations that can be
used to obtain the number of (labelled as well as unlabelled) T, 4+ T'; topologies
on a finite set. Here, as in [2], a topology 7 is a T4(T;) space provided
for any pair of disjoint closed sets 4 and B (separated sets A and B = 4 M clo-
sure B = B M closure A = ) there exist disjoint open sets O and O of I~
such that 4 € 04 and B C Oz. An almost immediate consequence of these
investigations is that the inherent simplicity of the connected Ty 4+ T5 topolo-
gies ensures that they are reconstructable.

This article assumes a complete familiarity with the material developed in
[1]. The spaces in this paper are always T, and are defined on a finite point
set N. Let 9 be a topology on IV and 4 a subset of N. Then 4*(.9), or more
simply A* when there is no risk of confusion, will denote the minimal open set
of 7 that contains 4. That is

A¥ (T ) =NI{04<C0ecT .

A consequence of the T, property is that a # 8 and « € 8*(.Z ) implies
B & a* (.7 ). A point a is a maximal point of I provided a ¢ p*(. 7 ) for all
B 5= a. For any set A, | 4| will denote the cardinality of 4. The single element
set {a},a € N, will be written simply as a. The union of « with a set 4 is written
o + A, and the relative difference of twosets 4 and Bas A — B.

Let J bea topology on N. Let C = [ay, . . ., ay,] be a sequence of m distinct
elements, m > 1, of N. Cis called a chain of  of length m provided:

(1) if ar* — a; = B* for some 8 € N, then there exists a v € N such that
v # oy and ¥* — vy = g%;

(2) if B* — B8 = a,,* for some B € N, then there exists a v € IV such that
v # Band v* — v = a,*,
and if m > 1 and 1 £ 72 < m, then

(3) ai+l* — Q1 = ai*;

(4) B* — B = a,;* for some B8 € N implies that 8 = ay1.

The length of the chain G will be denoted by L(C). The supporting open
set of G, written as *C (. ), or more simply as *C, when there is no risk of
confusion, is defined to be the open set a;* — «; of . The notation {C : i},
for 1 = ¢ = m, will be used to indicate the subset consisting of the first ¢ terms
of the sequence C, and {C : 0} = @. C will be used to denote both the sequence
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lag, . .., a,] and the unordered set {ay, . . ., a,}. The meaning of C will always
be clear from the context in which it will be used.

[t is shown in [1] that the collection of chains of a topology partitions N.
Moreover, under a homeomorphism between two topologies, the elements of
a chain are always mapped, in the prescribed order, onto the elements of a
chain of equal length.

An equivalence relation = (.7 ) may be defined on the set of chains of a
topology 7~ by requiring that if G, D are chains of 7, then C = (9 )D if and
only if *C = *D. A collection € of » distinct chains of a topology.7 is a r chain
cell, or more simply a cell, of 7 if and only if ¥ is an equivalence class of the
equivalence relation = (9 ). The supporting open set of €, denoted by
*% (J ), or more simply by *& when there is no risk of confusion, is the
(uniquely defined) supporting open set of any chainof €. 1f € = {C,, . ..,C,}
is a cell, then % will denote both the collection of its constituent chains as well
as the subset C; \U . .. U G,. The meaning of % will be clear from the context
in which it will be used. Like chains, the cells of a topology also behave like
complete units under homeomorphisms.

1.

Lemwma 1. Suppose that O 1s an open set of a topology J on N. Let {Cy, . .., C,,
., C,} be the collection of chains of I~ that have non-void intersections with O.

IfFIC.NO| 2t £ L(Cy) fore =1, ..., p then the sel
V4
Ul {Cl :ti}
is an open set of I .
Proof. The case ¢t; = |[CG;,N O] for i =1, ..., p is Lemma 7-(2) of [1].
Assume therefore that |G; M O] < ¢, for at Ieast onet,sothatO0 C U {G;: t.}.
If « ¢ U{C;: ¢t} then a € G; for some C; € {Cy, ..., C,}. Nowva =

*C,;, U {C; : k} for some & = t;. Since O M Cj # (3, therefore

*C]’COC U{Ci:ti}
and since {G; : &k} & {G;: {;}, therefore o* C U {C;: ¢} and so U {C,: t;}
is open.

LeEMMA 2. Let € be a cell of a topology T on N, such that *€ # . If A, and
A are two subsets of N such that A; N € = @ and As N\ C # 0, then there do
not exist disjoint open sets O1, Oz of I such that A1 C 01 and Ay C O,.

Proof. The result follows immediately from Lemma 9-3(c) of [1].

LEMMA 3. Let G be a chain of a topology.d on N. If A1 and A, are two open
(closed) sets of I such that Ay M C 5= @ and Ay M C = 0, then A1 M A, # 0.

Proof. Let G = [a1, ..., an). If A1 and A, are open, then a,* C 4; M 4,.
If 4; and 4, are closed, then A; = N — O; and 4, = N — O, for some Oy,
0y € 9. The assumption 4;MN C # @ # A, M C implies that there exist 7,
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j < msuch that a; ¢ O; and a; ¢ O,. Since 0, and O, are open, this in turn
implies that a, ¢ (01U 02) so thata, € (4; N 4,).

LeEMMA 4. For any topology T on N, there exists a cell ¥, called the first cell
of T, with the property that * % = 0. This first cell is uniquely defined in the
sense that if € is a cell of I and *€ = 0, then € = F .

Proof. The result is Lemma 10 of [1].

It is now necessary to introduce a partial order on the collection of cells of
a topology. If € and & are two cells of a multi-cell topology .7 on N, let
% < Z indicate that € # 2 and there exists ana € & such thata* N € # 0.
Then it is easily shown that ¥ <« & and & < % cannot be simultaneously
true. Also, if 7 is a multi-cell topology and (1) if & is the firstcell of 7, then
F < € forany cell € # %, and (2) if ¥, D, & aredistinctcellsof 7, then
€ <12 and 9 < & implies ¥ <1 & so that < definesa partial ordering on the
collection of cells of 7.

LEMMA 5. Let T be a multi-cell topology. Then there exists at least one cell
D of I~ such that the relation D | € does not hold for nay cell € .

Comment. Such a cell will be termed a maximal cell of 7. If I is a single cell
topology, then this cell is both the maximal and the first cell of 7.

Proof. Let %1 bean arbitrary cell and suppose % 1 is not maximal. A sequence
€1 <...<%; <% is1... may bebuilt up by searching for a cell € ;,1, such
that € ; < € 141, if € is not maximal. Clearly, since all the cells of this se-
quence are distinct and any two cells are disjoint subsets of N, therefore any
such sequence of cells must terminate at a term % ; such that % ; is a maximal
cell. For otherwise, the finiteness of NN is contradicted.

In general, a topology may have more than one maximal cell. However, if
a multi-cell topology satisfies the T4 or the T; separation property and is con-
nected, then it has precisely one maximal cell. In other words, if & is a maxi-
mal cell of a connected T, or a T topology and the cell ¥ # &, then ¥ <1 2.
This is demonstrated by the following sequence of Lemmas.

LEMMA 6. Let# be a maximal cell of a topology.J on N.

(1) The set S; = U {C|C N\ * M = 0} is a closed set of T . If T is a multi-
cell topology, then the set S; = \U {C|C € A and C N * M = 0} is also a closed
set of 7.

(2) M is a closed set of T . If T is a multi-cell topology then the set Ss, defined in
(1) above, and M are disjoint closed sets.

(3) If I s a multi-cell topology and if M is a multi-chain cell, then I~ does not
satisfy the T4 axiom.

Proof. Let {Cy, ..., Ciy ..., Gy} be the collection of chains of J having
non-void intersections with *_#.

(1) Let 0, = U%-,C,. By Lemma 1, O, is an open set of 7. Clearly S; =
N — 0, and so S, is a closed set of 7. Now let O, = O, \U.#. Obviously,
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*M C Oysothat Oy = 0, \J (* M \JM ) and since * #\J .M € T, therefore
0, €9 andso Sy = N — O, is closed.
(2) If 7 has only one cell, then.# = N. If .9 is a multi-cell topology, let
s = U {€|¥ %= M}. Since A is maximal, therefore if & #.# then
*% MM = which implies that *¢ C O; and so O; € 9. Therefore M4 =
N — Oj is closed. Since # C O, therefore.# and S, are disjoint.

(3) Now suppose that.7 is a multi-cell topology and that M; and M, are
two chains of A#. Let P; = O3 \J (M4 — M;), 7 =1, 2. Since A N\ *_ 4 = @,
therefore * .4 C O;. If o € (M — M;), then « € M where M is some chain
of A different from M,. Therefore a* CT*M UM =*_#'\UM C P,. There-
fore P, and P, are open. Since M; = N — P; and M, = N — P,, and since
distinct chains are disjoint, therefore M; and M, are disjoint closed subsets.
Since.7 is a multi-cell topology and.# is maximal, therefore.# cannot be the
first cell of . Hence *.# # 0. If Qy, Q» € and M, C Q, and M, C Q,,
then ¥4 C Q, M Q. so that M; and M. cannot be separated by disjoint
open sets of 7.

LeEMMA 7. Let I be a multi-cell T4 topology on N and M a maximal cell of T .

(1) If a chain of I intersects * M, then that chain is a subset of * M .

(2) If € is a multi-chain cell, other than the first cell, and if some chain of €
intersects * M, then every chain of € is a subset of * M, that 1s € C * M.

(3) If € = M is a cell such that *E N * M # 0, then every chain of € is a
subset of * M, that is € C * M.

Proof. Let {Cy, ..., G4 ..., C,} be the collection of chains of  having
non-void intersections with *_#.

(1) Let |CG,N* 4| = t; £ L(C;). Suppose that the chain C; = [ay,...,0,]
is not a subset of *.#, thatis 1 < ¢; < q. Since

p
A = U (Ciitd,

therefore a, ¢ *.#. Further, since *.# N.# = @ and C; N *.4 # @, there-
fore C, is not a chain of # and so a, ¢ .#. Thereforea, ¢ O =* M J M ¢ T,
and so «, € N — 0. Now let O, and O, be two open sets of J such that
N —-0CO0; and A4 C O,. Then *.# C O, which implies a; € Os, and
C; C a* C 0 so that a; € 01 M O, Thus the disjoint closed sets N — O
and .# cannot be separated by disjoint open sets and this contradicts the
hypothesis that .7 is T..

(2) Suppose that C is a chain of & and C N *.# # @. Because of result (1)
above, it will be sufficient to show that if D is a chain of &, then*. £/ N\D = @
implies that.Z is not T,. Let S be the union of all chains of 7~ that neither
belong to the cell 4 nor intersect *.#. Then the assumption *.Z N\ D = @
implies D C S. Suppose that S C O; and # C O,, for some 0;, Oy € I .
Then since *.# N C # @, therefore *D = *C = *% C 0, N O,. Since ¥ is
not the first cell, therefore *% s @. Consequently S and.#, which are disjoint
closed sets by Lemma 6-(2), cannot be separated by disjoint open sets of J .
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(3) By results (1) and (2) above, it follows that either G\ *.4# = or
C C *_# for every chain G € %. Suppose that C N\ *.# = @ for every chain
C € ¥. Then ¥ C S, where S is the closed set defined in (2) above. Now
suppose that the disjoint closed sets S and .# are contained in the open sets
0; and Os respectively. Then *& N *.# C 0, N O, and, since, by hypothesis,
*G N * M # @ therefore. 7 is not T,

COROLLARY. *# = U {C|C N * A = 0}.

LeMMA 8. Let I be a multi-cell T4 topology on N and let M be a maximal cell
of 7. Then a necessary condition forJ to be connected 1s that G C * M for every

chain C ¢ M.

Proof. Assume the contrary and let {Cy, ..., G, ..., G,} be the non-void
collection of chains of 4~ that do not belong to.# and are not subsets of *.#.
By Lemma 7-(1), C;N\*. 4 = 0. Let G = C; U ... U G,. Clearly G and the
open set *. 4 = U {D|D N *.# 5 @} are disjoint sets. [t will now be demon-
strated that G is open. For this purpose it is sufficient to show that *G; C G
foralli,1 <7 £ p.Let C; € € # M. Since G; N\ * M = @, therefore Lemma
7-(3) implies that *& N *_# = §. Since_# is maximal, therefore *¢ N.# =
@. It is obvious that the pairwise disjoint sets G,.# and *_# form a partition
of N. Therefore *C,; = *% € Gandso G €.7 . Thus G and (A \J *_#) is an
open partition of N and s0.7 is disconnected.

An immediate consequence of Lemmas 6-(3) and 8 is:

LeMMA 9. If.S is a connected multi-cell T4 topology on N, then
(1) there exists one, and only one, maximal cell of I~

(2) this uniquely defined cell# is a single chain cell, and
B)* M =N—M.

The demonstrations used in Lemmas 6, 7 and 8 indicate these results to be
somewhat ‘‘negative’ in the sense that they investigate conditions under
which the T, property is not violated. Let a trivially T, space be one in which
AN B =0 and both A4, B closed imply that one of 4, B is the void set.
Trivially T, spaces are clearly connected and T4 Conversely, if a connected
multi-cell space does not violate T, then it is trivially T,. This isanimmediate
consequence of Lemma 9 and the next result.

LemMma 10. If.S is a Ty topology possessing a single maximal point, then I is
connected and is trivially T ..

Proof. If « is the only maximal point of .7, then o* = N..7 is therefore
connected. Also, any non-void closed set contains a. Thus T is trivially satis-
fied as it is impossible to obtain a pair of disjoint closed subsets both of which
are non-void.

However, there exist ‘“‘non-trivial”’ connected T, + T; spaces in the sense
that they contain pairs of non-void separated sets.
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LeEMMA 11. (1) Let I be a single cell topology on the n point set N.

(a) If this cell is a single chain cell, then T is connected and is trivially T,.
(b) If this cell is a multi-chain cell, then I 1s disconnected T .

(2) Every single cell topology has the Ts property.

Proof. (1a) In this case.7 is of the form
j-={ﬂ,{al},...,{al,...,ai},...,N}

so thata, * = N. .7 isclearly connected.

(1b) In this case let € = {Cy, ..., C,, ..., C,} be the only cell of 7.
Then *% = *C, = 0 and so the union of an arbitrary collection of chains is an
open set. The required result follows from the observation that if 4 and B are
disjoint closed sets, then by Lemma 3,4 € U {Cy|i € I} and BC U {C,|j € J}
where I and J are disjoint subsets of {1, ..., p}.

(2) This result follows immediately from (1) and the fact [2, p. 92] that
the T; property is hereditary and moreover, a space is T if and only if it is
hereditarily T.,.

LeEMMA 12. Let. 7 be a connected multi-cell T, topology on N and let M be the
uniquely defined single chain and maximal cell of I . Then the subspace U in-
duced on the open set N' = N — M by T 1is either non-T, or disconnected T,.

Proof. Let # = {M}. By the maximality of .#, it follows that if « € N’
then o*(J ) N\ M = 0, so that N’ €. and o*(J ) = o* (). Therefore,
apart from.# and M, the collection of chains and cells of ~ and % are identi-
cal. Now suppose that % is a connected T, space. Then by Lemmas 9 and
11-(1), there exists a chain S such that*S = N’ — S. LetS = [ay,...,q,] and
M= [By...,B)] Thena,* =*SUS = N and so 3,* — 81 =*M = N' =
a,*. Condition (2) in the definition of a chain now asserts that there exists a
v # B, such that v* — v = *M. At the same time, the fact that.# is a single
chain cell implies that there does not exist any vy with these properties. This is a
contradiction, and so % is either disconnected T4 or non-T.

Let [ay, . . ., a,) be a sequence of m, m < n, distinct elements of V and let
Y be a topology on P = N — {ay, ..., an}. Then % + [ay, ..., o) will
denote that topology 4 on N defined by the statement: O is an open set of
7 if and only if either O € Z or O = P \U {ay, ..., a;} for 1 £4 < m. The
results of the previous Lemmas are now strengthened and summarised into
Theorem 1. No further proofs are needed except the observation that in
Theorem 1-(2) use is made of the hereditary T, property.

THEOREM 1. (1) A multi-cell topology T on N is a connected T4 space if and

only if there exists a sequence [ay, . . ., o], m < n, of m distinct elements of N,
and a topology U on N — {1, ..., an} such that U is either non-T4 or dis-
connected Ty and T = U + [ay, ... ,an]. A connected Ty space is always trivially
T,
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(2) If a Ts space has more than one cell, then the first cell (that is, the cell having
@ as the supporting open set) is a multiple chain cell. All other cells are single
chain cells. Further, a multi-cell topology I~ on N is a connected Ts space if and
only if there exists a sequence [ai, . . ., an), m < n, and a disconnected T; space
U on N — {ay, ..., an such thatd = U + (e, . . ., on).

(3) Let 71 and I, be topologies on N such that I 1 = U, + [ay, ..., o) and
T o=+ By, ...,B,) where U, and U, are either non-T 4 or disconnected T,
spaces on N — {ai, ..., 0} and N — {B1, . .., B, respectively. Then

@I =T sifand only if p = q,a; = Bifort < pand Uy = Uo.

(b) Ty and T, are homeomorphic if and only if p = q and U, and U, are
homeomorphic.

Theorem 1-(3) states that the space % and the sequence [ay, ..., ay,] in
Theorem 1-(1) and (2) are uniquely determined. In fact [y, . . . , a,] appears
as a chain of J with N — {ay, ..., a,} as its supporting open set. This chain
will be referred to as the covering chain of the connected T4 space S and %
as the base topology of I

Let 76;4(n) = number of distinct connected Ty + T4 spaces, 15.5(n) =
number of distinct connected Ty + T5 spaces, Hor4(n) = number of homeo-
morphism classes of connected Ty + T, spaces and Hg,5(z) = number of
homeomorphism classes of connected Ty + T; spaces. The corresponding
quantities for the disconnected case are denoted by T4,4(n), T4ss(n), Hors(n)
and Hi,;(n). To(rn) and Hy(n) will represent, respectively, the number of
distinct Ty spaces and the number of homeomorphism classes of T, spaces.
The argument # in all these quantities denotes the cardinality of the set on
which the topologies are defined.

THEOREM 2.

(1)
(@) Tora(1) = T545(1) = Hoya(1) = Hiys(1) = 1.
(b) T(c)+4(2) = 7'5+5(2) = 2.
(c) Hiya(2) = Hiys(2) = 1.

2)
(@) Tora(l) = To4s(1) = Hoya(1) = Hogs(1) = 0.
(b) T644(2) = 1545(2) = Hoa(2) = Hoys(2) = 1.

For (3) to (10), assume n= 3.

n—2

B) Toia(n) = n! + mz=l m! (::L ) {Ton —m) — T5a(n — m)}.
4) To,5(n) = n! + :i:l {Tg+5(n — m) (ZL) m!}.

(5) Hivaln) = 1+ X (Ho(w — m) — Hafaln — m)}.

n
ms
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6) Hissln) = 1+ X Heln — m).
() Topa(n + 1) = (n + D)To(n).
(8) Hipa(n + 1) = Ho(n).

u

O Thnn) = T Gy —oriyoret L Toum ) m = 4,5.
10) Hipnr) = 5 T (FomdFrem 1) oy

where in (9) and (10), the 3 extends over all possible partitions > ieyrm; of n
with < ny...<mnyandr; = 1.

Proof. (3) is an immediate consequence of Theorem 1-(1) and -(3) and the
fact that it is possible to select exactly (Z m! distinct m-term sequences from

a set of # elements. Similarly (4) follows from Theorem 1-(2). The n! term in
(3) and (4) is present to take into account the #! distinct single chain (and
therefore single cell) # point topologies that are all, by Lemma 10, both T,
and T;. The fact that these single chain spaces are all homeomorphic explains
the ‘1’ term in (5) and (6). Let ¢ (k) = Ty(k) — Tor4(k). Then from (3) it
follows that:

Topa(n +1) = (n + 1) [TO(W) — To4a(n)
I Py

— (4 1) | 2n) = T+ ot + 5 v (;’)J'}]

from which (7) is obvious. Similarly (8) is a consequence of (5). The rest of
Theorem 2 is elementary.

Using these recursion relations it is easily verified that T'o14(4) = To.4(4) +

0,4(4) = 76 + 61 = 137, and To15(4) = T15(4) + To,5(4) = 64 + 61 =
125, so that 12 distinct, non-T; and Ty 4 T, topologies can be defined on a
four point set. They are all connected and trivially T4. There do not exist
spaces that are Ty 4 T4 but not Ty 4 T5 on sets with fewer than four points.
It should be observed that the expressions (3) and (7) for 7¢,4 are not ““pure”
recursion relations, in the sense that they involve 7 (n). However, the expres-
sions for T spaces do not suffer from any such difficulties. The reason for this
is the fact that the T; property is hereditary.

2. For any topology.Z~ on an # point set N, let 7, denote the (n — 1) point
subspace induced by on the point set N — ». Then the reconstruction con-
jecture for finite topologies can be stated precisely as follows:
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Reconstruction conjecture: Let I be a topology on N. Suppose that each
T . v € N, is known fo within homeomorphism. ThenZ is itself determined to
within homeomorphism by the collection of the subspaces .7 ,.

The reconstruction conjecture breaks down for certain three point topologies.
For example, let
& =10, {a}, {b}, {a, b}, {a, ], c}}
and
I =19, {a}, {a, b}, {a, ¢}, {a, b, c}}.

Then . and .7 are not homeomorphic. However, both possess the same col-
lection of two point subspaces: {0, {x}, {y}, {x, ¥}}, {0, {x}, {x, ¥}} and
{0, {x}, {x, ¥}}. In the rest of this paper, all topologies will therefore be con-
sidered to have been defined on sets with at least four points.

THEOREM 3. Let. I be a topology on N. Suppose that each subspace Ty, v € N,
is known to within homeomorphism. Then these subspaces determine whether or
not I~ 1s simultaneously connected, Ty and Ts. In the event that it is connected
To + Ts,.7 is itself determined to within homeomorphism by the T ,.

Proof. An Algorithm to reconstruct .7 is outlined below. Lemmas 13 to 16,
which follow later on, ensure a correct output. The word ‘‘collection’ stands
for ‘‘collection of subspaces .7 ,’, v € N. The collection is said to satisfy
condition

(+1) if each of at least » — 1 of the subspaces.7 , have only one maximal
point;

(42) if each of the n subspaces.7 , are single chain spaces;

(4+3) if only one of the subspaces.7 , is disconnected.

Start 1. Test whether each. 9 ,, v € N, is Ty. If not, then go to 9. If yes,
then.Z is To. Now go to 2.

2. Test whether the collection satisfies (+41). If not, then go to 9. If yes,
then.7 is connected and Ts. Now go to 3.

3. Test whether each7 ,,v € N, is T4. If not, then go to 9. If yes, then.7 is
connected Ty + T5. Now go to 4.

4. Test whether the collection satisfies (42). If yes, then go to 8. If not,
then go to 5.

5. Test whether the collection satisfies (+3). If yes, then go to 7. If not,
then go to 6.

ENDp 6. Choose a7 , such that the length & of its covering chain is not greater
than the length of the covering chain of any other.? ,, w # v. Let m =k + 1.
Now arbitrarily label, from the collection N — {ay, ..., a,}, the points of
the base topology of .7, and call this labelled space %. Then .7 is homeomor-
phicto % + [e1, -« ., o).

Enp 7. Arbitrarily label the points of the only disconnected # — 1 point
subspace from the collection {as, ..., a,} and call this labelled space %.
Then .7 is homeomorphic to Z + [a4].
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Exp 8. is homeomorphic to {@, {ai}, ..., {ey, ..., a4, ..., N}.
END 9.7 is not simultaneously connected, Ty and Ts.

The supporting Lemmas now follow.

LemMA 13. 4 Ty topology T~ on N has only one maximal point if and only if
condition (+1) is satisfied.

Proof. 1f o is the only maximal point of 7, then «*( ) = N and so
a*(J,) = N — v for all v # a. Hence « is the only maximal point for each
T 5, v # a. The condition is therefore necessary. Now suppose that 7 has two
maximal points. Since # = 4, therefore there exist at least two non-maximal
points v, 8. Then both ., and .7 ; have two maximal points. Another possibility
is that . has more than 2 maximal points. If «, 8 are maximal, then both 7,
and s have more than one maximal point. This establishes the sufficiency.

LemMA 14. A Ty topology I on N is a single chain space if and only if condi-
tion (+2) is satisfied.

The proof is elementary and is omitted.

LemMA 15. Let I be a connected Ty + Ts topology. Then the covering chain of
T has length = 1 if and only if condition (+3) is satisfied.

Proof. 1f 7 = U + [a], then I, = % which is disconnected by Theorem 1.
If 8 # «, then a*(93) = N — 8 and so 9 g is connected. The condition is
therefore necessary. Now suppose that =% + [a, . .., an] Where m = 2.
Then each 7, is connected. This is because a,, is the only maximal point of
I, if v # a,, and S, has a,_; as the only maximal point. The condition is
therefore sufficient.

Comment. The proof clearly demonstrates that there can exist at most one
disconnected # — 1 point subspace of a # point connected Ty + T'; topology.

LEMMA 16. Let. I be a connected Ty + T topology, other than a single chain
space. Suppose that the covering chain of I has length m, m = 2. Then

(1) There exists a subspace I , whose covering chain has length m — 1.

(2) The length of the covering chain of any subspace.J , is at least m — 1.

(3) If the subspace I, has a covering chain with length m — 1, then the base
topologies of I and I, are identical.

Proof. Let T = U + [er, ..., an). % has at least two maximal points.
Therefore if v € {ay, ..., a,}, thenS, has a covering chain of length m — 1
and the base topologies of 9 and .7, are identical (to %). If v € N’ =
N — {a1, ..., an}, thenay*(J,) = N’ — vso that [a, . .., a,] is either the
covering chain or a part of the covering chain of J ,. Therefore in this case the
length of the covering chain of J, is at least m. This proves (1) and (2).
(3) follows as it is now clear that.J , has a covering chain of length m — 1
if and only if v € {ay, ..., an}.
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Comment. £ T = {0, {a1{, {as}, {o1, as}} + [es, ..., @n), then it is clear
that .7 4, and 7 4, are both single chains of length # — 1. Therefore, in instruc-
tion (6) of the reconstruction Algorithm, if a.9, consists only of a single chain
then this chain should be considered as the covering chain of .7,

Further discussion on the reconstruction problem for finite topologies will
appear elsewhere.
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