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On representations of spinor genera

Wai Kiu Chan and Fei Xu

Abstract

We determine exactly when a quadratic form is represented by a spinor genus of another
quadratic form of three or four variables. We apply this to extend the embedding theorem
for quaternion and also answer a question by Borovoi.

1. Introduction

It is a basic question to decide when a quadratic form is represented by the spinor genus of another
quadratic form. Some effort has been made in [EH82] and [HSX98]. In this paper, we make some
progress on this subject. As an application, we show that the result in [EH82] is a special case of
our investigation. There are two other motivations for this paper. First of all, we explain that the
embedding theorem for quaternion algebras proved in [CF99] is a consequence of the representation
theory of ternary quadratic forms and hence, in principle, the main results in [CF99] can be extended
to arbitrary orders. To illustrate our point, we generalize Theorem 3.3 in [CF99] to Eichler orders.
The second motivation is to explain how the results in [Xu01] are related to those in [BR95], and
answer a question raised in [Bor01] concerning the representation mass of an integer by indefinite
ternary quadratic forms over Z.

The notation and terminology are standard if not explained, or adopted from [Xu01], [Ome73]
and [HSX98]. Let V be a quadratic space over a number field F with a non-degenerate symmetric
bilinear form B(x, y). The quadratic map on V is denoted by Q and its special orthogonal group
by SO(V ). Let oF be the ring of integers of F . For any prime p of F , Vp (respectively Fp, etc.)
denotes the local completion of V (respectively F , etc.). If p is a finite prime, the group of units of
oFp is denoted by up, and πp is a uniformizer of Fp. For any two elements a, b ∈ F×

p , (a, b)p is the
Hilbert symbol. Let SOA(V ) be the adèlic group of SO(V ), θA =

∏
p∈Ω θp be the adèlic spinor norm

map of SOA(V ), and IF (respectively AF ) be the group of idèles (respectively adèles) of F . For an
oF -lattice L on V , gen(L) (respectively spn(L) and cls(L)) is defined as the orbit of L under the
natural action of SOA(V ) (respectively SO(V ) ker θA and SO(V )), and SOA(L) is the stabilizer of
L under the action of SOA(V ). We also use n(L), s(L) and v(L) to denote scale, norm and volume
of L, respectively. Throughout this paper, all scales of lattices are integral. For two oF -modules
L1 ⊆ L2 of the same rank, [L2 : L1] is the module index ideal.

For any two lattices K and L in V, define

XA(L/K) = {σA ∈ SOA(V ) : K ⊆ σAL}
and

X(Lp/Kp) = {σ ∈ SO(Vp) : Kp ⊆ σLp}.
It is clear that XA(L/K) (respectively X(Lp/Kp)) is non-empty if and only if K (respectively Kp)
is represented by gen(L) (respectively Lp).
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2. Representation by spinor genera I, codimension less than or equal to one

Suppose K is represented by gen(L). Then there exists

σA ∈ SOA(V ) such that K ⊆ σAL.

By the reduction formulae for computing the relative spinor norms in [HSX98] and [Xu99],
θA(X(σAL/K)) depends only on the Jordan splittings of Kp and Lp for all p < ∞ and is inde-
pendent of the choice of σA.

Definition 2.1. θA(gen(L) : K) is defined as θA(X(σAL/K)).

By [HSX98] or [Xu99], K is represented by spn(L) if and only if

θA(σA) ∈ F×θA(gen(L) : K). (2.2)

We extended some results in [HSX98] to the representation setting for low-dimensional cases.

Proposition 2.3. Suppose Kp and Lp are unimodular and [Kp : Kp∩Lp] = pr for some non-dyadic
prime p. Furthermore:

1) rank(L) = rank(K); or

2) rank(K) + 1 = rank(L) � 4.

Then πp ∈ θp(X(Lp/Kp)) if and only if r is odd.

Proof. 1) The argument is already in [HSX98].
2) We separate the discussion according to the rank of L. We present the proofs for the quaternary

and ternary cases in below, and leave that for the binary case to the readers.
2i) rank(Lp) = 3 and rank(Kp) = 2. Write B(K,L)oFp = p−s. Then s � 0. When s = 0, Kp

splits Lp and the proposition is obvious. Therefore, we assume that s > 0.
Let K = oFpx ⊥ oFpy and B(x,L)oFp = p−s. Write

Lp = (oFpe + oFpf) ⊥ oFpg, Q(e) = Q(f) = 0, B(e, f) = 1 and Q(g) ∈ up.

Let a, b, and c be in Fp so that x = ae+bf+cg. Then min{ord(a), ord(b), ord(c)} = −s. If ord(c) < 0,
then ord(a) + ord(b) = 2 ord(c). This implies that

min{ord(a), ord(b)} = min{ord(a), ord(b), ord(c)} = −s.

Without loss of generality, we can assume that ord(a) = −s. Then x = π−s
p (αe + βf + γg), where

α ∈ up and β and γ are in oFp . Therefore, oFpπ
s
px + oFpf splits Lp and

Lp = (oFpπ
s
px + oFpf) ⊥ oFph for some h ∈ Lp.

If y = ξx + ηf + δh, then ξQ(x) + ηαπ−s = 0 and y = ξ(x − α−1πsQ(x)f) + δh. Since

απ−s
p ξ = ξB(x, f) = B(y, f) ∈ p−s and δ2Q(h) − ξ2Q(x) = Q(y) ∈ up,

both ξ and δ are in oFp , and at least one of ξ and δ is a unit. As a result,

Lp ∩ Kp = psx + oFp(y − ξx),

and hence r = s.
Define σ ∈ SO(Vp) by

σ : πr
p(x − 1

2α−1Q(x)πr
pf) → x − 1

2α−1Q(x)πr
pf, f → πr

pf, h → h.

It is clear that

σ(Lp) = (oFpπ
r
pf + oFp(x − 1

2α−1Q(x)πr
pf)) ⊥ oFph

= (oFpx + prf) ⊥ oFph ⊃ Kp.
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and X(Lp/Kp) = σSO(Lp). Since θp(σ) ∈ πr
pup(F

×
p )2, we conclude that πp ∈ θp(X(Lp/Kp)) if and

only if r is odd.
2ii) rank(Lp) = 4 and rank(Kp) = 3. Without loss of generality, we can assume that Kp =

(oFpx + oFpy) ⊥ oFpz, where Q(x) = Q(y) = 0, B(x, y) = 1 and B(Kp, Lp)oFp = B(x,Lp)oFp = p−s

with s > 0. It is clear that Q(z) ∈ up. The isotropic vector psx is primitive in Lp. Therefore, there
are f, u, v ∈ Lp such that

Lp = (psx + oFpf) ⊥ (oFpu + oFpv) with Q(f) = 0 and B(x, f) = π−s
p .

If y = ax + bf + cu + dv, then

aπ−s
p = aB(x, f) = B(y, f) ∈ p−s and 1 = B(x, y) = bB(x, f) = bπ−s

p .

These imply that a ∈ oFp and b = πs
p. Similarly, we have z = αx + βu + γv with α ∈ oFp .

When Fpu + Fpv is anisotropic, then

oFpu + oFpv = {x ∈ Fpu + Fpv : Q(x) ∈ oFp}.
Since

Q(cu + dv) = −Q(ax + πs
pf) ∈ oFp and Q(βu + γv) = Q(z) ∈ up,

therefore c, d, β, and γ are all in oFp and

Kp ∩ Lp = (psx + oFp(π
s
pf + cu + dv)) ⊥ oFpz.

It is clear that [Kp : Kp ∩ Lp] = ps. Define σ ∈ SO(Vp) by σ : x → π−s
p x, f → πs

pf, u → u, v → v.
Then σ ∈ X(Lp/Kp) = σSO(Lp) and we are done since θp(σ) ∈ πs

pup(F
×
p )2.

When oFpu + oFpv is a hyperbolic plane, we can assume that Q(u) = Q(v) = 0 and B(u, v) = 1.
Then

cd = −a ∈ oFp , βγ = 2−1Q(z) ∈ up, βd + γc = −α ∈ oFp .

Without loss of generality, we assume that ord(β) � 0, and hence ord(γ) � 0 and ord(d) � 0.
If ord(c) � ord(β), there is ξ ∈ oFp such that ξc + β = 0. Then

Kp = oFpx + oFp(π
s
pf + cu + dv) + oFp(π

s
pξf + (dξ + γ)v)

and

Kp ∩ Lp = psx + p−ord(c)(πs
pf + cu + dv) + oFp(ξπ

s
pf + (ξd + γ)v).

Therefore, [Kp : Kp ∩ Lp] = ps−ord(c). Let σ ∈ SO(Vp) be defined by

σ : x → π−s
p x, f → πs

pf, u → π
ord(c)
p u, v → π

−ord(c)
p v.

Since

dξ + γ = 2dξ + (γ − dξ) = −2aξc−1 − αc−1 ∈ p−ord(c),

we see that Kp ⊂ Lp and X(Lp/Kp) = σSO(Lp). The lemma now follows because θ(σ) ∈ π
s−ord(c)
p up

(F×
p )2.
If ord(β) < ord(c), there is η ∈ oFp such that c + ηβ = 0. Then

Kp = oFpx + oFp(π
s
pf + (d + ηγ)v) + oFp(βu + γv)

and

Kp ∩ Lp = psx + oFp(π
s
pf + (d + γη)v) + p−ord(β)(βu + γv).

Therefore, [Kp : Kp ∩ Lp] = ps−ord(β). Define

σ : x → π−s
p x, f → πs

pf, u → π
ord(β)
p u, v → π

−ord(β)
p .
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Then

σ ∈ X(Lp/Kp) = σSO(Lp) and θp(σ) ∈ π
s−ord(β)
p up(F×

p )2. �

Remark 2.4. Suppose that Kp and Lp are unimodular over some non-dyadic prime p. If rank(Kp) �
rank(Lp) � 3, then

B(Kp, Lp)oFp = p−s if and only if [Kp : Kp ∩ Lp] = ps.

This statement is proved in the above proposition for the case in which rank(Lp) = 3 and
rank(Kp) = 2. The remaining cases can be easily verified. It is clear that such a statement is not
true when rank(Lp) > 3.

We would expect that Proposition 2.3 is true for all codimension one cases. A possible approach
is to have a result like [Ome73, Theorem 91:2] for the codimension one situation. However, such a
result is not true in general. We explain this point by the following example.

Example 2.5. Let p be a non-dyadic prime and L be the oFp-lattice

(oFpe1 + oFpf1) ⊥ (oFpe2 + oFpf2),

where Q(e1) = Q(e2) = Q(f1) = Q(f2) = 0 and B(e1, f1) = B(e2, f2) = 1. Let

Kp = (oFpπ
re1 + oFpπ

−r(f1 + π−2e1 + π−1(e2 − f2))) ⊥ oFp(e2 + f2),

where r is a positive integer. We claim that there is no regular two-dimensional subspace U such
that Lp = (Lp ∩ U) ⊥ (Lp ∩ U⊥) and Kp = (Kp ∩ U) ⊥ (Kp ∩ U⊥). Assume the contrary that such
a binary space U exists. Then U is either anisotropic or isotropic.

If U is anisotropic, so is U⊥. The maximal oFp-lattices on U and U⊥ are unique. So Lp ∩ U =
Kp ∩ U and Lp ∩ U⊥ ⊃ Kp ∩ U⊥. Then Kp ⊂ Lp, which is a contradiction.

If U is isotropic, there are x and y in U with Q(x) = Q(y) = 0 and B(x, y) = 1 such that
Lp ∩ U = p−sx + psy and Kp ∩ U = oFpx + oFpy, where s is an integer with s � 0. Since

Kp ∩ Lp = (oFpπ
r
pe1 + oFp(π

2
pf1 + e1 + πp(e2 − f2))) ⊥ oFp(e2 + f2),

we have s = r + 2.
Let v = π−r−2

p x ∈ Lp. Then πr+2
p v = x is a primitive vector in Kp ∩ Lp. Write

πr+2
p v = aπr

pe1 + b(π2
pf1 + e1 + πp(e2 − f2)) + c(e2 + f2)

where a, b and c are in oFp , and at least one of them is a unit. We only need to consider the case
in which a is a unit. By comparing the coefficients of e1, e2 and f2, we conclude

ord(b) = r, ord(c) = r + 1, ord(πb + c) � r + 2 and ord(πb − c) � r + 2.

This is impossible because p is non-dyadic.
It is also clear that Lp ∩ (FpKp) is not unimodular by the above argument.

Now we come to the global situation. Let S0 be the set of prime divisors of 2v(K)v(L). By the
weak approximation property for SO(V ), there is M ∈ cls(L) such that

Kp ⊆ Mp for all p ∈ S0. (2.6)

Let rp be an integer such that [Kp : Kp ∩ Mp] = prp . It is clear that rp = 0 for almost all p. Let ip
be the idèle of which the p component is π

rp
p and the others are 1. Put i(M,K) =

∏
p<∞ ip ∈ IF .

The ideal associated to i(M,K) is
∏
p<∞ prp which is a generalization of the intersection ideal

defined in [HSX98].
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Definition 2.7. Define

I(cls(L),K) = {i(M,K) : M ∈ cls(L) with (2.6)}
The following result generalizes [HSX98, Theorem 3.1].

Theorem 2.8. Suppose K is represented by gen(L) with rank(L) � 3. Let i ∈ I(cls(L),K) and:

1) rank(K) = rank(L); or

2) rank(K) + 1 = rank(L) � 4.

Then K is represented by spn(L) if and only if i ∈ F×θA(gen(L) : K).

The proof follows from (2.2) and Proposition 2.3.
The method we develop here can be used to check if one form can be represented by the spinor

genus of another form directly, without the presence of a third form with a certain property in the
genus (see [HSX98]). We explain this by the following example taken from [Hsi99].

Example 2.9. Consider the binary form η(x, y) = 5x2 + 16y2 and the ternary form g(x, y, z) =
4x2 + 45y2 + 45z2 − 10yz. By [Ome58], it is clear that η is represented by gen(g). We want to
determine whether η is represented by spn(g).

It is clear that S0 = {2, 5} in this case. By [HSX98] and [HSX],

p-component of θA(gen(g), η) =




Z×
p Q×2

p , for p 	= 2, 5,

Q×2
5 ∪ 5Q×2

5 , for p = 5,

Q×2
2 ∪ 2Q×2

2 ∪ 5Q×2
2 ∪ 10Q×2

2 , for p = 2,

R>0, for p = ∞.

It can easily be checked that [IQ : Q×θA(gen(g), η)] = 2. By class field theory, the extension
associated to Q×θA(gen(g), η) is Q(

√−1).
Let L = Z[u, v,w] correspond to the form 4x2 + 45y2 + 45z2 − 10yz. Then K = Z[2u, v/3]

corresponds to η and Kp ⊆ Lp for p = 2, 5 and [K : L ∩ K] = 3Z. Since 3 is inert in Q(
√−1), η is

not represented by spn(g) by Theorem 2.8.
The genus of g has four spinor genera (see [BH82]). For example, h1 = 4x2 + 25y2 + 80z2 is in

gen(g). To determine if spn(h1) represents η, we can set L = Z[u, v,w], which corresponds to h1

and K = Z[(5u + 3v + w)/9, (−4u + w)/3], which corresponds to η. It is clear that Kp ⊆ Lp for
p = 2, 5 and [K : L ∩ K] = 9Z. Since 9 is trivial in Q(

√−1) under the Artin map, η is represented
by spn(h1) by Theorem 2.8. As was pointed out in [Hsi99], 5x2 + 16y2 + 100z2, a form in spn(h1)
by Kneser’s neighborhood method at p = 13, obviously represents η.

There are two more spinor genera in gen(g). One contains 4x2 + 5y2 + 400z2 and hence it
obviously represents η. The other contains 16x2 + 20y2 + 25z2 and it should not represent η, since
the number of spinor genera in gen(g) representing a given form is a power of two, see [HSX98].
We can also confirm this by Theorem 2.8. Let L = Z[u, v,w] and K = Z[u, (v +w)/3] correspond to
16x2 + 20y2 + 25z2 and η, respectively. It is clear that Kp ⊆ Lp for p = 2, 5 and [K : L ∩ K] = 3Z.
Since 3 is inert in Q(

√−1), η is not represented by the spinor genus of 16x2 + 20y2 + 25z2.

3. Representation by spinor genera II, codimension two

In this section, we assume rank(L)− rank(K) = 2. Write V = FK ⊥ W . It is well-known that every
spinor genus in gen(L) represents K unless the following two conditions hold (see [HSX98]):

det(W ) 	= −1 (3.1)
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and

θA(gen(L) : K) = θA(SOA(W )). (3.2)

Let E = F (
√−det(W )). The following proposition is the analog of Proposition 2.3 in the

codimension two case.

Proposition 3.3. Suppose that Lp and Kp are unimodular with rank(Lp) � 4 for a non-dyadic
prime p of F . If [Kp : Lp ∩ Kp] = pr, then πp ∈ θp(X(Lp/Kp)) if and only if r is odd.

Proof. We only consider the rank(Lp) = 4 case here and leave the rank(Lp) = 3 case to the readers.
Write Kp = oFpx ⊥ oFpy with B(x,L)oFp = B(Kp, Lp)oFp = p−s and s > 0. Then there is f ∈ Lp
such that B(x, f) = π−s

p and Q(f) = 0. Therefore, Lp = (psx + oFpf) ⊥ (oFpu + oFpv) for some u
and v in Lp. If y = ax + bf + cu + dv, then B(y, f) ∈ p−s and B(x, y) = 0. Therefore, a ∈ oFp and
b ∈ ps.

When Fpu + Fpv is anisotropic, then c and d are in oFp because

Q(cu + dv) = Q(y) − Q(ax) − 2abπ−s
p ∈ oFp .

Therefore, [Kp : Kp ∩ Lp] = ps and r = s. Let σ ∈ SO(Vp) be defined by

σ : πr
p(x − 1

2Q(x)πr
pf) → (x − 1

2Q(x)πr
pf), f → πr

pf, u → u, v → v.

Then X(Lp/Kp) = σSO(Lp) and θp(σr) ∈ πr
pup(F

×
p )2.

When Fpu + Fpv is isotropic, we can assume that Q(u) = Q(v) = 0 and B(u, v) = 1. Therefore,
cd ∈ oFp . When both c and d are in oFp , [Kp : Kp ∩ Lp] = ps and we are done as in the last
paragraph. Therefore, we may assume that ord(c) < 0. Then Kp ∩Lp = psx+ p−ord(c)(bf + cu+ dv)
and [Kp : Kp ∩ Lp] = ps−ord(c). If we put

σ : πs
p(x − 1

2Q(x)πs
pf) → (x − 1

2Q(x)πs
pf), f → πs

pf, u → π
ord(c)
p u, v → π

−ord(c)
p v,

then σ ∈ X(Lp/Kp) = σSO(Lp) and θp(σ) ∈ πr
pup(F

×
p )2. The proof is now complete.

Remark 3.4. Proposition 3.3 is not true for dyadic primes. For example, θp(X(Lp/Kp)) = F×
p

when rank(Lp) = 4 and n(Kp) = n(Lp) [Xu99, Reduction Formula III] or rank(Lp) = 3 [Xu00,
Theorem 2.1].

Let S0 be the set containing all finite primes that divide 2v(L). By weak approximation, there
is M ∈ cls(L) such that

Kp ⊂ Mp for all p ∈ S0. (3.5)
Define

i(M,K) =
∏
p<∞

[Kp : Kp ∩ Mp]

and

I(cls(L),K) = {i(M,K) : M ∈ cls(L) with (3.5)}.
Theorem 3.6. Suppose the rank of L is less than or equal to four and (3.1) and (3.2) hold. Let a

be an ideal in I(cls(L),K). Then K is represented by spn(L) if and only if a is trivial in Gal(E/F )
under the Artin map.

Proof. By (3.1), (3.2) and class field theory, we have IF /F×θA(gen(L),K) ∼= Gal(E/F ). It is clear
that p is unramified in E/F for any finite p /∈ S0.

If p /∈ S0 and p | v(K), then θp(X(Lp/Kp)) = F×
p by [HSX98, Theorem 5.1]. The result follows

from Proposition 3.3 and (2.2).
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The following proposition subsumes the main theorem in [EH82] as a special case.

Proposition 3.7. Suppose that L is a unimodular lattice of rank 3 and (3.1) and (3.2) hold.
If b = B(K,L)oF , then K is represented by spn(L) if and only if b is trivial in Gal(E/F ) under the
Artin map.

Proof. It is clear that S0 contains only the dyadic primes. Moreover, θp(X(Lp/Kp)) = F×
p for

any p ∈ S0 by [Xu00, Theorem 2.1]. The proposition now follows from Proposition 3.3, (2.2), and
Remark 2.4.

We give one more illustration of Theorem 3.6 by the following example which was also considered
in [Bor01] and [BR95].

Example 3.8. Let L = Z[u, v,w] be an indefinite ternary Z-lattice such that

Q(xu + yv + zw) = −9x2 + 2xy + 7y2 + 2z2.

Since Q(1
3u + z) = Q(−1

2u + 1
2v + w) = 1, therefore 1 is represented by gen(L). As S0 = {2} in this

case, we can take K to be the rank 1 lattice spanned by the vector 1
3u + z. Then E = Q(

√
2) and

3Z is in I(cls(L),K). It is clear that 3 is inert in Q(
√

2). Therefore 1 is not represented by L by
Theorem 3.6.

4. Integral embedding for quaternion algebras

Let B be a quaternion algebra over F and U be a two-dimensional commutative F -subalgebra of B.
Let D be an order in B and Ω be an order in U . The set of pure quaternion in B is denoted by B0.
For any S ⊆ B, S0 is the set S ∩ B0. On B, we have a symmetric bilinear form (x, y) 
−→ T(xy)
where T is the reduced trace from B to F and − is the main involution on B. The quadratic map
on B is 2N, where N is the reduced norm. As a quadratic space, U can be degenerate. In this case,
there is v ∈ U such that U = F + Fv and T(v) = 0 and v2 = 0. Then there is a ∈ F× such that
Ω ⊆ oF + oF av. It is clear that B is split in this case. Then there is a non-zero element x ∈ D such
that T(x) = 0 and x2 = 0. It is easy to see that the map which sends av to x gives an embedding
of Ω to D. Therefore, we can always assume that U is non-degenerate as a quadratic space.

Let K be the lattice Ω0, J = [Ω : oF ⊥ K] and L be the lattice (oF + JD)0. Note that J is only
divisible by the dyadic primes and the norm of Ω as a quadratic lattice is always 2oF .

Let p be a dyadic prime, ∆ = 1− 4ρ be a unit of quadratic defect 4oFp and e = ord(2). Then Ωp
is not split by oFp if and only if

Ωp = oFp + oFpup where T(up) = π
rp
p and rp < e. (4.1)

In this case, Jp = psp with sp = e − rp and Kp = oFpvp with N(vp) = π
−2rp
p det(Ωp) and

vp = −1 + 2π−rp
p up. (4.2)

Proposition 4.3. Ω ⊆ D if and only if K ⊆ L.

Proof. Suppose Ω ⊆ D. If p does not divide J , then Ωp = oFp ⊥ Kp and Lp = D0
p. Therefore,

Kp ⊆ Lp. If p | J , then by (4.2) we know that vp ∈ oFp + JpDp and hence Kp ⊆ Lp.
Conversely, suppose K ⊆ L. It is clear that Ωp ⊆ Dp for all p � J . For p | J , we only need to

show that (1 + vp)/π
sp
p is in Dp by (4.2). Since vp ∈ Lp, we can write vp = A + π

sp
p w where A ∈ oFp

and w ∈ Dp ∩ Up. Therefore, (1 + A)/πsp
p = ε1up − w is an integral element in Up. Hence

1 + vp

π
sp
p

=
1 + A

π
sp
p

+ w ∈ Dp,

and this implies Ωp ⊆ Dp.
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Remark 4.4. In general, the sum of two integral quaternions may not be integral. However, if these
two quaternions commute with each other, then their sum is integral.

When B0 is regarded as a quadratic space, the proper isometries are induced from the conju-
gation of elements of B×. Let gen(D) be the orders in B that are conjugate to D at every local
completion of F . For any order E in gen(D), let Φ(E) be the lattice (oF + JE)0. We always assume
that B satisfies the Eichler condition. By virtue of the strong approximation theorem, both the con-
jugacy classes in gen(D) and the proper classes in gen(L) have natural 2-elementary abelian group
structures and Φ induces a surjective group homomorphism between them. By Proposition 4.3, K is
represented by only half of the classes in gen(L) (i.e. K is an exceptional lattice for gen(L)) if and
only if Ω can be embedded in only half of the conjugacy classes in gen(D).

By the above observation, it is clear that the results in [CF99], for example Theorem 3.3, can
be extended to arbitrary orders since the exceptional lattices have been characterized in [Sch80],
[HSX98] and [Xu00]. To explain this, we give an alternative proof of [CF99, Theorem 3.3] via this
approach. Write B0 = FK ⊥ W as a quadratic space. Then B = U ⊥ W . For a maximal order D,
one has

Dp ∼=
{

A(2, 0) ⊥ A(0, 0) when Bp is unramified,
A(2, 2ρ) ⊥ πpA(2, 2ρ) when Bp is ramified.

(4.5)

We also have

2n(K) = J2dΩ/oF . (4.6)

As we pointed out in § 3, K is an exceptional lattice for gen(L) if and only if (3.1) and (3.2)
hold. We are going to show that (3.1) and (3.2) are equivalent to the following three conditions in
[CF99, Theorem 3.3]:

1) Ω is an integral domain and U is a quadratic extension of F ;

2) the extension U/F and the algebra B are unramified at all finite places and ramify at exactly
the same (possibly) set of real places of F ;

3) all prime ideals of F dividing dΩ/o are split in U/F .

Without loss of generality, we assume that Ω ⊂ D. It is clear that (3.1) is equivalent to condition 1
and U = F (

√−detW ).
Suppose (3.2) holds. Since θp(SO(Lp)) ⊇ up for all p < ∞ by (4.5), U/F is unramified for

all p < ∞. If Bp is ramified, then p has to be inert in U/F and θp(SO(Lp)) = F×
p by (4.5).

A contradiction is derived by (3.2). Therefore condition 2 holds for p < ∞.
When p | dΩ/oF , then θp(X(Lp/Kp)) = F×

p by (4.6) and [HSX98, Theorem 5.1] and [Xu00,
Theorem 2.0]. Therefore condition 3 also follows from (3.2).

Conversely, suppose conditions 2 and 3 hold. Since (3.2) is always true if p is split in U/F , we
only need to prove (3.2) for an inert prime p. Then p � dΩ/oFp

by condition 3.

If p is non-dyadic, Lp is unimodular and θp(SO(Lp)) = up by condition 2 and (4.5). It is clear
that

X(Lp/Kp) = SO(Lp)SO(Wp),

by (4.6). Therefore (3.2) follows from condition 2.
If p is dyadic prime, then J = 2oFp by (4.1) and K ∼= 〈−2∆〉 by (4.2) and Lp ∼= 〈−2∆〉 ⊥

4A(2, 2ρ) by condition 2 and (4.5). By [Xu00, Theorem 2.1, Case III(ii)], (3.2) also holds in this
case by condition 2.

For p | ∞, it is clear that Xp(Lp/Kp) = SO(B0
p). Therefore, (3.2) at p is equivalent to the

statement that Bp is ramified if and only if U/F is ramified at p.
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Suppose that conditions 1, 2 and 3 hold and Ω ⊂ D. Let E be another maximal order in B

and M = (oF + JE)0. In § 2, we point out that K is represented by M if and only if (2.2) holds.
It is clear that we only need to consider those p which are inert in U/F . For such a p, we can
write

Dp = (oFp + oFpx) ⊥ (oFpy + oFpz) and Ep = (oFp + oFpx) ⊥ (pny + p−nz)

where N(x) = N(y) = N(z) = 0 and T(x) = T(yz) = 1.

If p is non-dyadic, then Ep and Dp are split by oFp . Therefore, [Ep : Ep∩Dp] = [Mp : Lp∩Mp] = pn.

If p is dyadic, then p � dΩ/oF by condition 3. By (4.1), we have Jp = 2oFp and

Lp = oFp(2x − 1) ⊥ (oFp2y + oFp2z) and Mp = oFp(2x − 1) ⊥ (pn2y + p−n2z)

and hence [Ep : Ep ∩ Dp] = [Mp : Lp ∩ Mp] = pn. It is clear that πp ∈ θp(X(Mp/Kp)) if and only
if n is odd. Therefore, K is represented by M if and only if the distance ideal ρ(D, E) is trivial in
Gal(U/F ) (see also [HSX98, Theorem 4.1]).

Based on the above arguments, we extend Theorem 3.3 in [CF99] to Eichler orders of level d.

Theorem 4.7. Suppose that D is an Eichler order in B of level d and Ω is an order in U . Assume that
Ω is embedded into a conjugacy class in gen(D). Then Ω is embedded into either all or exactly half
of the conjugacy classes in gen(D), and the latter happens if and only if conditions 1 and 2 and the
following condition are satisfied:

3′) All prime ideals of F dividing dΩ/oF are split in U/F unless ordp(d) = ordp(dΩ/oF ).

Suppose that conditions 1, 2 and 3′ hold. Then Ω is embedded into D if and only if [Ω : Ω ∩ D]
is trivial in Gal(U/F ) under the Artin map.

Proof. It is clear that condition 1 is equivalent to (3.1) and we only need to consider p | d by the
above argument. For such a p, Bp must be unramified. Let ap = ordp(d) and dp = ordp(dΩ/oF ).
For the first part of the theorem, we may assume that Kp ⊂ Lp for all p.

Non-dyadic prime p. We have Lp ∼= 〈−2〉 ⊥ πapA(0, 0) and Kp ∼= 〈2 det(Ωp)〉. Since Kp is represented
by Lp, we also have dp � ap when p is inert. So by [HSX98, Theorem 5.1]

θp(X(Lp/Kp)) =

{
upF

×
p if ap = dp and p is inert,

F×
p otherwise.

It is clear that (3.2) is equivalent to conditions 2 and 3′.

Dyadic prime p. Since θp(SO(Lp)) ⊇ up, it is clear that θp(X(Lp/Kp)) = F×
p when p is not inert

in U/F . Let p be an inert prime. Then det(Ωp) = −∆πdp where dp is even. Let e = ordp(2).

If p | J , then Lp ∼= 〈−2〉 ⊥ πap+2spA(0, 0) and Kp ∼= 〈−2∆〉. Since Kp is represented by Lp, we
have ap + 2sp = ap + 2e − dp � 2e by (4.5) and so dp � ap. By [Xu00, Theorem 2.1, Case III],

θp(X(Lp/Kp)) =

{
upF

×2
p if ap = dp and p is inert,

F×
p otherwise.

Therefore (3.2) is equivalent to conditions 2 and 3′.

If p � J , then Lp ∼= 〈−2〉 ⊥ πapA(0, 0) and Kp ∼= 〈−2−1πdp∆〉. Since n(Kp) ⊆ n(Lp), dp � 2e.

When dp − 2e � ap, then θp(X(Lp/Kp)) = F×
p by [Xu00, Theorem 2.0].
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When dp − 2e < ap, then ap − (dp − 2e) � 2e because Kp is represented by Lp. Thus ap � dp.
By [Xu00, Theorem 2.1, Case III],

θp(X(Lp/Kp)) =

{
upF

×2
p if ap = dp and p is inert,

F×
p otherwise.

Therefore (3.2) is equivalent to conditions 2 and 3′.
Now we prove the second part of the theorem. First we claim that [Ω : Ω ∩ D] = [K : K ∩ L].
If p is non-dyadic or dyadic with p � J , then Ωp = oFp ⊥ Kp and oFp ⊥ (Dp ∩ Kp) =

Dp ∩ (oFp ⊥ Kp). Therefore, [Ωp : Ωp ∩Dp] = [oFp ⊥ Kp : (oFp ⊥ Kp)∩Dp] = [Kp : Kp ∩Dp] = [Kp :
Kp ∩ Lp].

If p is dyadic and p | J , we write

Dp = (oFp + oFpx) ⊥ (oFpy + oFpz) ∼= A(2, 0) ⊥ πapA(0, 0).

Let k be the smallest integer such that πk
pup ∈ Dp, where up is the same as that in (4.1). Then [Ωp :

Ωp ∩ Dp] = pk. By Proposition 4.3, we can assume that k � 1. Let πkup = a + bx + cy + dz, where
a, b, c and d are in oFp and one of them is a unit. By taking the trace and the norm, we have
π

k+rp
p = 2a + b and π2k

p N(up) = a2 + ab + cdT(yz). It is clear that b is not a unit and one of c and
d has to be a unit. Since Lp = oFp(2x − 1) ⊥ (pe−rpy + pe−rpz), Kp = oFp(2π−rpup − 1) and

πk
p (2π

−rp
p up − 1) = π−rpb(2x − 1) + 2π−rp

p cy + 2π−rp
p dz,

we have [Kp : Kp ∩ Lp] = pk.
For the rest of the proof, it suffices to show the following.

Claim. Let p be inert in U/F and [Kp : Kp ∩ Lp] = pk. Then πp ∈ θp(X(Lp/Kp)) if and only if k
is odd.

For such a prime p, we can write det(Ωp) = −εpπ
dp where εp is a non-square unit, dp is even

and dp = ap by condition 3′. Write

Lp = oFpx ⊥ (oFpy + oFpz) ∼= 〈−2〉 ⊥ πap+2spA(0, 0)

and Kp = oFpvp.
Non-dyadic prime p. By Proposition 3.3, we may assume that ap = dp > 0. It is clear that
X(Lp/Kp) = X(L′

p/Kp) and [Kp : Kp ∩ Lp] = [Kp : Kp ∩ L′
p], where L′

p = pdp/2x ⊥ (oFpy + oFpz).
By scaling and Proposition 3.3, πp ∈ θp(X(Lp/Kp)) if and only if k is odd.

To prove the dyadic cases, we need the following lemma whose proof will be given later.

Lemma 4.8. Let p be a dyadic prime. Suppose that

M = oFpf ⊥ (oFpg + oFph) ∼= 〈1〉 ⊥ 2A(0, 0) and N = oFp l
∼= 〈∆〉

and [N : M ∩ N ] = pj . Then j is odd if and only if π ∈ θp(X(M/N)).

Dyadic prime p. If p | J , then Kp ∼= 〈−2∆〉 and ap = dp = 2rp. By scaling and Lemma 4.8,
πp ∈ θp(X(Lp/Kp)) if and only if k is odd.

If p � J , then Kp ∼= 〈−2−1∆π
dp
p 〉 and dp = ap � 2e. It is clear that X(Lp/Kp) = X(L′

p/Kp) and
[Kp : Kp ∩Lp] = [Kp : Kp ∩L′

p], where, L′
p = pdp/2−ex ⊥ (oFpy + oFpz). By scaling and Lemma 4.8,

πp ∈ θp(X(Lp/Kp)) if and only if k is odd.
The proof is completed by (2.2) and (3.2).
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Proof of Lemma 4.8. When j = 0, N ⊆ M and θp(X(M/N)) = upF
×2
p . Therefore, we assume

henceforth that j � 1. Since [N : N ∩ M ] = pj , there are α, β and γ in oFp ; one of them is
a unit, such that πj

pl = αf + βg + γh. Let w = x + ρξy − ξ−1z, where ξ is a unit which will
be chosen afterwards. It is clear that τl−w ∈ X(M/N). Also, π2j

p ∆ = α2 + 4βγ and Q(l − w) =
2(∆ − απ−j

p − 2ρξγπ−j
p + 2βξ−1π−j

p ). Therefore, ord(α) � 1. Without loss of generality, one can
assume that β is a unit.

Case 1: j < e. Then ord(α) = j. Since ∆ = 1− 4ρ, 1−α2π−2j
p = 4βγπ−2j

p +4ρ. If ord(απ−j
p − 1)

< e, then

ord(απ−j
p + 1) = ord(απ−j

p − 1) = e − j +
ord(γ)

2
.

By a suitable choice of ξ, we have ord(Q(l − w)) = 2e − j.
If ord(απ−j

p − 1) � e, then ord(απ−j
p + 1) � e and ord(γ) � 2j. Therefore, ord(Q(l − w)) =

e + ord(2βξ−1π−j
p ) = 2e − j.

Case 2: j = e. Then ord(α) � e.
If ord(α) = e, then ord(Q(l − w)) = e by the same argument as that in Case 1.
If ord(α) > e, then both β and γ are units. It is clear that there is a unit ξ which makes

ρξγ − βξ−1 ∈ p. Therefore, ord(Q(l − w)) = e.

Case 3: j > e. Then ord(α) � e and Q(l − w) = 4π−j
p (2−1πj

p∆ − 2−1α − ργξ + βξ−1).
If ord(α) = e, then both β and γ are units. We can choose a unit ξ such that ρξγ − βξ−1 ∈ p.

Therefore, ord(Q(l − w)) = 2e − j.
If ord(α) > e, then ord(γ) � 1. Therefore, ord(Q(l − w)) = 2e − j.
Since X(M/N) = τl−wSO(M), πp ∈ θp(X(M/N)) if and only if j is odd.

Remark 4.9. It is clear that the statement in the second part of Theorem 4.7 is more natural than
that in [CF99, Theorem 3.3].

5. Hardy–Littlewood varieties for indefinite forms

In this section, we explain how the results in [Xu01] are related to those in [BR95] and answer
Question 0.3 in [Bor01].

Let V be a non-degenerate indefinite quadratic space of dimension n � 3 over Q, L be a Z
lattice with QL = V , and K be a Z lattice in V of rank m. Let L and K be the Gram matrices for L
and K with respect to some bases. Then we have an affine variety Y over Q defined by Y LY t = K.
The main concern in [BR95] is to determine:

i) if Y is strongly Hardy–Littlewood; and

ii) the density function on Y(AQ) if Y is only Hardy–Littlewood.

Let N(T,Y) = {Y ∈ Y(Z) : |Y | � T} and µ∞(T,Y) be the singular integral [BR95, (0.0.4)].
We assume that the asymptotic count for N(T,Y) in [BR95, (0.2.2)] holds in the subsequent discus-
sion. That assumption is known to be valid for m = 1 and n � 3 (i.e. when Y is a symmetric space
[DRS93] and [EM93]), and for some other values of n and m [EMS96]. Under (0.2.2), µ∞(T,Y) is
the volume of the set {Y ∈ Y(R) : |Y | � T} by the Tamagawa measure λ̄∞ [BR95, Lemma 1.8.2]
and

lim
T→∞

N(T,Y)
µ∞(T,Y)

=
∑
σA

µ∞(SO∞(W )/SO(W ) ∩ SO(σAL))
λ∞(SO∞(V )/SO(L))

,
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where V = QK ⊥ W and σA runs through a complete set of double coset representatives in
SO(W )\X(L/K)/SOA(L) with σAL ∈ cls(L). The sum on the right-hand side is the representation
mass of K by L defined in [Xu01]. The results in [Kne61], [Wei62] and [Sch84] (see also [Xu01])
imply that

Y is

{
Hardy–Littlewood if dim(W ) � 2,

strongly Hardy–Littlewood if dim(W ) � 3.

When m = 1, the above was pointed out in [BR95] and the idea used there is also similar
to those in [Kne61], [Wei62] and [Sch84], where the action of the spin group of V is utilized.
In particular, in view of [Sch84] and [Xu01], when dim(W ) = 2 the density function defined by the
Kottwitz invariant in [BR95] should be interpreted by the spinor norm map. We explain this in the
following.

First of all, we can extend the spinor norm map to Y. Indeed, fix a x0 ∈ Y(Q) and consider an
arbitrary point x ∈ Y(Q). Since SO(V ) acts on Y(Q) transitively, there is a σ ∈ SO(V ) such that
x = σx0. We can define θ(x) = θ(σ) in Q×/θ(SO(W )). It is well defined because the stabilizer of x0

is conjugate to SO(W ). It can easily be checked that this map θ does not depend on the choice of
x0. Similarly, we can also define θA : Y(AQ) −→ IQ/θA(SOA(W )). There is a quadratic character
defined as

χ : IQ/Q×θA(SOA(W )) −→ {±1}, χ((ap)) =
∏
p

(ap,−det(W )),

where p runs over all primes including infinity. Then the density function δ(x) on Y(AQ) is simply
1 + χθA by [Xu01, Remarks 2.2.3 and 2.2.4].

When dim(W ) � 1, Y is still Hardy–Littlewood by [Xu01] (see [Xu01, Remark 2.2.3]). By the
same argument as above, one has the following map induced by the adèlic spinor norm map: θA :
Y(AQ) −→ IQ/I2

Q. Then the density function δ(x) is given by δ(x) = 1
2

∑
χ χθA, where χ runs over

all the characters of IQ/Q×θA(SOA(L)).
When Y is not strongly Hardy–Littlewood, it is natural to study the following constant which

measures the difference between N(T,Y) and its Hardy–Littlewood expectation:

cY = lim
T→∞

N(T,Y)
µ∞(T,Y)

( ∏
p<∞

λ̄p(Y(Zp)
)−1

= ε
r(K, cls(L))
r(K, gen(L))

,

and

ε =




1 if dim(W ) = 2,
1
2

if dim(W ) � 1.

It is clear that

0 � cY �




2 if dim(W ) = 2,
h

2
if dim(W ) � 1,

where h is the class number of gen(L).
For dim(W ) � 1, cY = h/2 if and only if cls(L) is the only class in gen(L) that represents K,

and cY = 1
2 if and only if every class in gen(L) has the same representation mass for K.

For dim(W ) = 2, we have

cY =




2 if K is an exceptional lattice for gen(L),
1 if K is not a splitting lattice for gen(L),
neither 1 nor 2 if K is splitting but not exceptional for gen(L),
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when K is represented by L. We refer the readers to [Xu01, Definition 1.1.8] for the definitions
of exceptional and splitting lattices. Exceptional lattices of any rank can be characterized by
the relative spinor norm groups [HSX98]. Ternary splitting lattices are completely determined
by [Xu01, Theorem 1.5.1]. It is easy to see that [Bor01, Theorem 0.2] follows from [Xu01, The-
orem 1.5.1] as condition (2) in [Xu01, Theorem 1.5.1] is violated at infinity. Finally, we answer
Question 0.3 in [Bor01] more explicitly by the following example.

Example 5.1. Let f(x, y, z) = −9x2 + 2xy + 7y2 + 2z2 and let q be an odd prime which is inert in
Q(

√
2)/Q. Since gen(f) represents 1 by Example 3.8, q2m is also represented by gen(f). Then q2m

is a splitting number but not an exceptional number for gen(f) by [Xu01, Theorem 1.5.1], [HSX98]
and [HSX], or [Sch80]. Let Ym be the affine variety defined by the equation f(x, y, z) = −9x2 +
2xy + 7y2 + 2z2 = q2m. By [Xu01, Remark 2.2.3], we have

cYm = 1 +
α+

q (q2m, f) − α−
q (q2m, f)

α+
q (q2m, f) + α−

q (q2m, f)

because α−
p (q2m, f) = 0 at every p 	= q by [HSX98, Theorem 5.1] and [Xu00, Theorem 2.1,

Case II]. It is computed in [Sch84, Hilfssatz 8] that α+
q (q2m, f) − α−

q (q2m, f) = (−1)mq−1(q − 1).
Since α+

q (q2m, f) + α−
q (q2m, f) is the usual local density which is computed in [Sie35, Hilfssatz 16],

we obtain

α+
q (q2m, f) + α−

q (q2m, f) = (1 − q−2)
(

1 − (q−1)m

1 − q−1
+

(q−1)m

1 + q−1

)
.

Therefore

cYm = 1 + (−1)m
q − 1

q + 1 − 2q−m
.
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