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BILATERAL APPROXIMATIONS AND
PERIODIC SOLUTIONS OF SYSTEMS OF
DIFFERENTIAL EQUATIONS WITH IMPULSES

S.G. HrisTtova anD D.D. Bainov

The paper justifies a method of bilateral approximations for
finding the periodic solution of a non-linear system of
differential equations with impulsive perturbations at fixed

moments of time.

Systems with impulses find a growing application in control theory,
radiotechnology, biology, and so on. The works of Millman and Mishkis [4],
[5] mark the beginning of scientists' concern with these systems. Among
the papers published after that we will mention [6]-[12]. However, the
results obtained in these contributions are mainly of qualitative
character. In the solution of a number of problems related to mathematical
modelling of processes with the help of systems with impulses, it is
necessary for various problems concerning these systems to be solved
approximately with exactness given beforehand. Another reason to elaborate
approximate analytic and numeric methods is the fact that their exact
solution is possible only in extraordinary cases. An efficient approximate
method is the one of bilateral approximations both from the theoretical and
the practical viewpoint. It consists of constructing monotone sequences of

functions that restrict the solution from above and from below. Thus an
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estimate of the error of the approximate solution is comparatively easily

obtained.

The present paper justifies a variant of the method of bilateral
approximations for finding an approximate periodic solution of systems of

ordinary differential equations with impulses.

Note that the method of bilateral approximations for initial value and
periodic problems concerning ordinary differential equations without

impulses has been justified in [2] and [3].

Consider the system of differential equations with impulse

perturbations at fixed moments of time

x = f(t,xz, x) for t # ti .
(1)
Axlt:ti = I;(=)

where x € Eﬂ s f:RXDXxXD~> R , Ii . D~ R (£ =0, ¥x1, 22, ...)

[ = + + i i
ti € R (2 =0, #1, 2, ...) are fixed points, such that ti+l > ti and

lim t, = =, Ax]t=ti=x(ti+0) -z(t;-0) , D={z€F iasz=b},

7>too

a, b € A’ are rixed.

The following notation will be used: x =y if x; = y; »

=1, ..., n , where x = (xl, Ly vnes xn] s Y = [yl, Yps =vvs yn)

We will say that conditions (A) are fulfilled if the following

conditions hold:

(A1) the function f(¢, z, y) : RxDxD~> F' is continuous
in all its arguments, it is periodic in ¢ with period
T , it is non-decreasing in «x , it is non-increasing in y

and satisfied the inequalities

me(t’x’y)sMsxvyED’

where m, M € R

(A2) a natural number p exists such that
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(x) Ii(x) , x €D,

I.
1+p

t

1}
o+

i4p : + 7T, 1 =0, #£1, 2, ...

(A3) the functions Ii . D> H , 1 =0, %1, ¥2, ... are

defined, continuous and non-decreasing in D and they

satisfy the inequality

1, sI(x)sL;, €D,

where 1., L € R* (4=0, %1, *2, ...) , L.=0,

(A4) the inequality

p
(M-m) + 2| Y L.- Z.
i-1 ¢t i1 *

b-az=

ML

holds.
We are looking for a periodic solution with period T of system (1)

which for ¢t = 0 passes through the point xo € DB , where

= {z € A' i a+B =z < b-B} , B= % (M-m) + E: (£.-1.)
=1 vt

© o
Define two sequences of functions {un(t)}o and {vn(t)}o P

t € [0, T] with the help of the recurrence formulae

(2) (¢) = +(1 E]ft( (s), v.(8))d
Upvl =x, -7 Jo fis, u,(8), v (s))ds

|

5[ £l vy0), o)

vf

e J a-tun(tm-% S 56,
0<¢, <t i<t <T

https://doi.org/10.1017/50004972700004767 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700004767

296 S.G. Hristova and D.D. Bainov

t
(3) v, (8) = x5 + [l - ?}

e (T
-z L; f(s, u (s), v (s))ds
+ [1 -%] I (v, ¢;)) -% Y I(u(t.))
o<t <t v t<t.c7 T
1 1
M-m t
u(t) = x, - alt) —— + l.-% Y L,,
0 0 2 ottt v Toctiar
1 1
M-m t
v (t) =z +alt) 5=+ Y L. -2 l.,
0 0 2 o<t <t T o<t <T v

where a(t) = 2t(1~(t/T))

LEMMA 1. LILet conditions (A) hold and let z € DB .

Then the functions un(t) and vn(t) » n =1, satisfy the

conditions

(4) u t) €D, v (t)eD,

(5) u,(0) =u (T) =z5, v(0)=20/(T) =z,

and

(6) uylt) su(t) = ... =u (t) ... 29 (t) =... <02 s vo(t) .

Proof. Equality (5) is implied by the recurrence formulae (2) and

(3).
Conditions (Al) and (A3) yield that for any # = 0 the inequalities
T -
(1) u . (8) z g -~ (M-m) - igl (2;-2,) =25 -8,
(8) Vpap () 2 &g + 3 (Mom) 4 igl (£;-2;) ==, + 8,
hold.

ot

We will prove that for € [0, T] the inequalities
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(9) u (t) v (t), nz20,
hold.

Indeed, for n = 0 , the definition of the functions uo(t) and
vo(t) implies that
uo(t) = vo(t) for t € [0, T] .
Conditions (Al) and (A3) and equalities (2) and (3) yield that
ul(t) =< vl(t) , te€fo, T].

Applying the method of mathematical induction we obtain that
inequality (9) is satisfied for every 7 = 0 . Inequalities (7), (8) and
(9) imply that for 7 = 0 the relations un(t) €D, vn(t) € D nhold.

We will prove that inequalities (6) are satisfied. Conditions (Al)

and (A3) and equalities (2) and (3) yield that

M-m t
u () 2z - o(t) — + 1.-% Y L.=ul(t),
1 0 2 o<t<t v Tocgar t0
1 1
M-m t
v(t) =x +oa(t) —+ Y L. -5 1.=v (t) .
1 0 2 o<ttt T o<tier 0

Then in view of conditions (Al) and (A3) we get

¢ T
ROEEN [1 - gJ Io fls, uyls), vo(s))ds - % !t fls, v,(8), uy(s))ds

=T

o U I AN )

0<t_<t z Ii(vo(ti)) = u,(t) .

<
t<tz Vi

Analogously we obtain that vz(t) < vl(t) . By induction it is

verified that the inequalities

IA
1A
1A

uo(t) = ul(t) un(t)

(10)

v
v

vo(t) = vy (8)

v
v

vn(t)

hold.

Inequalities (9) and (10) imply inequality (6).
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Thus Lemma 1 is proved.

LEMMA 2. TILet the conditions (A) hold and let z, € DB .

Then the sequences of functions {un(t)}: and {vn(t)}; are

convergent in the interval [0, T] and their limits U(t) = lim un(t) ,
N+

V(t) = 1lim vn(t) are pilecewise continuous functions for which the
n-»o

conditions
Ult) €p, V(it) €D for t € [0, T],
Uty = v(i¢) for t € {0, 7],
v(o) = v(T)

ulo) = u(r) = x

= 0 ° =xo:
are satisfied, and
£) (¢ ¢ (T
(11) w(¢) = L [l - EJ f fls, vs), vis))ds - f‘{ Fls, vis), v(s))ds
0 It
tJ t
+[1-% I.(u(t.)) - & I.(v(t.)) ,
L-t BPRACCRIES SR ACCH)
7 i
Vit) =z  + [l - E} [t f(s Vis) U(s))db - E-fT f(s U{s) V(s)]db
0 Ty j, T\ T T, 7\ ’
tJ ¢
+1-%& I.(v(t.)) - & . (u(t.))
h-t PRGSO
i i
Proof. Let . € (0,7), 2=1, ..., p . Consider the interval

o0
[O, t1] . For t € [Q, tl] , the sequences of functions {un(t)}o and
{vn(t)}: are uniformly bounded, they are equicontinuous and hence there

oo oo
exist uniformly convergent subsequences {uéo)(t)} and {véo)(t)} .
0 0

u(o)(t) = lim u}(10)(t) for t € [0, tl] R
n-xo

»(0(2) = 11m vV e)
7
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Consider the interval (tl, t2| and the sequences of functions

(2]

fuio)(t)} and {vn(t)}: , defined and continuous in this interval.
0

Besides the values of the functions uio)(t) and vio)(t) at the point

t =t we have uéo)(

(0)
1 (

t,+0) = “20)(t1) * Il{un tl)] and
020)(t1+0] - Uéo)(tl) + Il[véO)(tl]] , respectively.

For ¢t ¢ (tl, tgj ,» the sequences of functions are uniformly bounded
and equicontinuous and hence there exist convergent subsequences

{uil)(t)} and {vél)(t)} . Introduce the notation:
0 0

u(l)(t) = lim u
n

v(l)(t) = lim v () ,

The equalities
u(l)(tl) = u(o)(tl) + Il[u(o)(tl)]
Jl)&l)= JO)&1)+.H[J°)&lq
hold.

(k)(t) for
t € [tk, tk+l] or t € [tp, Tl . Consider the functions U(t) and V(%)

Analogously we define functions u(k)(t) and v

defined for ¢ € [0, T] by the equalities
0
£O(s) for ¢ ¢ (o, tl] ,

ult) = u(k)(t) for t € ( k=1, ..., p-1 ,

tk’ tk+1] >

P8y for ¢ o€ (b0, T1
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(0)

v (E) for t € [0, tl]

V(t) = oKty for t ¢ (tk, t k=1, ..., p-1 ,

k+l] i
2P (2) for t € (tp, T]

The functions U(f) and V(t) are piecewise continuous with first

order discontinuities at the points ti , 1=1, ..., p , and satisfy the
jump condition

u(t,+0) - ule,-0) = 1_(u(z,-0))

V(t +0) - V(t -0) = (V(t -0)).

Inequalities (6) imply that for k=0, 1, ..., p , the inequalities

u(k)(t) < v(k)(t) are satisfied, for ¢ € (t , and hence

k> trand

U(t) £ ve), t €0, T)

Equality (5) yields that 2°)(0) = «'°(7) ana »(®(0) = o) (1)
and hence
u(o) = u(1) =z, ,
v(0) = V(T) =z -

Since the set D is closed, it follows that U(t) € D, V(t) €D ,
t € [0, T] . Taking limits in equalities (2) and (3) we obtain that the
functions U(t) and V(t) satisfy system (11).

Thus Lemma 2 is proved.

Consider the system

¢) [t ¢ T
(12) =x=(¢) = xy * [ - 7] I f‘(s x(s), x(s) ds - F ;( f s, x(s), x(s))ds
0 t
_2] I (=(t)) - & I (x(t.
i Lo BEED T (a(2,))

LEMMA 3. Let the following conditions hold:
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(1) econditions (A) are fulfilled and z, € DB H
(2) the functions Ii(x) s =1, ..., p, satisfy in the set
D the condition Ii(x) - Ii(y) < Qi(x-y) s Jor 22y,

where Qi » =1, ..., p are n xn matrices with non-

negative elements;
p
(3) the inequality 2“ Y Qi” <1 holds.
=1

Then the system (12) has at least one solution x*(t) ¢ D, for which

x*(0) = z*(T) = zy -
Proof. Consider the set Q consisting of all piecewise continuous

functions x(t) with discontinuities at the points ti s, T =1, cu.y P,

defined in the interval [0, T] and belongong to the domain D for

t € [0, T] , and for which x(0) = z(T) = z, -

Define the operator F : Q-+ Q , F = Al + A2 , Wwhere the operators

Ai , T =1, 2 , are defined by the equalities

[}
8
+

yid
[ £(s, z(s), =(s))ds ,
It

=T

4 z(t) [1 3] ft (s, z(s), x(s))d
1% o -7 Yo fls, x(s), x(sg))ds -

A,x(t) [1 - %] 0<t2i<t I, (=(z,)) -% Y I (=(t;) .

t<t .<T
i

The set § 1is bounded, closed and convex and the operator F trans-

forms it onto itself.

We will prove that the operator Al is compact in § .

Let the sequence xn(t) € Q be uniformly convergent to the function

z(t) ¢ Q for t € [0, T] . The continuity of the function f(t, x, y)
implies that

fl, (), = (8)) — F(t, =(t), =(¢))

uniformly for t € [0, T] .
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Then, for t € [0, T] , A=x

— A h i
1%, o lx olds, that is, the operator

A is continuous on § .

Also, for z € @ and t € [0, T] , the inequalities

{T fle, xts), x(s))ds”
Jo

a2 ()] < llegll +

T
( fls, z(s), x(s))ds
Jo

+ '

1A

eyl + 24T

hold, where M, = max( ||M|}, |imll)

If El and 52 are two arbitrary points from the interval [0, 7] ,
then
52
N4, z(& )-4.2(E) = fls, z(s), z(s))ds
1 1 27 \P2 £
1

+ Hgl;ge f: fls, =(s), x(s))ds” = 2M,1E -E5l -

In view of Arzella's theorem, the operator Al is compact.

Let xl(t), xzkt) € Q. Then

>

£ o,

A ~Aw, |l = 2llz) (8)-a, ()]l - A

17272 0

where ”T(t)no = max [|[T()] .

Hence the operator A2 is a contracting one. Then the operator
Fr = x has at least one solution =z*(t) € Q .

Lemma 3 is thus proved.

LEMMA 4. Let the conditions of Lemma 3 be fulfilled.

Then the system (12) hae a solution =x*(t) € Q for which the

inequalities
ult) = z*(¢) =v(¢) , ¢ elo, 7],

hold.
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Proof. In view of Lemma 3, equation (12) has at least one solution

x*(t) € 2 . Conditions (Al) and (A3) yield that the inequality

z*(t) = xé + (1 - gatm - gxzut)M + [1 - %J
o<t <t

1, - % % L, = u(t)
e i=1
holds.

Analogously we have that x*(t) =< vo(t) . By induction we get that

for every n = 0 ,

(1) u,(t) = z*(¢) < vn(t)

is satisfied for ¢ ¢ [0, T] .

Taking limits in (14) proves inequalities (13).

Lemma 4 is proved.

LEMMA 5. TILet the following conditions be satisfied:

(1) the conditions of Lemma 3 hold;

(2) the function f(t, x, y) satisfies the condition
f@,x,y)—f@,x,y)iKﬁw&)+K§yﬁ)

in the domain R X DX D for z >z and y <y , where Ky

and K, are n xn matrices with non-negative elements;

(3) the eigenvalues of the matrix
L, M &
(K1+K2)[3 + 3 igi Qi] +2 R Q;

are smaller than 1 1in modulus.
Then the system (12) has a unique solution x(t) € Q@ , t € [0, T] .
Proof. Estimate the difference vn(t) - un(t) , te€fo, T]. For

n =0 we have
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v(t)-u(t)<ht1-3](M-m)+2§j(L-z)
0 0 - T i 1 1

< P(M-m) + 2 % (c;-2,) =m .
i=1

1]l
=

For n =1 we obtain

v, (2) - (2)

<[ E”t(luk)(() (>)d+3(K+K)fT(() (s))ds
_l—T o lzvos—uos 8 T 1211; UOS—MOS
SR N AT NS S i SN A TARATS)
1 1
=< h(Kl+K2){(M—m) §+

igl (Li-li)}t {1 - %] + oM él Q

N.T + 2M %Q.ZM s
1 1 i=1 7 2

1A

i (Li_li)} ‘

where N_ = (K1+K2){(MLm) % +

1 i=1
By induction we get that for every n =2, 3, ... the estimate
v (t) —u (t) = ut|1 - Ely + o %Q.
n n T n n i1 7

holds, where

T
n (K1+K2)[§.Nn—l+2Mh-l igi Qi] ’

=
|

(15)
M =N T+ 2M % Q. .
n n-1 n-1 =1 v
The necessary and sufficient condition for all solutions of the system

of difference equations (15) to approach zero is that the eigenvalues of

the matrix
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T %
(Kl+K2) 3 2 2 Qi(K1+K2
1=1
7 2 i Q.
i=1 ¢
are smaller than 1 in modulus, that is in view of [13, p. 190,
(16) -1+ (K1+K2) 3+ 2 Py Q <-3 (Klfxz) P Q <1

should hold.

Condition (3) of Lemma 5 yields that inequality (16) is satisfied and
hence vn(t) - un(t) 30 for n-+® gnd t € [0, T] , that is,

u(t) = v(¢) , t € [0, T} . In view of Lemma k4,
U(t) = V(t) = x*(t) for t € [0, T] ,
where x*(t) €  is a solution of system (12).
Thus Lemma 5 is proved.
THEOREM 1. Let the conditions of Lemma 5 be satisfied.

Then system (1) has a T-periodic solution =x = ¢(t) for which
e{0) = x. and o(t) = 1lim un(t) = lim vn(t) for t € [0, T].

n-roo o

0

Proof. In view of Lemma 5 system (12) has a unique solution ¢(t)

for t € [0, 7] , for which the equalities

¢(0) = ¢(T) = x

0]
and
e(t) = 1im w (t) = 1im v (%) = U(t) = V(¢t)
o N
hold.
Moreover, the function ¢{t) satisfies the system (1) for
t € [0, T] .

Thus Theorem 1l is proved.
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