EXTREMAL PROBLEMS FOR THE CLASSES
 $S_{\mathbf{R}}^{-p}$ AND $T_{\mathbf{R}}{ }^{-p}$

WALTER HENGARTNER AND WOJCIECH SZAPIEL

1. Introduction. Let $H(D)$ be the linear space of analytic functions on a domain D of \mathbb{C} endowed with the topology of locally uniform convergence and let $H^{\prime}(D)$ be the topological dual space of $H(D)$. For domains D which are symmetric with respect to the real axis we use the notation $H_{\mathbf{R}}(D)=\{f \in$ $H(D): f(D \cap \mathbb{R}) \subset \mathbb{R}\}$. Furthermore, denote by S the set of all univalent mappings f defined on the unit disk Δ which are normalized by $f(0)=0$ and $f^{\prime}(0)=1$. A well studied subclass of $H(\Delta)$ is the set T_{R} of typically real functions f which have the following properties:

$$
\begin{equation*}
f(0)=f^{\prime}(0)-1=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Im}\{z\} . \operatorname{Im}\{f(z)\} \geqq 0 \quad \text { for all } z \in \Delta . \tag{2}
\end{equation*}
$$

There is a one-to-one correspondence between $T_{\mathbf{R}}$ and the set $\mathbb{P}_{[-1,1]}$ of all probability measure μ on the Borel σ-algebra over $[-1,1]$. Indeed, if $\mu \in \mathbb{P}_{[-1,1]}$, then

$$
\begin{equation*}
f(z)=\int_{[-1,1]} z /\left(1-2 t z+z^{2}\right) d \mu(t) \tag{1.1}
\end{equation*}
$$

belongs to the class $T_{\mathbf{R}}$. Conversely, for each $f \in T_{\mathbf{R}}$ there is a unique $\mu \in \mathbb{P}_{[-1,1]}$ such that (1.1) holds. It follows from there that $T_{\mathbf{R}}$ is convex and compact. For simplicity, we shall use the notation

$$
\begin{equation*}
q_{t}(z)=z /\left(1-2 t z+z^{2}\right),-1 \leqq t \leqq 1 . \tag{1.2}
\end{equation*}
$$

Observe that the mappings q_{t} are univalent on Δ and that

$$
q_{t}(\Delta)=\mathbb{C} \backslash\{(-\infty,-1 /(2+2 t)] \cup[1 /(2-2 t), \infty)\} .
$$

The set of all univalent mappings in $T_{\mathbf{R}}$ we shall denote by $S_{\mathbf{R}}$.
If $f \in T_{\mathbf{R}}$, then f is strictly monotone increasing on the interval $(-1,1)$. For simplicity, we shall denote the radial limit of f at $z=-1$ by

$$
\begin{equation*}
f(-1)=\lim _{x \rightarrow-1} f(x) . \tag{1.3}
\end{equation*}
$$

Received by the editors February 21, 1989.
The first author was supported in part by grants from the National Research Council of Canada and FCAR, Québec.

1980 Mathematics Subject classification 30C45.

Let A be a compact subset of $H(\Delta)$.

Definition 1.1.

(a) A function $f \in A$ is called to be a support point of $A, f \in \sigma(A)$, if there is an $L \in H^{\prime}(\Delta)$ such that $\operatorname{Re}\{L(f)\}=\max \{\operatorname{Re}\{L(g)\}: g \in A\}$ and that $\operatorname{Re}\{L\}$ is not constant on A.
(b) A function $f \in A$ is called to be an extreme point of $A, f \in \mathcal{E}(A)$, if f is not a proper convex combination of two other functions in A.

The set of all finite convex combination of functions in A we denote by $\operatorname{co}(A)$ and its closure by $\overline{c o}(A)$. For example, $\mathcal{E}\left(T_{\mathbb{R}}\right)=\left\{q_{t}:-1 \leqq t \leqq 1\right\}$ and $\sigma\left(T_{\mathbf{R}}\right)=\operatorname{co}\left(\mathcal{E}\left(T_{\mathcal{R}}\right)\right)$ and

$$
\begin{equation*}
\overline{c o}\left(S_{\mathbb{R}}\right)=T_{\mathbf{R}} . \tag{1.4}
\end{equation*}
$$

Lately, W. Koepf [6] has shown that $\mathcal{E}\left(S_{\mathbb{R}}\right)=\sigma\left(S_{\mathbb{R}}\right)=\mathcal{E}\left(T_{\mathbf{R}}\right)$.
The class of univalent mappings $f \in H(\Delta)$ with fixed value $f(0)$ and fixed omitted values was examined by G. M. Goluzin and others (see e.g. [3], [5]). Recently, P. Duren and G. Schober [4] gave some geometric properties of extreme points and support points of the class S_{o} of univalent nonvanishing functions f on Δ with $f(0)=1$. The corresponding case, when f has real coefficients, was studied by W. Koepf [6]. In this paper we consider the classes

$$
\begin{equation*}
T_{\mathbf{R}}^{-p}=\left\{f=z+\sum_{k \geqq 2} a_{k}(f) z^{k} \in T_{\mathbf{R}}: f \text { omits a given point }-p\right\}, p>0 \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\mathbf{R}}^{-p}=T_{\mathbf{R}}^{-p} \cap S \tag{1.6}
\end{equation*}
$$

Since we require that $f^{\prime}(0)=1$, the choice of p is important. For instance, $T_{\mathbf{R}}^{-p}$ and $S_{\mathbb{R}}^{-p}$ are empty, if $0<p<1 / 4$, and contain only the Koebe mapping q_{1}, if $p=1 / 4$. Furthermore, for $1 / 4<s<t$, we have the strict inclusions $T_{\mathbf{R}}^{-s} \subset T_{\mathbf{R}}^{-t}$ and $S_{\mathbb{R}}^{-s} \subset S_{\mathbb{R}}^{-t}$ and $T_{\mathbb{R}}^{-\infty}\left(S_{\mathbb{R}}^{-\infty}\right.$ resp.) is the usual class $T_{\mathbf{R}}\left(S_{\mathbf{R}}\right.$ resp.). Hence, the solutions of most of the optimization problems will depend on the omitted value $-p$.
There is a close relation between $S_{\mathbf{R}}^{-p}$ and the class $S_{\mathbf{R}}(M)$ of all univalent typically real functions which are bounded by M. Indeed, if $g \in S_{\mathbf{R}}(M)$, then $f=$ $M . q_{1}(g / M) \in S_{\mathbf{R}}^{-M / 4}$ and, vice versa, if $f \in S_{\mathbf{R}}^{-p}$, then $g=4 p q_{1}^{-1}(f /(4 p)) \in$ $S_{\mathrm{R}}(4 p)$. The class $S_{\mathrm{R}}(M)$ has been studied extensively by O. Tammi [12].

Extremal functions in $S_{\mathbb{R}}^{-p}, p>1 / 4$, (i.e. extreme points and support points) are slit mappings (Proposition 3.7 and Corollary 3.10) but they can split at several finite points or at infinity (Theorem 3.5). However, if $-p$ is not an endpoint of the slit on the negative real axis, then no splitting can occur at infinity (Proposition 3.8). The main result of section 3 is a kind of a SchifferGoluzin differential equation (Theorem 3.9).

In section 4 we complete a result of W. Koepf in determining explicitly the set of all support points of the class $\left(S_{o}\right)_{\mathbf{R}}$ which consists of all univalent nonvanishing mappings $f, f(0)=1$, which have real coefficients.

Section 5 deals with the class $T_{\mathbf{R}}^{-p}, p>1 / 4$. Evidently $T_{\mathbf{R}}^{-p}$ is compact and convex but, in contrast to (1.4), $T_{\mathrm{R}}^{-p}, p>1 / 4$, is not the closed convex hull of $S_{\mathbf{R}}^{-p}$ (Proposition 5.1). There is an interesting difference between the extreme points different from $q_{t}, 1 /(2 p)-1 \leqq t \leqq 1$, in $S_{\mathbf{R}}^{-p}$ and $T_{\mathbf{R}}^{-p}$. While in the first class splitting occurs, they are two-valent in the second class and all its boundary values lie in $\mathbb{R} \cup \infty$ (Theorem 5.2). Indeed, the set of extreme points for the class $T_{\mathbf{R}}^{-p}$ is exactly the set of all mappings

$$
\begin{equation*}
f=q_{s} q_{t} / q_{2 p(1+s)(1+t)-1},-1 \leqq s \leqq 1 /(2 p)-1 \leqq t \leqq 1 \tag{1.7}
\end{equation*}
$$

Note that any f of the form (1.7) can be expressed as a convex combination of q_{s} and q_{t}. First we give sharp lower bounds and upper bounds for $f(x), f^{\prime}(x), a_{2}(f), a_{3}(f)$, and $a_{4}(f)$ (Proposition 5.4, Theorem 5.6, Proposition 5.8, and Theorem 5.10) and we determine in Theorem 5.5 the set of values of $f(z)$ for a given nonreal z in Δ. Next (Lemma 5.11), we give a sufficient condition for $L \in H^{\prime}(\Delta)$ in order to get a univalent extremal function. In theorem 5.12 we apply the above Lemma to the odd coefficients of f. The last Theorem is surprising. We show that for each $L \in H^{\prime}(\Delta)$ there is a $p_{L}>0$ such that, if $p>p_{L}$, there is a univalent mapping $f \in T_{\mathbf{R}}^{-p}$ such that $\operatorname{Re}\{L(f)\}=\max \operatorname{Re}\left\{L\left(T_{\mathbf{R}}^{-p}\right)\right\}$.
2. Some auxiliary Lemmas. For $A \subset H(\Delta)$ let $\mathcal{E}(A), \sigma(A), \operatorname{co}(A)$ and $\overline{c o}(A)$ denote the set of all extreme points of A, the set of all (proper) support points of A, the convex hull of A and the closed convex hull of A respectively. Let T be a compact metrizable space and \mathbb{P}_{T} the set of all probability measures μ on the σ-algebra of Borel subsets of T. The support of μ we denote by $\operatorname{supp}(\mu)$. Furthermore, $\mathcal{E}\left(\mathbb{P}_{T}\right)$ consists of all Dirac measures δ_{t} concentrated at the points $t \in T$. The Krein Milman Theorem states that \mathbb{P}_{T} is the closed convex hull of $\mathcal{E}\left(\mathbb{P}_{T}\right)$ with respect to the weak*-topology of the dual space of $C(T)$. Finally, if $\mu \in \mathbb{P}_{T}$ and A is a Borel set of T, we shall use the notation

$$
\begin{equation*}
\mu_{A}(B)=\mu(A \cap B) \quad \text { for all Borel sets } B \text { in } T . \tag{2.1}
\end{equation*}
$$

Our first Lemma characterizes compact and convex sets in $H(\Delta)$.
Lemma 2.1. A set $A \subset H(\Delta)$ is compact and convex if and only if there exists T described as above and a continuous function $Q: \Delta \times T \rightarrow \mathbb{C}$ such that $Q(\cdot, t) \in H(\Delta)$ for all $t \in T$ and

$$
\begin{equation*}
A=\left\{f_{\mu}=\int_{T} Q(\cdot, t) d \mu(t): \mu \in \mathbb{P}_{T}\right\} . \tag{2.2}
\end{equation*}
$$

Furthermore, we have

$$
\begin{equation*}
\mathcal{E}(A) \subset\{Q(\cdot, t): t \in T\} \tag{2.3}
\end{equation*}
$$

Equality holds if the mapping $\mu \rightarrow f_{\mu}$ is injective on \mathbb{P}_{T}, (i.e. if the linear space spanned by $f \equiv 1$, the real parts and imaginary parts of the Taylor coefficients (as functions of t) of the kernel function is dense in $C(T)$).
The necessity of the existence of Q was shown in [8] and the sufficiency can be found in [2]. The case of equality is discussed in [9]. For example, the simplest realisation of the Lemma is the case

$$
T=\overline{\mathcal{E}(A)} \quad \text { and } \quad Q(z, f) \equiv f(z)
$$

The next Lemma considers a special case of Lemma 2.1.
Lemma 2.2. Let T and Q be as in Lemma (2.1). If T is a line segment or a circle and if Q is analytic at each point of $\Delta \times T$, then we have

$$
\begin{equation*}
\sigma(A) \subset \operatorname{co}(\mathcal{E}(A)) \tag{2.4}
\end{equation*}
$$

Proof. Let $L \in H^{\prime}(\Delta)$ such that $m=\max \{\operatorname{Re}\{L(f): f \in A\}>$ $\min \{\operatorname{Re}\{L f)\}: f \in A\}$. Consider the hyperplane $M=\{f \in H(\Delta)$: $\operatorname{Re}\{L(f)\}=m\}$ which supports the set A. Denote by t^{*} the reflected point of t with respect to T and let $\Phi(t)$ be defined by

$$
\Phi(t)=L(Q(\cdot, t))+\overline{L\left(Q\left(\cdot, t^{*}\right)\right)}
$$

By the above assumptions, the function Φ is analytic on a domain containing T and Φ is not constant on T. Therefore there are only finitely many functions $Q(\cdot, t)$ which belong to $A \cap M$. From (2.3) we conclude that

$$
\sigma(A) \cap M=A \cap M=\operatorname{co}(\mathcal{E}(A \cap M)) \subset \operatorname{co}(\mathcal{E}(A))
$$

The following Lemma is a particular case of a more general result given in [8, see also 9-11]. For the convenience of the reader we shall give a proof of it.

Lemma 2.3. Let $\Phi: \mathbb{P}_{[a, b]} \rightarrow \mathbb{R}$ be an affine continuous mapping. Then we have for all $\tau \in \Phi\left(\mathbb{P}_{[a, b]}\right)$

$$
\begin{align*}
& \mathcal{E}\left\{\mu \in \mathbb{P}_{[a, b]}: \Phi(\mu)=\tau\right\}=\left\{\nu=(1-\lambda) \delta_{s}+\lambda \delta_{t}: s, t \in[a, b],\right. \tag{2.5}\\
&0 \leqq \lambda \leqq 1, \Phi(\nu)=\tau\} .
\end{align*}
$$

Proof. Let $\nu \in \mathcal{E}\left\{\mu \in \mathbb{P}_{[a, b]}: \Phi(\mu)=\tau\right\}$ and assume that $\operatorname{supp}(\mu)$ contains at least three points $x_{1}, x_{2}, x_{3}, a \leqq x_{1}<x_{2}<x_{3} \leqq b$. Choose $c \in\left(x_{1}, x_{2}\right)$ and $d \in\left(x_{2}, x_{3}\right)$. Then the intervals $T_{1}=[a, c), t_{2}=[c, d]$ and $T_{3}=(d, b]$ form a partition of $[a, b]$ and we have

$$
\begin{gathered}
\nu\left(T_{j}\right)>0, \sum_{j=1}^{3} \nu\left(T_{j}\right)=1 \quad \text { and } \quad \nu=\sum_{j=1}^{3} \nu\left(T_{j}\right) \mu_{j}, \\
\text { where } \mu_{j}=\nu_{T_{j}} / \nu\left(T_{j}\right) \in \mathbb{P}_{[a, b]} .
\end{gathered}
$$

Next, there are three real numbers s_{j} such that

$$
\sum_{j=1}^{3} s_{j}=0, \sum_{j=1}^{3}\left|s_{j}\right|>0 \quad \text { and } \sum_{j=1}^{3} s_{j} \Phi\left(\mu_{j}\right)=0
$$

Consider now the real measure $\nu_{0}=\epsilon \sum_{j=1}^{3} s_{j} \mu_{j}, 0<\epsilon<\min \{\nu(T)\} / \max \left\{\left|s_{j}\right|\right\}$. Then $\nu_{o}\left(T_{j}\right)=\epsilon . s_{j}$ and ν_{0} is not the zero measure. Moreover we have

$$
\begin{aligned}
\nu & \left.=\left[\nu-\nu_{0}\right)+\left\{\nu+\nu_{0}\right)\right] / 2, \\
\nu \pm \nu_{0} & =\sum_{j=1}^{3}\left[\nu\left(T_{j}\right) \pm \epsilon s_{j}\right] \mu_{j} \in \mathbb{P}_{[a, b]} \quad \text { and } \\
\Phi\left(\nu \pm \nu_{0}\right) & =\sum_{j=1}^{3}\left[\nu\left(T_{j}\right) \pm \epsilon s_{j}\right] \Phi\left(\mu_{j}\right)=\boldsymbol{\Phi}(\nu)=\tau .
\end{aligned}
$$

which leads to a contradiction.
The converse inclusion is trivial since $\operatorname{supp}\left[(1-s) \nu_{1}+s \nu_{2}\right]=\operatorname{supp}\left[\nu_{1}\right] \cup$ $\operatorname{supp}\left[\nu_{2}\right]$ for all $\nu_{1}, \nu_{2} \in \mathbb{P}_{[a, b]}$ and all $0<s<1$.

To each $L \in H^{\prime}(\Delta)$ we associate the linear functional $L^{*} \in H^{\prime}(\Delta)$ defined by

$$
\begin{equation*}
L^{*}(f)=(1 / 2)\left[L(f)+\overline{L\left(f^{*}\right)}\right] \tag{2.6}
\end{equation*}
$$

where

$$
\begin{equation*}
f^{*}(z)=\overline{f(\bar{z})} \tag{2.7}
\end{equation*}
$$

The Toeplitz representation for L and L^{*} is then of the form

$$
L(f)=\sum_{n=0}^{\infty} b_{n} a_{n}(f) \quad \text { and } L^{*}(f)=\sum_{n=0}^{\infty} \operatorname{Re}\left(b_{n}\right) a_{n}(f)
$$

where $a_{n}(f)=f^{(n)}(0) / n!$.
Furthermore, if $f \in H_{\mathbf{R}}(\Delta)$, then $L^{*}(f)=\operatorname{Re}\{L(f)\}$.
Lemma 2.4. Let $L \in H^{\prime}(\Delta), c \in \mathbb{R}$ and suppose that the equation $L^{*}\left(q_{t}\right)=$ $c\left(L^{*}\left(q_{t} / z\right)=c\right.$ respectively) has an infinite number of solutions. Then we have $L^{*}(f)=\operatorname{Re}\left\{b_{o}\right\} . f(0)+c . f^{\prime}(0)\left(L^{*}(f)=c . f(0)\right.$ resp. $)$ for all $f \in H(\Delta)$.

Proof. Since $L^{*}\left(q_{t}\right)\left(L^{*}\left(q_{t} / z\right)\right.$ resp.) as a function of t is analytic on $[-1,1]$, we conclude that $L^{*}(f)\left(L^{*}(f / z)\right.$ resp. $)$ is constant on $T_{\mathbf{R}}$ and we have therefore $L^{*}(z)=L^{*}\left(z+z^{n} / n\right)=c\left(L^{*}(1)=L^{*}\left(1+z^{n-1} / n\right)=c\right.$ resp.) for all $n=2,3, \ldots$ and the result follows.
3. Extremal Problems for $S_{\mathbf{R}}^{-p}$. In this section we are interested in the class $S_{\mathbf{R}}^{-p}$ of univalent mappings defined on the unit disk Δ which have the following properties:
(1) $f(0)=f^{\prime}(0)-1=0$
(2) f is real on the interval $(-1,1)$
(3) f omits a given point $-p$ on the negative real axis.

Since $S_{\mathbf{R}}^{-p}$ is empty for $0<p<1 / 4$ and contains only the Koebe mapping $q_{1}(z)=z /(1-z)^{2}$, if $p=1 / 4$, we shall assume that $p>1 / 4$. Observe also that for $1 / 4<s<t, S_{\mathbf{R}}^{-p}$ is strictly included in $S_{\mathbf{R}}^{-t}$ and that $S_{\mathbf{R}}^{-\infty}$ is the usual class $S_{\mathbf{R}}$ of all normalized univalent typically real functions. Furthermore, for each $t \in[1 /(2 p)-1,1]$ the mapping $q_{t}(z)=z /\left(1-2 t z+z^{2}\right)$ belongs to $S_{\mathbf{R}}^{-p}$. They are also extreme points and support points for this class. There are many other support or extreme points for $S_{\mathbf{R}}^{-p}$.

We start our investigation with an elementary automorphism on $S_{\mathbf{R}}^{-p}$. Let $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ Then the correspondence $f \rightarrow g_{f}$ defined by

$$
\begin{align*}
g_{f}(z) & =-p \cdot f(-z) /[p+f(-z)] \tag{3.1}\\
& =z-\left(a_{2}-1 / p\right) z^{2}+\left(a_{3}-2 a_{2} / p+1 / p^{2}\right) z^{3}+\ldots
\end{align*}
$$

is a homoeomorphism from $S_{\mathbf{R}}^{-p}$ onto itself. For instance, the function q_{t} is mapped onto $q_{-t+1 /(2 p)}, 1 /(2 p)-1 \leqq t \leqq 1$. As an immediate consequence we get the following elementary results.

Proposition 3.1. For $f \in S_{\mathbf{R}}^{-p}, p \geqq 1 / 4$, we have
(i) $2 \geqq a_{s}(f) \geqq-2+1 / p$
(ii) $3 \geqq a_{3}(f) \geqq \begin{cases}(1-1 / p)(3-1 / p), & \text { if } 1 / 4 \leqq p \leqq 1 / 2 \\ -1, & \text { if } p \geqq 1 / 2\end{cases}$
(iii) $q_{1 /(2 p)-1}(x) \leqq f(x) \leqq q_{1}(x), \quad$ if $-1<x<1$.

For each case, equality holds only for $f=q_{t}$ with $t=0, t=1 /(2 p)-1$ or $t=1$.

Proof. Statement (i) follows from the fact that $a_{2}(f) \leqq 2$ for all $f \in T_{\mathrm{R}}$ and that $a_{2}\left(g_{f}\right)=(1 / p)-a_{2}(f)$. The upper bound for $a_{3}(f)$ holds also for all $f \in T_{\mathbf{R}}$ and its lower bound follows from the inequality $a_{3}(f) \geqq a_{2}^{2}(f)-1$ which is true for all $f \in T_{\mathbf{R}}$. Next, we have $q_{-1}(|x|) \leqq|f(x)| \leqq q_{1}(|x|)$ for all $x \in(-1,1)$ and all $f \in T_{\mathrm{R}}$ which implies that $f(x) \leqq q_{1}(x)$ for all $x \in(-1,1)$. Finally, $g_{f}(x) \leqq q_{1}(x)$ implies that $\left[1-(2-(1 / p)) x+x^{2}\right] f(-x) \geqq-x$. Replacing x by $-x$ statement (iii) follows.

The following proposition creates a chain in $S_{\mathbf{R}}^{-p}$ from any mapping $f \in S_{\mathbf{R}}^{-p}$ to $q_{t}, 1 /(2 p)-1 \leqq t \leqq 1$.

Proposition 3.2. Let $f \in S_{\mathbf{R}}^{-p}, p \geqq 1 / 4,0<r \leqq 1$, and $1 /(2 p)-1 \leqq t \leqq 1$. Put $\tau=p /[1+(1-r)(2 p(1+t)-1)]$. Then $1 / 4<\tau \leqq p$ and

$$
\begin{equation*}
F(\cdot, r, t)=f\left(q_{t}^{-1}\left(r q_{t}(\cdot)\right) / r \in S_{\mathbf{R}}^{-\tau} \subset S_{\mathbf{R}}^{-p}\right. \tag{3.2}
\end{equation*}
$$

Moreover, $F\left(\cdot, 0^{+}, t\right)=q_{t}$ and $F(\cdot, 1, t)=f$.
Proof. Fix $t \in[1 /(2 p)-1,1]$ and let $d=q_{t}^{-1}\left(r q_{t}(-1)\right)$. Then $q_{t}(d)=$ $-r /(2+2 t)=1 /[(d+1 / d)-2 t]$ and, by proposition 3.1 (iii), we have

$$
\begin{aligned}
F(-1, r, t) & =f(d) / r \geqq q_{1 /(2 p)-1}(d) / r \\
& =1 /\{r[(d+1 / d)+2-1 / p]\}=-\tau \geqq-p .
\end{aligned}
$$

As an immediate consequence we get
Proposition 3.3.
(i) If $f \in S_{\mathbf{R}}^{-p}$ and $1 /(2 p)-1 \leqq t \leqq 1$, then

$$
F(\cdot, r, t)=f-\left[f^{\prime} q_{t} / q_{t}^{\prime}-f\right](1-r)+o(1-r) \in S_{\mathbf{R}}^{-p} \text { as } r \text { tends to } 1
$$

(ii) The chain F satisfies the differential equation

$$
\begin{aligned}
r \partial F / \partial r & =(\partial F / \partial z)\left(q_{t} / q_{t}^{\prime}\right)-F, F\left(z, 0^{+}, t\right) \equiv q_{t}(z) \\
\text { and } F(z, 1, t) & \equiv f(z) .
\end{aligned}
$$

(iii) Let $L \in H^{\prime}(\Delta)$ and suppose that $f \in S_{\mathbf{R}}^{-p}$ is a solution of $\max L^{*}\left(S_{\mathbf{R}}^{-p}\right)$. Then we have $L^{*}(f) \geqq L^{*}\left(f^{\prime} q_{t} / q_{t}^{\prime}\right)$ for all $\left.t \in[1 / 2 p)-1,1\right]$.

The next result is a direct application of Proposition 3.2.
Proposition 3.4. Let $L \in H^{\prime}(\Delta)$ and put $\phi(p)=\max L^{*}\left(S_{\mathbf{R}}^{-p}\right), p>1 / 4$. Then ϕ satisfies locally the Lipschitz condition.
Proof. For $p>1 / 4$, choose $\epsilon>0$ such that $p-\epsilon>1 / 4$. Then $S_{\mathbf{R}}^{-(p-\epsilon)} \subset S_{\mathbf{R}}^{-p}$ and $\phi(p-\epsilon) \leqq \phi(p)$. Let $f \in S_{\mathbf{R}}^{-p}$ be an extremal function for L^{*} (i.e. $\phi(p)=$ $\left.L^{*}(f)\right)$. Put $\tau=p-\epsilon$ and $t=1$ in relation (3.2). Then $r=1-\epsilon /[(4 p-1)(p-\epsilon)] \epsilon$ $(0,1)$ and from Proposition 3.2 we conclude that $F(\cdot, r, 1) \in S_{\mathbf{R}}^{-(p-\epsilon)}$. On the other hand, by Proposition 3.3 (i), we have

$$
\begin{aligned}
0 & \leqq \phi(p)-\phi(p-\epsilon) \leqq \phi(p)-L^{*}(F(\cdot, r, 1) \\
& =L^{*}\left(f^{\prime} q_{1} / q_{1}^{\prime}-f\right)(1-r)+o(1-r),
\end{aligned}
$$

where $r=1-\epsilon /[(4 p-1)(p-\epsilon)]$ tends to 1 as ϵ tends to zero. Therefore $0 \leqq[\phi(p)-\phi(p-\epsilon)] / \epsilon \leqq L^{*}\left(f^{\prime} q_{1} / q_{1}^{\prime}-f\right) /[(4 p-1)(p-\epsilon)]+o(1)=O(1)$ as ϵ tends to 0 .

The class $S_{\mathbf{R}}^{-p}$ is closely related to the class $S_{\mathbf{R}}(M)$ which consists of all mappings in $S_{\mathbf{R}}$ which are bounded by M. Indeed, consider the transformation

$$
\begin{equation*}
g \rightarrow f_{g}=4 p q_{1}(g /(4 p)) . \tag{3.3}
\end{equation*}
$$

Then $f_{g} \in S_{\mathbf{R}}^{-p}$, if and only if $g \in S_{\mathbf{R}}(4 p)$. Tammi [12] has extensively studied the class $S_{\mathbf{R}}(M)$. In particular he derived a Löwner-type differential equation for
a dense subclass of $S_{\mathbf{R}}(M)$ consisting of mappings whose images are the disk $\{w:|w|<M\}$ minus two slits. Applying the transformation (3.3) one gets the differential equation

$$
\begin{aligned}
t . \partial F(z, t) / \partial t & =-F^{2}(z, t)[1+\cos (\theta(t))] /[2 t+[1-\cos (\theta(t))] F(z, t)], \\
F(\cdot, 1 / 4) & =q_{1} \quad \text { and } F(\cdot, p)=f,
\end{aligned}
$$

where $\theta(t)$ is a real continuous function on $[1 / 4, \mathrm{p}]$.
We get the following nontrivial examples of support points.
Theorem 3.5. For $f \in S_{\mathbf{R}}^{-p}$ we have the inequalities

$$
\begin{array}{rlr}
-1-1 /\left(4 p^{2}\right) & \leqq a_{3}(f)-a_{2}(f) / p & \\
& \leqq \begin{cases}1-3 /\left(8 p^{2}\right), & \text { if } 1 / 4 \leqq p \leqq e / 4 \\
1-3 /\left(8 p^{2}\right)+(4 p \sigma-1)^{2} /\left(8 p^{2}\right), & \text { if } p \leqq e / 4,\end{cases}
\end{array}
$$

where σ is the unique solution of the equation $4 p \sigma \ln (\sigma)+1=0$ in the interval $[1 / e, 1)$. The lower bound is reached by the function $q_{1 /(4 p)}$ and the upper bound by the solutions $f=F(\cdot, p)$ of the above Löwner differential equation, where
(i) $\cos (\theta(t)) \equiv 0$ and $a_{2}(f)=2 / e$, if $1 / 4 \leqq p<e / 4$,
(ii) $\cos (\theta(t))=-2 \lambda t,|\lambda| \leqq 2 / e$, and $a_{2}(f)=\lambda+2 / e$, if $p=e / 4$,
(iii) $\cos (\theta(t))=\left\{\begin{array}{l} \pm 4 \sigma t ; 1 / 4 \leqq t \leqq 1 /(4 \sigma) \\ \pm 1 ; 1 /(4 \sigma) \leqq t \leqq p\end{array}\right.$
and $a_{2}(f)=\mp 2 \sigma+2 / e$, if $p>e / 4$
All extremal functions map Δ either
(a) onto the complement of a three-fork slit consisting of the halfline $(-\infty,-p]$ and a bounded symmetric are cutting the interval $(-\infty,-2 p]$ or
(b) onto the complement of three slits consisting of the halfline $(-\infty,-p]$ and two unbounded Jordan arcs which are symmetric with respect to the real axis and which contain no points of \mathbb{R}, or
(c) onto the complement of two slits consisting of the halfline $(-\infty,-p]$ and a two-fork slit which contains a real halfline $[a, \infty)$ for some $a>0$.

Proof of Theorem 3.5. The lower estimate follows immediately from Proposition 3.1 (i) and the inequality $a_{3}(f) \geqq a_{2}^{2}(f)-1, f \in T_{\mathbf{R}}$. Let $f \in S_{\mathbf{R}}^{-p}$ and $g=4 p q_{1}^{-1}(f /(4 p))$. Then $g \in S_{\mathbf{R}}(4 p)$ and $a_{3}(g)=a_{3}(f)-a_{2}(f) / p+5 /\left(16 p^{2}\right)$. Apply now the results of Tammi to $a_{3}(g)$.

Remark. Tammi has also discussed the extremal functions in $S_{\mathbf{R}}(M)$ which correspond to the linear functional $a_{4}(g)$. The homeomorphism (3.3) transforms $a_{4}(g)$ to a concave functional on $S_{\mathbf{R}}^{-p}$.

In what follows, we give some geometric properties of extreme points and support points of $S_{\mathbf{R}}^{-p}$. The next Lemma will be useful later on.

Lemma 3.6. Let $f \in S_{\mathbf{R}}^{-p}, p>1 / 4, L, \in H^{\prime}(\Delta)$ and suppose that there is an infinite number of points $a \in \mathbb{C} \backslash f(\Delta)$ for which
(i) $L^{*}\left(f^{2}(f+p) /(f-a)^{2}\right)=0$
or
(ii) $L^{*}(f(f+p) /(f-a))+c / a=0, c=$ const.
holds. Then $L^{*}(f)=\operatorname{Re}\left\{b_{o}\right\} f(0)+\operatorname{Re}\left\{b_{1}\right\} f^{\prime}(0)$.
Proof. Suppose that (i) holds. Let μ be a representing measure for L^{*} whose support lies in a compact set $K \subset \Delta$. Put $d \mu_{1}(w)=w^{2}(w+p) d \mu\left(f^{-1}(w)\right)$. Then the function

$$
\begin{equation*}
a \rightarrow L^{*}\left(f^{2}(f+p) /(f-a)^{2}\right) \tag{3.4}
\end{equation*}
$$

is analytic in a neighborhood of infinity and μ_{1} is a complex Borel measure with support in $f(K)$. Observe that the function (3.4) vanishes at infinity and that all its Laurent coefficients are zero. In other words, we have

$$
\begin{equation*}
(n-1) \int_{K} f^{n}(z)(f(z)+p) d \mu(z)=(n-1) \int_{f(K)} w^{n-2} d \mu_{1}(w)=0 \tag{3.5}
\end{equation*}
$$

for all $n=2,3, \ldots$
Define now L_{o} by $L_{o}(F)=\int_{f(K)} F(w) d \mu_{1}(w)$ and let $F \in H_{\mathbf{R}}(f(\Delta))$. By Runge's Theorem there is a sequence of polynomials p_{n} which converges uniformly to F on $f(K)$. Replacing p_{n} by p_{n}^{*} defined in (2.7) we may assume that the coefficients of p_{n} are real. From (3.5) we conclude that L_{o} vanishes on $H_{\mathbf{R}}(f(\Delta))$. Put $g_{n}(z)=z^{n} /\left[f^{2}(z)(f(z)+p)\right], n=2,3, \ldots$ Then, $g_{n}\left(f^{-1}\right) \in H_{\mathbf{R}}(f(\Delta))$ and we have

$$
L_{o}\left(g_{n}\left(f^{-1}\right)\right)=\int_{K} g_{n}(z) d \mu_{1}(f(z))=\int_{K} z^{n} d \mu(z)=L^{*}\left(z^{n}\right)=0
$$

for all $n=2,3, \ldots$, which shows the case (i). The proof for the case (ii) is similar.

Proposition 3.7. If f is an extreme point or a support point of $S_{\mathbf{R}}^{-p}, p>1.4$, then $f(\Delta)$ is dense in \mathbb{C}.

Proof. Let $f \in S_{\mathbf{R}}^{-p}$ and suppose that $f(\Delta)$ omits an open set \mathcal{D}. Then there is a closed disk $\{w:|w-a| \leqq \epsilon\} \subset \mathcal{D} \cap\{w: \operatorname{Im}\{w\} \neq 0\}$ and there is a $\delta>0$, such that the functions

$$
\begin{equation*}
\Phi_{j}(w)=w+(-1)^{j} \delta w^{2}(w+p)\left[(w-a)^{-2}+(w-\bar{a})^{-2}\right], j=1,2, \tag{3.6}
\end{equation*}
$$

have the following properties:
(i) They are analytic and univalent in $\{w:|w-a|>\epsilon\} \cap\{w:|w-\bar{a}|>$ $\epsilon\}=\Omega$. Indeed, $\left[\Phi_{j}(w)-\Phi_{j}(\omega)\right] /[w-\omega]=1+\delta . \Xi_{j}(w, \omega)$ where $\Xi_{j}(w, \omega)$ is bounded in $\Omega \times \Omega$.
(ii) They are strictly increasing on \mathbb{R} and $\Phi_{j}^{\prime}(0)=1$.
(iii) $\Phi_{j}(w)>-p$ for all real $w>-p$. Indeed, $\Phi_{j}(-p)=-p, \Phi_{j}^{\prime}(0)>0$ and $\Phi_{j}(w)$ is univalent on the real axis. Therefore, $\Phi_{j}(f) \in S_{\mathbf{R}}^{-p}$ and $f=\left[\Phi_{1}(f)+\right.$ $\left.\Phi_{2}(f)\right] / 2$.

Suppose first that f is an extreme point of $S_{\mathbf{R}}^{-p}$. Then $f^{2}(f+p)\left[(f-a)^{-2}+\right.$ $\left.(f-\bar{a})^{-2}\right] \equiv 0$ on Δ which leads to a contradiction.

Next, suppose that f is a support point of $S_{\mathbf{R}}^{-p}$. Then there is an $L \in H^{\prime}(\Delta)$ for which L^{*} is not constant on $S_{\mathbf{R}}^{-p}$ and

$$
\begin{aligned}
L^{*}(f) & =\max L^{*}\left(S_{\mathbf{R}}^{-p}\right) \geqq L^{*}\left(\Phi_{j}(f)\right) \\
& =L^{*}(f)+2(-1)^{j} \delta \operatorname{Re}\left\{L^{*}\left[f^{2}(f+p) /(f-a)^{2}\right]\right\}
\end{aligned}
$$

This implies that $\operatorname{Re}\left\{L^{*}\left[f^{2}(f+p) /(f-a)^{2}\right]\right\}=0$ for all a in the exterior of $f(\Delta)$. But this is impossible by Lemma 3.6.

Suppose now that D is a simply connected domain of \mathbb{C} and let a and $b, a \neq b$, be in $\mathbb{C} \backslash D$. Then both functions

$$
\begin{equation*}
\Psi_{j}(w)=w+(-1)^{j}[(w-a)(w-b)]^{1 / 2} \tag{3.7}
\end{equation*}
$$

are univalent and analytic on D and they have disjoint images. Historically, L. Brickman [1] has used this two functions to show that extreme points of S are monotonic slit mappings. Later, W. Koepf [6] adapted the method of Brickman to the class $\left(S_{o}\right)_{\mathbf{R}}$. Unfortunately, this method gives not so strong results for the class $S_{\mathbf{R}}^{-p}$. Indeed, if $f \in S_{\mathbf{R}}^{-p}$ and $f(-1)=-p$ in the sense of (1.3), then only one of the two mappings

$$
\left[\Psi_{j}(f)-\Psi_{j}(0)\right] / \Psi_{j}^{\prime}(0), b=\bar{a}
$$

belongs to the class $S_{\mathbf{R}}^{-p}$. However, we have:
Proposition 3.8. Let $f \in S_{\mathbf{R}}^{-p}, p>1 / 4$, and $f(-1)>-p$ in the sense of (1.3). If there is a sequence of nonreal $a_{n} \in \mathbb{C} \backslash f(\Delta)$ which converges to infinity, then f is neither a support point nor an extreme point of $S_{\mathbf{R}}^{-p}$.

Proof. Let $f(-1)=-p_{1}>-p, a \in \mathbb{C} \backslash f(\Delta)$ with $\operatorname{Im}\{a\} \neq 0$, and let

$$
\begin{equation*}
\Phi_{j}(f)=\left[\Psi_{j} j(f)-\Psi_{j}(0)\right] / \Psi_{j}^{\prime}(0), j=1,2 \tag{3.8}
\end{equation*}
$$

where $\Psi_{j}(w)$ is defined in (3.7) with $b=\bar{a}$ and $\left(|a|^{2}\right)^{1 / 2}=|a|$. Then, for $j=1,2$, define $f_{j}=\Psi_{j}(f) \in S_{\mathbf{R}}$. Then $f=\lambda_{1} f_{1}+\lambda_{2} f_{2}, \lambda_{j}=1-(-1)^{j} \operatorname{Re}\{a\} /|a|>0$ and $\lambda_{1}+\lambda_{2}=1$. Since $f_{2}(-1)=\boldsymbol{\Phi}_{2}\left(-p_{1}\right)>-p_{1}>-p$, we conclude that $f_{2} \in S_{\mathbf{R}}^{-p}$. On the other hand, Φ_{1} converges locally uniformly to the identity on a simply connected domain containing $f(\Delta)$ and $\left\{-p_{1}\right\}$ as a tends to infinity. Hence, we have $f_{1}(-1)=\Phi_{1}\left(-p_{1}\right)>-p$ for sufficiently large non real $a \in \mathbb{C} \backslash f(\Delta)$ and $f_{1} \in S_{\mathbf{R}}^{-p}$. This shows that f is not an extreme point of $S_{\mathbf{R}}^{-p}$.

For any $L \in H^{\prime}(\Delta)$ for which L^{*} is not constant on $S_{\mathbf{R}}^{-p}$ we conclude from Proposition 3.7 that $\max L^{*}\left(S_{\mathbf{R}}^{-p}\right)>L^{*}\left(f_{j}\right)$ and therefore f is also not a support point of $S_{\mathbf{R}}^{-p}$.

Remark. Proposition 3.8 is not in contradiction with the examples of support points we have given in Theorem 3.5, since we require here that $f(-1)>-p$.

We present now an analogue of the Goluzin variation (see [5, p. 99] for the general form and p. 106 for the specific choice of $Q(w)$). Let $A_{k}, 1 \leqq k \leqq n$, be n arbitrary complex numbers and let $a_{k}, 1 \leqq k \leqq n$, be n arbitrary nonreal numbers. For $p>1 / 4$, consider the function

$$
\begin{align*}
w^{*}(w, \lambda) & =w+\lambda Q(w), \quad \text { where } \tag{3.9}\\
Q(w) & =\sum_{k=1}^{n} A_{k} \frac{w(w+p)}{w-a_{k}}+\overline{A_{k}} \frac{w(w+p)}{w-\overline{a_{k}}} .
\end{align*}
$$

Then w^{*} is analytic and univalent in w on any domain

$$
\begin{equation*}
\left\{w \in \mathbb{C}:\left|w-a_{k}\right|>\delta \quad \text { and }\left|w-\overline{a_{k}}\right|>\delta, 1 \leqq k \leqq n\right\} \tag{3.10}
\end{equation*}
$$

whenever

$$
\begin{equation*}
|\lambda|<\left[2 \sum_{k=1}^{n}\left|A_{k}\right|\left(1+\left|a_{k}\right|\left|a_{k}+p\right| / \delta^{2}\right)\right]^{-1} . \tag{3.11}
\end{equation*}
$$

Indeed, this follows from

$$
\begin{aligned}
\frac{w^{*}(w, \lambda)-w^{*}(u, \lambda)}{w-u} & =1+\lambda \sum_{k=1}^{n} A_{k}\left(1-\frac{a_{k}\left(a_{k}+p\right)}{\left(w-a_{k}\right)\left(u-a_{k}\right)}\right) \\
& +\overline{A_{k}}\left(1-\frac{\overline{a_{k}}\left(\overline{a_{k}}+p\right)}{\left(w-\overline{a_{k}}\right)\left(u-\overline{a_{k}}\right)}\right) .
\end{aligned}
$$

Let $f \in S_{\mathbf{R}}^{-p}$ and suppose that for some $r, 0<r<1$, all the points a_{k} are in $f(\{z:|z|<r\})$. Then, for sufficiently small $|\lambda|$, the function $w^{*}(w, \lambda)$ is analytic and univalent on the annulus $\{z: r<|z|<1\}$.

Choose n nonreal numbers $z_{k}, 1 \leqq k \leqq n$, in Δ such that $a_{k}=f\left(z_{k}\right)$. Then the function $Q(f) /\left[z \cdot f^{\prime}\right]$ has only simple poles in Δ which lie on the set $\left\{z_{k}\right.$: $1 \leqq k \leqq n\}$. The Goluzin interior variation $f^{\#}$ of f as given in equation 2 in [5, p. 100] takes the form

$$
\begin{equation*}
f^{\#}=f+\lambda \sum_{k=1}^{n}\left[A_{k} H_{a_{k}}+\overline{A_{k}} H_{\overline{a_{k}}}\right]+O\left(\lambda^{2}\right) \in S_{\mathbf{R}}^{-p+O\left(\lambda^{2}\right)}, \lambda \in \mathbb{R}, \lambda \rightarrow 0, \tag{3.12}
\end{equation*}
$$

under the condition that

$$
\begin{equation*}
\operatorname{Re}\left\{\sum_{k=1}^{n} A_{k} H_{a_{k}}^{\prime}(0)\right\}=0 \tag{3.13}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{\zeta}(z)=z f^{\prime}(z)\left(1-z^{2}\right) /[(1-\zeta z)(1-z / \zeta)] \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{\zeta}(z)=f(\zeta)[f(\zeta)+p] G_{\zeta}(z) /\left[\zeta f^{\prime}(\zeta)\right]^{2}+f(z)[f(z)+p] /[f(z)-f(\zeta)] . \tag{3.15}
\end{equation*}
$$

Observe that $H_{\zeta}(z) \in H(\Delta \times \Delta)$ as a function of the variables z and ζ and that $f^{\#}$ is typically real.

From the variation formula (3.12), (3.13) we deduce the following Schiffertype differential equation.

Theorem 3.9. Let f be a support point of $S_{\mathbf{R}}^{-p}, p>1 / 4$, and let $L \in H^{\prime}(\Delta)$ for which L^{*} is not constant on $S_{\mathbf{R}}^{-p}$ and for which $L^{*}(f)=\max L^{*}\left(S_{\mathbf{R}}^{-p}\right)$. Using the notations (3.14) and (3.15) the following conclusions hold:
(i) $g(\zeta)=L^{*}\left(H_{\zeta}\right) / H_{\zeta}^{\prime}(0)$ is constant on Δ.
(ii) For all $\zeta \in \Delta$ we have:

$$
\begin{equation*}
\left\{L^{*}\left(\frac{f(f+p)}{f-f(\zeta)}\right)+\frac{p C}{f(\zeta)}\right\} \frac{f(\zeta)}{f(\zeta)+p}\left[\frac{\zeta f^{\prime}(\zeta)}{f(\zeta)}\right]^{2}+L^{*}\left(G_{\zeta}\right)-C=0 \tag{3.16}
\end{equation*}
$$

(iii) $C=g(0)=2 L^{*}\left(f+p\left[1-\left(1-z^{2}\right) f^{\prime}\right]\right) /\left(1-2 p a_{2}(f)\right.$ whenever $a_{2}(f) \neq$ $1 /(2 p)$. If $a_{2}(f)=1 /(2 p)$, then $L^{*}\left(f+p\left[1-\left(1-z^{2}\right) f^{\prime}\right]\right)=0$.

Proof. Take $n=2$ in (3.12) and (3.13). By Proposition 3.4, the function $\Phi(p)=\max L^{*}\left(S_{\mathbf{R}}^{-p}\right), p>1 / 4$, satisfies the local Lipschitz condition. Since $L^{*}\left(H_{\bar{z}}\right) \equiv \overline{L^{*}\left(H_{z}\right)}$, we get

$$
\begin{aligned}
L^{*}\left(f^{\#}\right) & =\Phi(p)+2 \lambda \operatorname{Re}\left\{L^{*}\left(\sum_{k=1}^{2} A_{k} H_{a_{k}}\right)\right\}+O\left(\lambda^{2}\right) \\
& \leqq \Phi\left(p+0\left(\lambda^{2}\right)\right)=\Phi(p)+0\left(\lambda^{2}\right)
\end{aligned}
$$

as λ tends to zero. Therefore we have

$$
\begin{equation*}
\operatorname{Re}\left\{\sum_{k=1}^{2} A_{k} L^{*}\left(H_{a_{k}}\right)\right\}=0 \quad \text { and } \operatorname{Re}\left\{\sum_{k=1}^{2} A_{k} H_{a_{k}}^{\prime}(0)\right\}=0 \tag{3.17}
\end{equation*}
$$

Next, put in (3.17) $a_{1}=\zeta, a_{2}=\eta, A_{1}=e^{i \alpha}$ and $A_{2}=\gamma e^{i \beta}$, where α, β and γ are real numbers. Then we get

$$
\begin{equation*}
e^{i \alpha} L^{*}\left(H_{\zeta}\right)+e^{-i \alpha} L^{*}\left(H_{\bar{\zeta}}\right)+\gamma e^{i \beta} L^{*}\left(H_{\eta}\right)+\gamma e^{-i \beta} L^{*}\left(H_{\bar{\eta}}\right)=0 \tag{3.18}
\end{equation*}
$$

which holds under the restriction

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \alpha} H_{\zeta}^{\prime}(0)+\gamma e^{i \beta} H_{\eta}^{\prime}(0)\right\}=0 \tag{3.19}
\end{equation*}
$$

Now, we multiply both sides of (3.18) by

$$
2 \operatorname{Re}\left\{e^{i \beta} H_{\eta}^{\prime}(0)\right\}=e^{i \beta} H_{\eta}^{\prime}(0)+e^{-i \beta} H_{\bar{\eta}}^{\prime}(0)
$$

and we use (3.19) in order to eliminate γ. Since α and β are arbitrary real number, we conclude that

$$
H_{\eta}^{\prime}(0) L^{*}\left(H_{\zeta}\right)=H_{\zeta}^{\prime}(0) L^{*}\left(H_{\eta}\right), H_{\bar{\eta}}^{\prime}(0) L^{*}\left(H_{\zeta}\right)=H_{\zeta}^{\prime}(0) L^{*}\left(H_{\bar{\eta}}\right)
$$

and therefore

$$
\left.H_{\zeta}^{\prime}(0)\left\{H_{\eta}^{\prime}(0) L^{*}\left(H_{\bar{\eta}}\right)-H_{\bar{\eta}}^{\prime}(0) L^{*} H_{\eta}\right)\right\}=0 \quad \text { for all } \zeta \text { and } \eta \text { in } \Delta .
$$

The function $H_{\zeta}^{\prime}(0)=f(\zeta)(f(\zeta)+p) /\left(\zeta f^{\prime}(\zeta)\right)^{2}-p / f(\zeta)$ is analytic on Δ and is identically zero if and only if

$$
\begin{equation*}
f(z)=f_{0}(z)=4 p q_{1}(z /(4 p))=z+z^{2} /(2 p)+\ldots \tag{3.20}
\end{equation*}
$$

Observe that f_{0} is bounded and belongs to the class $S_{\mathbb{R}}^{-p}$ but is not a support point of $S_{\mathbb{R}}^{-p}$ (see Proposition 3.7). Hence

$$
H_{\tilde{\eta}}^{\prime}(0) L^{*}\left(H_{\eta}\right) \in \mathbb{R} \quad \text { for all } \eta \in \Delta
$$

On the other hand, $\left.g(\eta)=L^{*} H_{\eta}\right) / H_{\eta}^{\prime}(0)$ is meromorphic and real on Δ and therefore g is constant on Δ.

Corollary 3.10. If f is a support point of $S_{\mathbb{R}}^{-p}, p>1 / 4$, then $\mathbb{C} \backslash f(\Delta)$ is a finite union of analytic arcs.

Proof. Let $f \in \sigma\left(S_{\mathbb{R}}^{-p}\right)$ and let $L \in H^{\prime}(\Delta)$ for which L^{*} is not constant on $S_{\mathbb{R}}^{-p}$ and for which $L^{*}(f)=\max L^{*}\left(S_{\mathbf{R}}^{-p}\right)$. By Lemma 3.6 (ii), the function $b(w)=$ $L^{*}(f(f+p) /(f-w))+p C / w, C$ defined in Theorem 3.9 (iii), is not constant on $\mathbb{C} \backslash f(\Delta)$. Furthermore, $L^{*}\left(G_{\zeta}\right)$ is real on the unit circle $\partial \Delta$. Hence, except for a finite number of points of $\partial \Delta$, the differential equation (3.16) determines a finite system of analytic arcs (see e.g. [3, 5, 7]).
4. A completion of a result of W. Koepf. In this section we weaken the conditions which we have imposed on the mappings in $T_{\mathbf{R}}^{-p}$ and $S_{\mathbf{R}}^{-p}$. We shall no more require that $f^{\prime}(0)=1$, but rather let it be free. There is no essential importance which negative prescribed value $-p$ has to be omitted. Historically, one finds rather the normalization $f(0)=1$ and the omitted point is $w=0$. In concordance with this fact, we shall use the notations:

$$
\begin{align*}
& \left(T_{0}\right)_{\mathbb{R}}=\{f \in H(\Delta): f(0)=1, w=0 \in \mathbb{C} \backslash f(\Delta) \tag{4.1}\\
& \text { and } \operatorname{Im}\{f(z)\} \cdot \operatorname{Im}\{z\}>0 \quad \text { on } \Delta\}, \\
& \left(S_{0}\right)_{\mathbf{R}}=\left\{f \in H_{\mathbb{R}}(\Delta): f \quad \text { univalent on } \Delta, f(0)=1\right. \\
& \text { and } w=0 \in \mathbb{C} \backslash f(\Delta)\}, \\
& \left(S_{0}\right)_{\mathbb{R}}^{+}=\left\{f \in\left(S_{0}\right)_{\mathbb{R}}: f^{\prime}(0)>0\right\} .
\end{align*}
$$

Observe, that $f^{\prime}(x)>0$ for all $x \in(-1,1)$ and all $f \in\left(T_{0}\right)_{\mathbf{R}}$ and that $\left(S_{0}\right)_{\mathbb{R}}$ is not contained in $\left(T_{0}\right)_{\mathbf{R}}$. The following result was shown in [11] but we give a new proof for it.

Theorem 4.1. The following relations hold.

(i) $\mathcal{E}\left(\left(T_{0}\right)_{\mathbf{R}}\right)=\left\{q_{t} / q_{-1}:-1 \leqq t \leqq 1\right\}$,
(ii) $\left(T_{0}\right)_{\mathbf{R}}=\overline{c o}\left\{\left(S_{0}\right)_{\mathbf{R}}^{+}\right\}=\left\{f / q_{-1}: f \in T_{\mathbf{R}}\right\}=\left\{f_{\mu}=\int_{[-1,1]}\left[q_{t} / q_{-1}\right] d \mu(t)\right.$: $\left.\mu \in \mathbb{P}_{[-1,1]}\right\}$.
(iii) Furthermore, we have $f_{\mu}(-1)=\mu(\{-1\})$.

Proof. Let $f \in\left(T_{0}\right)_{\mathbf{R}}$. Then, except for $f \equiv 1$, the function $(f-1) / f^{\prime}(0) \in$ $T_{\mathbf{R}}^{-1 / f^{\prime}(0)}$ and therefore there is a positive measure λ on the Borel σ-algebra over $[-1,1]$ such that for all $r, 0<r<1$,

$$
-1 \leqq f(-r)-1=\int_{[-1,1]} q_{t}(-r) d \lambda(t)=-\int_{[-1,1]} q_{-t}(r) d \lambda(t)
$$

Define λ_{r} by $d \lambda_{r}(t)=q_{-t}(r) d \lambda(t)$. Then λ_{r} is again a positive measure on the Borel σ-algebra over $[-1,1]$ whose total mass is $\lambda_{r}([-1,1]) \leqq 1$. By the Banach-Alaoglu Theorem and by the Riesz representation Theorem for $C^{\prime}([-1,1])$ there exists a Borel measure μ_{1} such that λ_{r} converges to μ_{1} in the weak*-topology as r tends to 1 . (Strictly speaking one should take a weak* convergent sequence of λ_{r} as r tends to 1 . However, by Lemma 2.1, μ_{1} is uniquely determined.) For each fixed $z \in \Delta$ we have

$$
f(z)=1+2 \int_{[-1,1]}(1+t) q_{t}(z) d \lambda_{r}(t)+(\sqrt{r}-1 / \sqrt{r})^{2} \int_{[-1,1]} q_{t}(z) d \lambda_{r}(t) .
$$

Letting r tend to 1 , we get

$$
f(z)=1+2 \int_{[-1,1]}(1+t) q_{t}(z) d \mu_{1}(t)=\int_{[-1,1]}\left[q_{t} / q_{-1}\right](z) d \mu(t),
$$

where $\mu=\mu_{1}+\left[1-\mu_{1}([-1,1])\right] \delta_{-1} \in \mathbb{P}_{[-1,1]}$. Thus,

$$
\left(T_{0}\right)_{\mathbf{R}} \subset \overline{c o}\left\{q_{t} / q_{-1}:-1 \leqq t \leqq 1\right\} \subset\left(T_{0}\right)_{\mathbf{R}} .
$$

Hence, we have

$$
\left(T_{0}\right)_{\mathbb{R}}=\left\{f / q_{-1}: f \in T_{\mathbb{R}}\right\} \quad \text { and } \mathcal{E}\left(\left(T_{0}\right)_{\mathbb{R}}\right)=\left\{f / q_{-1}: f \in \mathcal{E}\left(T_{\mathbb{R}}\right)\right\}
$$

and (i) follows.
Statement (ii) follows from (i) and the facts that $\left(S_{0}\right)_{\mathbb{R}}^{+}$is contained in $\left(T_{0}\right)_{\mathbb{R}}$ which is compact and convex and that $q_{t} / q_{-1}=1+2(1+t) q_{t}$ is univalent on Δ for each $t,-1<t \leqq 1$. Finally, the inequality

$$
\begin{aligned}
& \left|f_{\mu}(x)-\mu(\{-1\})-\int_{[y, 1]}\left[q_{t} / q_{-1}\right](x) d \mu(t)\right| \\
& =\left|\int_{(-1, y)}\left[q_{t} / q_{-1}\right](x) d \mu(t)\right| \leqq \mu((-1, y))
\end{aligned}
$$

holds for all $x \in(-1,0)$ and all $y \in(-1,1)$. Letting first x tend to -1 and then y tend to -1 statement (iii) follows.

For the class $\left(S_{0}\right)_{\mathbf{R}} \mathrm{W}$. Koepf [6] has obtained the following result:
Theorem 4.2. The following relations hold:
(i) $\mathcal{E}\left(\left(S_{0}\right)_{\mathbf{R}}\right)=\left\{q_{t} / q_{-1}:-1<t \leqq 1\right\} \cup\left\{q_{t} / q_{1}:-1 \leqq t<1\right\}$.
(ii) $\sigma\left(\left(S_{0}\right)_{\mathrm{R}}\right) \subset\left\{q_{t} / q_{s}:-1 \leqq s, t \leqq 1, s \neq t\right\}$.

We shall now complete statement (ii) of the above Theorem.
Theorem 4.3. We have $\sigma\left(\left(S_{0}\right)_{\mathbf{R}}\right)=\left\{q_{t} / q_{-1}:-1<t \leqq 1\right\} \cup\left\{q_{t} / q_{1}:-1 \leqq\right.$ $t<1\}=\mathcal{E}\left(\left(S_{0}\right)_{\mathbf{R}}\right)$.

Proof. Let $f \in \sigma\left(\left(S_{0}\right)_{\mathbf{R}}\right)$. If $f^{\prime}(0)>0$, then, by Lemma 2.2 and Theorem 4.1 (i), we conclude that $f \in \sigma\left(\left(T_{0}\right)_{\mathbf{R}}\right) \subset \operatorname{co}\left\{q_{t} / q_{-1}:-1 \leqq t \leqq 1\right\}$. Moreover, since f is univalent, there is a $\lambda \in[0,1)$ and an $s \in(-1,1]$ such that $f=(1-$ $\lambda) q_{s} / q_{-1}+\lambda$. Moreover, there is an $L \in H^{\prime}(\Delta)$ such that $L^{*}(f)=\max L^{*}\left(\left(S_{0}\right)_{\mathbf{R}}\right)$ and L^{*} is not constant on $\left(S_{0}\right)_{\mathbf{R}}$. In particular, we have $L^{*}\left(f-q_{t} / q_{ \pm 1}\right) \geqq 0$ for all $t \in[-1,1]$ which implies that

$$
\begin{equation*}
(1-\lambda)(1+s) L^{*}\left(q_{s}\right)-(\pm 1+t) L^{*}\left(q_{t}\right) \geqq 0 \quad \text { for all } t \in[-1,1] \tag{4.2}
\end{equation*}
$$

Put $t=1$. Then (4.2) becomes $(1-\lambda)(1+s) L^{*}\left(q_{s}\right) \geqq 0$ which is satisfied if either $\lambda=1$ or $L^{*}\left(q_{s}\right) \geqq 0$. The first case is excluded since $f \equiv 1$ is not univalent. Next, put $t=s$. Then (4.2) reduces to $-\lambda(1+s) L^{*}\left(q_{s}\right) \geqq 0$ which holds if either $\lambda=0$ or $L^{*}\left(q_{s}\right) \leqq 0$. Suppose that $\lambda \neq 0$. Then $L^{*}\left(q_{s}\right)=0$ and, by (4.2), we have $(\pm 1-t) L^{*}\left(q_{t}\right) \geqq 0$ for all $t \in[-1,1]$. Therefore, $L^{*}\left(q_{t}\right)=0$ for all $t \in(-1,1)$. By Lemma 2.4, we conclude that L^{*} is constant on $\left(S_{0}\right)_{\mathbf{R}}$. Therefore, the only possible case is $\lambda=0$, i.e. $f=q_{s} / q_{-1}$ for some $s \in(-1,1]$.

Let now $f^{\prime}(0)<0$. Put $f_{1}(z) \equiv f(-z)$ and $L_{1}(f)=L\left(f_{1}\right)$ and apply the above proof. Therefore we have

$$
\sigma\left(\left(S_{0}\right)_{\mathbf{R}}\right) \subset\left\{q_{t} / q_{-1}:-1<t \leqq 1\right\} \cup\left\{q_{t} / q_{1}:-1 \leqq t<1\right\} .
$$

It remains to show that the converse inclusion holds. Fix $s \in(-1,1]$ and consider the continuous linear functional

$$
\begin{equation*}
L(f)=\sum_{k=1}^{n+1} b_{k}(n) a_{k}(f), \tag{4.3}
\end{equation*}
$$

where $-(n-1) /(n+1)<s$ and $L\left(q_{t}\right)=[(n+1) s+n-t]^{n}$. The coefficients $b_{k}(n)$ exist since the polynomials $a_{1}\left(q_{t}\right), a_{2}\left(q_{t}\right), \ldots, a_{n+1}\left(q_{t}\right)$ form an algebraic basis for the linear space of all real polynomials of degree at most n. First, observe that $(n+1) s+n-t>1-t \geqq 0$ for all $t \in[-1,1]$ and that $(1+t)[(n+1) s+n-t]^{n}$ has the unique global maximum at the point $t=s$ on the interval $[-1,1]$. Since $L\left(q_{t} / q_{-1}\right)-L\left(q_{t} / q_{q}\right)=4 L\left(q_{t}\right)>0$, we conclude that

$$
L\left(q_{t} / q_{1}\right) \leqq L\left(q_{t} / q_{-1}\right)=2(1+t) L\left(q_{t}\right) \leqq L\left(q_{s} / q_{-1}\right) \quad \text { for all } t \in[-1,1]
$$

Therefore, $\left\{q_{s} / q_{-1}:-1<s \leqq 1\right\} \subset \sigma\left(\left(S_{0}\right)_{\mathbf{R}}\right)$.
Similarly, for fixed $s \in[-1,1)$ and $(n-1) /(n+1)>s$, we have $-(n+1) s+n+t>1+t \geqq 0, t \in[-1,1]$. Put $L\left(q_{t}\right)=[-(n+1) s+n+t]^{n}$. Then the functional (4.3) has the property

$$
\begin{aligned}
L\left(q_{t} / q_{-1}\right) & \geqq L\left(q_{t} / q_{1}\right)=-2(1-t) L\left(q_{t}\right) \\
& \geqq L\left(q_{s} / q_{1}\right) \text { for all } t \in[-1,1] .
\end{aligned}
$$

Therefore, $\left\{q_{s} / q_{1}:-1 \leqq s<1\right\} \subset \sigma\left(\left(S_{0}\right)_{\mathbf{R}}\right)$ and Theorem 4.3 is established.
5. Extremal problems for the class $T_{\mathbf{R}}^{-p}$. In this section we solve some extremal problems for the class $T_{\mathbf{R}}^{-p}$ of all normalized $\left(f(0)=f^{\prime}(0)-1=0\right)$ typically real functions which omit a given point $-p$ on the negative real axis. Again, $T_{\mathbf{R}}^{-p}$ is empty for $0<p<1 / 4$ and contains only the Koebe mapping $q_{1}(z)=z /(1-z)^{2}$, if $p=1 / 4$. Furthermore, if $1 / 4<s<t$, then $T_{\mathbf{R}}^{-p}$ is strictly included in $T_{\mathbf{R}}^{-t}$ and $T_{\mathbf{R}}^{-\infty}$ is the usual class $T_{\mathbf{R}}$ of all normalized typically real functions. The mappings

$$
q_{t}(z)=z /\left(1-2 t z+z^{2}\right) ; t \in[1 /(2 p)-1,1]
$$

belong to $T_{\mathbf{R}}^{-p}$ and are extreme points and support points for this class. However, there are many other support or extreme points for $T_{\mathbf{R}}^{-p}$ which are different from those for $S_{\mathbf{R}}^{-p}$. The first proposition shows that there is no similar relation to (1.4) for this class.

Proposition 5.1. For each $p>1 / 4$ we have the strict inclusions

$$
\overline{c o}\left\{q_{t}: 1 /(2 p)-1 \leqq t \leqq 1\right\} \subset \overline{c o}\left\{S_{\mathbf{R}}^{-p}\right\} \subset T_{\mathbf{R}}^{-p} .
$$

Proof. Both inclusions are obvious. Let us show that they are strict. For any $f \in T_{\mathbf{R}}$ we have the unique Robertson representation

$$
\begin{equation*}
f(z)=\int_{[0, \pi]} q_{\cos (t)}(z) d \mu(t) \tag{5.1}
\end{equation*}
$$

where $\mu=\mu_{f} \in \mathbb{P}_{[0, \pi]}$. Each μ_{f} is the weak* limit of the sequence $\mu_{n} \in \mathbb{P}_{[0, \pi]}$ defined by

$$
d \mu_{n}=(2 / \pi) \operatorname{Im}\left\{f\left((1-1 / n) e^{i t}\right)\right\} \sin (t) d t, 0 \leqq t \leqq \pi .
$$

(a) The mappings $f_{r}(z)=q_{1}(r z) / r$ belong to $S_{\mathbf{R}}^{-p}$ for all r close to $1,0<$ $r<1$. The unique measure μ of the representation (5.1) for f_{r} is

$$
d \mu_{r}=(2 / \pi) \cdot \operatorname{Im}\left\{q_{1}\left(r e^{i t}\right) / r\right\} \sin (t) d t .
$$

Since $\mu_{r}\left(\cos ^{-1}[-1,1 /(2 p)-1)\right)>0$, we conclude that f_{r} does not belong to $\overline{c o}\left\{q_{t}: 1 /(2 p)-1 \leqq t \leqq 1\right\}$. Also the examples given in Theorem 3.5 show that the first inclusion is strict.
(b) Let $f=(1-\lambda) q_{s}+\lambda q_{t}, 0<\lambda<1,-1<s<1 /(2 p)-1<t<1$, such that $f(-1)=-p$. Then $f \in T_{\mathbf{R}}^{-p} \backslash S$. In particular, f is not an extreme point of the closed convex hull of $S_{\mathbf{R}}^{-p}$ (Krein Milman). Suppose now that f is a convex combination of two other functions f_{1} and f_{2} in $T_{\mathbf{R}}^{-p}$. Then the support of the representing measures (5.1) of both functions consists of at most two points. Since $f_{1}(-1)=f_{2}(-1)=-p$ in the sense of (1.3), we conclude that $f_{1}=f_{s}=f$ and therefore $f \in \mathcal{E}\left(T_{\mathbf{R}}^{-p}\right)$.

In the next theorem we determine the set of all extreme points for the class $T_{\mathbf{R}}{ }^{-p}$.

Theorem 5.2. Let $p>1 / 4$. Then the following relations hold:
(i) $\mathcal{E}\left(T_{\mathbf{R}}^{-p}\right)=\left\{q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}:-1 \leqq s \leqq 1 /(2 p)-1 \leqq t \leqq 1\right\}$.
and hence
(ii) $T_{\mathbf{R}}^{-p}=\left\{f_{\mu}=\int_{E}\left[q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}\right] \cdot d \mu(s, t): \mu \in \mathbb{P}_{E}\right\}$, where $E=\left\{(s, t) \in \mathbb{R}^{2}:-1 \leqq s \leqq 1 /(2 p)-1 \leqq t \leqq 1\right\}$.

Remark. Observe that for every $(s, t) \in E$ we have

$$
q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}=(1-\lambda) q_{s}+\lambda q_{t}
$$

where $\lambda=[1-2 p(1+s)](1+t) /(t-s) \in[0,1]$, if $s<t$, and $\lambda=0$ or 1 if $s=t=$ $1 /(2 p)-1$. Furthermore, if $-1<s \leqq t \leqq 1$, then $q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}(-1)=-p$.

Proof. We have $T_{\mathbf{R}}^{-p}=\left\{f: f / p+1 \in\left(T_{0}\right)_{\mathbf{R}}\right.$ and $\left.f^{\prime}(0)=1\right\}$. Using Theorem 4.1 (ii) and the relation $q_{t} / q_{-1}=1+2(1+t) q_{t}$ we get

$$
\begin{aligned}
& T_{\mathbf{R}}^{-p}=\left\{f_{\mu}=2 p \int_{[-1,1]}(1+t) q_{t} d \mu(t): \mu \in \mathbb{P}_{[-1,1]}\right. \\
& \text { and } \left.2 p \int_{[-1,1]}(1+t) d \mu(t)=1\right\} .
\end{aligned}
$$

Next, we want to apply Lemma 2.3. Since the correspondence $\mu \rightarrow f_{\mu}$ is an affine homeomorphism, we get

$$
\begin{aligned}
& \mathcal{E}\left(T_{\mathbf{R}}^{-p}\right)=\left\{f_{\mu}: \mu \in \mathcal{E}\left\{\nu \in \mathbb{P}_{[-1,1]}\right.\right. \\
& \text { such that } \left.\left.2 p \int_{[-1,1]}(1+t) d \nu(t)=1\right\}\right\} .
\end{aligned}
$$

Putting $\Phi(\nu)=2 p \int_{[-1,1]}(1+t) d \nu(t)$ we get from (2.5) that f is an extreme point of $T_{\mathbf{R}}^{-p}$ if and only if $f=2 p(1-\lambda)(1+s) q_{s}+2 p \lambda(1+t) q_{t}$ under the condition that $f^{\prime}(0)=1=2 p(1-\lambda)(1+s)+2 p \lambda(1+t)$. Without loss of generality we may
assume that $s \leqq t$. The last condition shows that $-1 \leqq s \leqq 1 /(2 p)-1 \leqq t \leqq 1$ and the result follows.

Let $L \in H^{\prime}(\Delta)$ and let L^{*} be as defined in (2.6). Then any linear optimisation problem over the class $T_{\mathbf{R}}^{-p}, M=\max L^{*}\left(T_{\mathbf{R}}^{-p}\right)\left(\min L^{*}\left(T_{\mathbf{R}}^{-p}\right)\right.$ resp. $)$, can be reduced by means of Theorem 5.2 to a classical optimization problem involving a real-valued differentiable function of two real variables, i.e.

$$
M=\max (\min)\{F(s, t):-1 \leqq s \leqq 1 /(2 p)-1 \leqq t \leqq 1\}
$$

where

$$
\begin{equation*}
F(s, t)=L^{*}\left(q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}\right) \tag{5.2}
\end{equation*}
$$

In all the calculations it is convenient to use the following relations:

$$
\begin{align*}
& \left(q_{t}-q_{s}\right) /(t-s)=2 q_{s} q_{t}, \quad q_{t} / q_{s}=1+2(t-s) q_{t} \tag{5.3}\\
& \partial^{n}\left(q_{t}\right) / \partial t^{n}=2^{m} n!q_{t}^{n+1}, \quad q_{t}^{\prime}=\left(z^{-2}-1\right) q_{t}^{2} \\
& \left((1+t) q_{t}-(1+s) q_{s}\right) /(t-s)=q_{s} q_{t} / q_{-1} \\
& \left.(t-s) F(s, t)=[1-2 p(1+s)](1+t) L^{*} q_{t}\right) \\
& \quad-[1-2 p(1+t)](1+s) L^{*}\left(q_{s}\right) .
\end{align*}
$$

The classical necessary and sufficient conditions for a local maximum (local.minimum resp.) of F are summarized in the Lemma below.

Lemma 5.3. Let $J(t)=L^{*}\left(q_{t}\right)$. Then the following statements hold.
(i) If (s, t) is a critical point of F in $\{(s, t):-1<s<1 /(2 p)-1<t<1\}$, then it is a solution of the two equations

$$
\begin{equation*}
(J(t)-J(s)) /(t-s)=J^{\prime}(t)(1+t) /(1+s)=J^{\prime}(s)(1+s) /(1+t) \tag{5.4}
\end{equation*}
$$

(ii) Let $(s, t),-1<s<1 /(2 p)-1<t<1$, be a critical point of F. Then (s, t) is a local maximum (local minimum resp.) of F if

$$
\begin{align*}
& (1+s) J^{\prime \prime}(s)+2 J^{\prime}(s)<0 \quad \text { and }(1+t) J^{\prime \prime}(t)+2 J^{\prime}(t)<0 \tag{5.5}\\
& \left((1+s) J^{\prime \prime}(s)+2 J^{\prime}(s)>0 \quad \text { and }(1+t) J^{\prime \prime}(t)+2 J^{\prime}(t)>0 \text { resp. }\right) \tag{5.6}
\end{align*}
$$

(iii) If s is a critical point of $G(s)=F(s, 1),-1<s<1 /(2 p)-1$, then it is a solution of the equation:

$$
\begin{equation*}
(J(1)-J(s)) /(1-s)=J^{\prime}(s)(1+s) / 2 \tag{5.7}
\end{equation*}
$$

If, in addition, $(1+s) J^{\prime \prime}(s)+2 J^{\prime}(s)<0(>0$ resp. $)$, then s is a local maximum (local minimum resp.) of G.

In Proposition 5.1 we have seen that the convex hull of $S_{\mathbf{R}}^{-p}$ is contained in $T_{\mathbf{R}}^{-p}$ but there are functions in $T_{\mathbf{R}}^{-p}$ which do not belong to the convex closure of $S_{\mathbf{R}}^{-p}$. The next Proposition is an easy application of Lemma 5.3 and could also be shown by the same way as Proposition 3.1 (iii).

Proposition 5.4. If $f \in T_{\mathbf{R}}^{-p}, p \geqq 1 / 4$, then we have for all $x,-1<x<1$, the sharp inequalities:

$$
q_{1 /(2 p)-1}(x) \leqq f(x) \leqq q_{1}(x) .
$$

Proof. The upper bound holds for all functions in $T_{\mathbf{R}}$. Fix $x \in(-1,0) \cup$ $(0,1)$ and put $L^{*}(f)=f(x)$. Condition (5.4) becomes

$$
\begin{aligned}
\left(q_{t}(x)-q_{s}(x)\right) /(t-s) & =2 q_{s}(x) q_{t}(x)=2 q_{t}^{2}(x)(1+t) /(1+s) \\
& =2 q_{s}^{2}(x)(1+s) /(1+t)>0
\end{aligned}
$$

which implies that $q_{t}(x)(1+t)=q_{s}(x)(1+s)$. But there is no point $(s, t),-1<$ $s<1 /(2 . p)-1<t<1$ such that

$$
\left((1+t) q_{t}(x)-(1+s) q_{s}(x)\right) /(t-s)=q_{s}(x) q_{t}(x) / q_{-1}(x)=0
$$

In other words, there is no critical point in $-1<s<1 /(2 p)-1<t<1$. On the boundary part $\{(s, 1):-1 \leqq s \leqq 1 /(2 p)-1\}$ the function $G(s)=F(s, 1)$ is a homography of the variable s. Therefore, G has no critical point on $\{(s, 1)$: $-1<s<1 /(2 p)-1\}$. The same fact holds for the function $H(t)=F(-1, t)=$ $J(t)$ on the boundary part $\{(-1, t): 1 /(2 p)-1 \leqq t \leqq 1\}$. Observe furthermore that $F(s, 1 /(2 p)-1) \equiv F(1 /(2 p)-1, t) \equiv q_{1 /(2 p)-1}(x)$. Therefore, the extremal functions are q_{1} and $q_{1 /(2 p)-1}$. The first gives the maximum value and the second the minimum value of $f(x)$.

Theorem 5.5. Fix $p>1 / 4$ and $z \in \Delta, \operatorname{Im}\{z\} \neq 0$. Then the set

$$
\begin{equation*}
E=\left\{w=f(z): f \in T_{\mathbf{R}}^{-p}\right\} \tag{5.8}
\end{equation*}
$$

is the closed circular lens which is bounded by the two arcs

$$
\begin{aligned}
& \gamma_{1}=\left\{q_{t}(z): 1 /(2 p)-1 \leqq t \leqq 1\right\} \quad \text { and } \\
& \gamma_{2}=\left\{q_{1}(z) q_{s}(z) / q_{4 p(1+s)-1}(z):-1 \leqq s \leqq 1 /(2 p)-1\right\} .
\end{aligned}
$$

Furthermore, γ_{2} is tangent to the straightline segment from $q_{-1}(z)$ to $q_{1}(z)$ at the point $q_{1}(z)$.

Proof. Consider the functional $L(f)=e^{i \alpha} f(z)$ where α is a real number. The equations (5.4) lead to the equalities

$$
\operatorname{Re}\left\{e^{i \alpha} q_{s}(z) q_{t}^{2}(z) / q_{-1}(z)\right\}=\operatorname{Re}\left\{e^{i \alpha} q_{t}(z) q_{s}^{2}(z) q_{-1}(z)\right\}=0 .
$$

Hence, $q_{s}(z) / q_{t}(z) \in \mathbb{R}$. Since $q_{s}(z)$ and $q_{t}(z)$ lie on a circle passing through the origin, this situation is impossible for $t \neq s$. Therefore, there is no critical point of F in $-1<s<1 /(2 p)-1<t<1$. On the other hand, through each boundary point of the compact convex set E defined by (5.8) passes a straight line which supports E. Thus, by theorem 5.2 (i),

$$
\begin{aligned}
E & =c o\left\{\left[q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}\right](z):(s, t) \in \partial([-1,1 /(2 p)-1]\right. \\
& \times[1 /(2 p)-1,1])\} \\
& =c o\left\{\gamma_{1} \cup \gamma_{2}\right\} . \quad \text { Finally, } \gamma_{1} \cup \gamma_{2}=\partial E .
\end{aligned}
$$

The next Theorem gives estimates for the derivative of f at a given point in $(-1,1)$.

Theorem 5.6. Let $p>1 / 4$ and let x_{o} be the unique solution in $(-1,0)$ of $x_{o}+1 / x_{o}=-1-(1+2 / p)^{1 / 2}$. Put $s=\left[(x+1 / x)^{2}+2(x+1 / x)-4\right] / 4$. Iff $\in T_{\mathrm{R}}^{-p}$, then
(i) $q_{1 /(2 p)-1}^{\prime}(x) \leqq f^{\prime}(x) \leqq q_{1}^{\prime}(x)$, if $0 \leqq x<1$.
(ii) $q_{1}^{\prime}(x) \leqq f^{\prime}(x) \leqq q_{1 /(2 p)-1}^{\prime}(x)$, if $x_{o} \leqq x \leqq 0$.
(iii) $q_{1}^{\prime}(x) \leqq f^{\prime}(x) \leqq\left[q_{1} q_{s} / q_{4 p(1+s)-1}\right]^{\prime}(x)$, if $-1<x \leqq x_{o}$.

Proof. First observe that $x f^{\prime}(x) \leqq x q_{1}^{\prime}(x)$ for all $x \in(-1,1)$. Let $L(f)=$ $f^{\prime}(x),-1<x<1, x \neq 0$, and put $J(t)=q_{t}^{\prime}(x)=\left(x^{-2}-1\right) q_{t}^{2}(x)$. We now show that $F(s, t)$ has no critical points in $-1<s<1 /(2 p)-1<t<1$. Indeed, Condition (5.4) becomes

$$
\begin{aligned}
\left(q_{t}^{2}(x)-q_{s}^{2}(x)\right) /(t-s) & =2 q_{s}(x) q_{t}(x)\left[q_{s}(x)+q_{t}(x)\right] \\
& =4 q_{t}^{3}(x)(1+t) /(1+s)=4 q_{s}^{3}(x)(1+s) /(1+t)
\end{aligned}
$$

which implies that $\left[q_{s}(x) q_{t}(x)\left(q_{s}(x)+q_{t}(x)\right)\right]^{2}=4 q_{s}^{3}(x) q_{t}^{3}(x)$ or $\left[q_{s}(x) q_{t}(x)\left(q_{s}(x)-\right.\right.$ $\left.\left.q_{t}(x)\right)\right]^{2}=0$ which leads to a contradiction for $s \neq t$. Therefore there are no critical points in $-1<s<1 /(2 p)-1<t<1$. Consider now the function $H(t)=F(-1, t)=J(t)$ on the boundary part $\{(-1, t): 1 /(2 p)-1 \leqq t \leqq 1\}$. Since $x J^{\prime}(t)>0$ for all $x \in(-1,1) \backslash\{0\}$, we have

$$
q_{1 /(2 p)-1}^{\prime}(x)=J(1 /(2 p)-1) \leqq J(t) \leqq J(1)=q_{1}^{\prime}(x), \quad \text { if } 0<x<1
$$

and

$$
q_{1 /(2 p)-1}^{\prime}(x)=J(1 /(2 p)-1) \geqq J(t) \geqq J(1)=q_{1}^{\prime}(x), \quad \text { if }-1<x<0 .
$$

Consider now the function $G(s)=F(s, 1)$ on the boundary part $\{(s, 1):-1 \leqq$ $s \leqq 1 /(2 p)-1\}$. Then the condition (5.4) becomes

$$
\begin{equation*}
q_{1}(x)\left[q_{1}(x)+q_{s}(x)\right]=(1+s) q_{s}^{2}(x),-1<s<1 /(2 p)-1 . \tag{5.9}
\end{equation*}
$$

Substituting $Q=q_{1}(x) / q_{s}(x)$ in (5.9) we get $Q(Q+1)=1+s$. Since $Q>0$, we obtain $Q=\left[-1+(1+4(1+s))^{1 / 2}\right] / 2$. Put $w=(x+1 / x) / 2$. Then $|w| \geqq 1$ and

$$
5+4 s=(2 Q+1)^{2}=[2(w-s) /(w-1)+1]^{2},
$$

and therefore

$$
(s-1)\left(s-w^{2}-w+1\right)=0 .
$$

Since $-1<s<1 /(2 p)-1$, the only possible solution is $s^{*}=w^{2}+w-1$ which implies that $-\left[1+(1+2 / p)^{1 / 2}\right] / 2<w<-1$ or $-1<x<x_{o}$. Therefore, if $x_{o} \leqq x<1$, the only extremal functions are $q_{1 /(2 p)-1}$ and q_{1} and the statements (i) and (ii) are proved.

It remains the case (iii). For all $x \in(-1,0)$, we have

$$
\left(1+s^{*}\right) J^{\prime \prime}\left(s^{*}\right)+2 J^{\prime}\left(s^{*}\right)=8\left(x^{-2}-1\right) q_{s^{*}}^{3}(x)\left[3\left(1+s^{*}\right) q_{s^{*}}(x)+1\right]<0 .
$$

Therefore, the function $G(s)$ has a local maximum at s^{*} and we have the inequalities

$$
\begin{aligned}
q_{1}^{\prime}(x) & \leqq f^{\prime}(x) \leqq \max \left\{q_{1 /(2 p)-1}^{\prime}(x),\left[q_{1} q_{s^{*}} / q_{4 p\left(1+s^{*}\right)-1}\right]^{\prime}(x)\right\} \\
& -1<x \leqq x_{o}
\end{aligned}
$$

It remains to show that for all $x,-1<x \leqq x_{o}$,

$$
\begin{equation*}
\left[q_{1} q_{s^{*}} / q_{4 p\left(1+s^{*}\right)-1}\right]^{\prime}(x) \geqq q_{1 /(2 p)-1}^{\prime}(x) \tag{5.10}
\end{equation*}
$$

For convenience put $u=-w$ and $m=1 /(2 p)-1$. Then we have $s^{*}=u^{2}-u-1$ and $1<u<\left[1+(1+2 / p)^{1 / 2}\right] / 2$. First, observe that

$$
\begin{equation*}
q_{1} q_{s^{*}} / q_{4 p\left(1+s^{*}\right)-1}=(1-\lambda) q_{s^{*}}+\lambda q_{1} \tag{5.11}
\end{equation*}
$$

where $\lambda=\left[2-4 p\left(1+s^{*}\right)\right] /\left(1-s^{*}\right)=[2-4 p u(u-1)] /[(1+u)(2-u)] \in(0,1)$. Using the fact that $u+s^{*}=u^{2}-1$, we are lead to show that

$$
\left[(1-\lambda)+\lambda(u-1)^{2}\right] /\left(u^{2}-1\right)^{2}-1 /(u+m)^{2} \geqq 0
$$

But

$$
\begin{aligned}
{\left[(1-\lambda)+\lambda(u-1)^{2}\right] /\left(u^{2}-1\right)^{2} } & =[1-\lambda u(2-u)] /\left(u^{2}-1\right)^{2} \\
& =\left(4 p u^{2}-1\right) /\left[\left(u^{2}-1\right)(u+1)^{2}\right] .
\end{aligned}
$$

From the identity

$$
\left(4 p u^{2}-1\right)(u+m)^{2}-\left(u^{2}-1\right)(u+1)^{2}=(4 p-1)\left(u^{2}-u-1-m\right)^{2}
$$

we conclude that (5.10) holds. Equality holds if and only if $x=x_{o}$.
The following Lemma will be useful for our next result.
Lemma 5.7. For all positive integers and all $x \in(o, \pi)$ we have

$$
\begin{equation*}
\sin (n x) /[n \sin (x)]<[2+\cos (n x)] /[2+\cos (x)] \tag{5.12}
\end{equation*}
$$

Proof. Put $u(x)=\sin (x) /[x(2+\cos (x))]$ and $v(x)=x u(x)$. Since

$$
\left[u^{\prime}(x) x^{2}(2+\cos (x))^{2}\right]^{\prime}=2 \cdot \sin (x)[\sin (x)-x]<0
$$

we conclude that $u^{\prime}(x)<0$ for all $x \in(0, \pi)$ and therefore $u(x)$ is strictly decreasing on $[0, \pi]$. Moreover, $v(x)$ is strictly increasing on $[0,2 \pi / 3]$ and decreasing on $[2 \pi / 3, \pi]$. Therefore, for $0<x \leqq \pi / n$, we have:

$$
\begin{align*}
\sin (n x) /[2+\cos (n x)] & =v(n x)=n x u(n x)<n x u(x)=n v(x) \tag{5.13}\\
& =n \sin (x) /[2+\cos (x)] .
\end{align*}
$$

Next we show that (5.12) holds for all $x \in[\pi(n-1) / n, \pi)$. If n is even and $\pi(n-1) / n \leqq x<\pi$, then

$$
\sin (n x) /[n \sin (x)]=-\sin (n(\pi-x)) /[n \sin (\pi-x)] \leqq 0
$$

For odd n and $\pi(n-1) / n \leqq x<\pi$ we have $\cos (x)<\cos (n x)$ and, according to (5.13), we get

$$
\begin{aligned}
\sin (n x) /[n \sin (x)] & =\sin (n(\pi-x)) /[n \sin (\pi-x)] \\
& <[2+\cos (n(\pi-x))] /[2+\cos (\pi-x)] \\
& =[2-\cos (n x)] /[2-\cos (x)] \\
& <[2+\cos (n x)] /[2+\cos (x))] .
\end{aligned}
$$

Observe also that it is sufficient to show (5.12) for the subset of $x \in(0, \pi)$ for which $\sin (n x) \geqq 0$, i.e. if the integer part of $n x / \pi$ is even. Let now $\pi / n<x<$ ($n-1$) π / n be fixed and let the integer part of $n x / \pi$ be equal to 2 k where k is an integer in $(0,(n-1) / 2)$. Then we have $0 \leqq x-2 k \pi / n<\pi / n$ and, by (5.13), we conclude that

$$
v(n x)=v(n(x-2 \pi k / n)) \leqq n v(x-2 \pi k / n)<n v(\pi / n) .
$$

If $x \in(\pi / n, 2 \pi / 3$], then, by the monotonicity of v we have $v(n x)<n v(\pi / n)<$ $n v(x)$. Similarly, if $x \in(2 \pi / 3, \pi-\pi / n)$, then

$$
n v(x)>n v(\pi-\pi / n) \geqq n v(\pi / n)>v(n x) .
$$

This completes the proof.

In what follows, we are interested in sharp estimates of some coefficients of functions in the class $T_{\mathbf{R}}{ }^{-p}$. Using the same proof as for Proposition 3.1 (i) and (ii) we have

Proposition 5.8. If $f \in T_{\mathbf{R}}^{-p}, p \geqq 1 / 4$, then the following sharp estimates hold:
(i) $2 \geqq a_{2}(f) \geqq-2+1 / p$
(ii) $3 \geqq a_{e}(f) \geqq \begin{cases}(1-1 / p)(3-1 / p), & \text { if } 1 / 4 \leqq p \leqq 1 / 2 . \text { The extremal } \\ -1, & \text { if } p \geqq 1 / 2\end{cases}$ functions are $q_{1 /(2 p)+1}$ or q_{0} for the minimum and q_{1} for the maximum.

Evidently, $a_{n}(f) \leqq n$ for all $n, \in \mathbb{N}$, since $q_{1} \in T_{\mathbf{R}}^{-p}$ for all $p \geqq 1 / 4$. The situation is quite different for the minimum of $a_{4}(f)$. We shall use the same method as we have applied for the previous Theorems. Put $J(t)=a_{n}\left(q_{t}\right)$ and

$$
\begin{equation*}
F(s, t)=a_{n}\left(q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}\right)=(1-\lambda) a_{n}\left(q_{s}\right)+\lambda a_{n}\left(q_{t}\right), \tag{5.14}
\end{equation*}
$$

where $\lambda=[1-2 p(1+s)](1+t) /(t-s) \in[0,1]$ and $-1 \leqq s \leqq 1 /(2 p)-1 \leqq t \leqq 1$.
Lemma 5.9. Let $p>1 / 4$ and put $A_{n}(p)=\min \left\{a_{n}\left(q_{t}\right):(2 p)-1 \leqq t \leqq 1\right\}$. Denote by B the set of all critical points of (5.14) in the open rectangle $\{(s, t)$: $-1<s<1 /(2 p)-1<t<1\}$. Then we have:

$$
\min \left\{a_{n}\left(T_{\mathbf{R}}^{-p}\right)\right\}=\min \left\{A_{n}(p), \min \{F(s, t):(s, t) \in B\}\right\}
$$

Proof. First, observe that $F(-1, t)=a_{n}\left(q_{t}\right), F(s, 1 /(2 p)-1)=F(1 /(2 p)-$ $1, t)=a_{n}\left(q_{1 /(2 p)-1}\right)$. Put $s=\cos (x)$. Then, by Lemma 5.7, we conclude that

$$
\begin{aligned}
{[\partial F / \partial s](s, 1) } & =(4 p-1) n(2+\cos (x)) \\
& \times\left\{\frac{\sin (n x)}{\operatorname{nsin}(x)}-\frac{2+\cos (n x)}{2+\cos (x)}\right\}<0
\end{aligned}
$$

for all $x \in(0, \pi)$.
In contrast to the cases of $\min \left\{a_{2}\left(T_{\mathrm{R}}^{-p}\right)\right\}$ and $\min \left\{a_{3}\left(T_{\mathrm{R}}^{-p}\right)\right\}$ we get for the problem $\min \left\{a_{4}\left(T_{\mathbf{R}}^{-p}\right)\right\}$ extremal functions which are not univalent for some values of p.
Theorem 5.10. If $f \in T_{\mathbf{R}}^{-p}, p>1 / 4$, then we have the sharp estimate

$$
a_{4}(f) \geqq \begin{cases}4 m\left(2 m^{2}-1\right), & \text { if } 1 / 4<p \leqq 3-\sqrt{7} \text { or } p \geqq 3+\sqrt{7} \\ -1-p / 4, & \text { if } 3-\sqrt{7} \leqq p \leqq 3+\sqrt{7}\end{cases}
$$

where $m=1 /(2 p)-1$. The extremal function is q_{m} for the upper case and $q_{s^{*}} q_{t^{*}} / q_{2 p\left(1+s^{*}\right)\left(1+t^{*}\right)-1}$ for the lower case where $s^{*}=-(1+\sqrt{7}) / 4$ and $t^{*}=$ $(\sqrt{7}-1) / 4$.

Proof. Put $J(t)=a_{4}\left(q_{t}\right)=4 t\left(2 t^{2}-1\right)$ and $Y(s, t)=(1+s)(1+t)(J(t)-$ $J(s)) /(t-s)$. Then $Y(t, t)=(1+t)^{2} J^{\prime}(t)$ and (5.4) can be written in the form

$$
Y(s, t)=Y(t, t)=Y(s, s),-1<s<1 /(2 p)-1<t<1 .
$$

or

$$
\begin{align*}
{[Y(s, t)-Y(t, t)] /[(t-s)(1+t)] } & =[Y(s, t)-Y(s, s)] /[(t-s)(1+s)] \tag{5.4"}\\
& =0,-1<s<1 /(2 p)-1<t<1 .
\end{align*}
$$

But $Y(s, t)=4(1+s)(1+t)\left[2\left(t^{2}+t s+s^{2}\right)-1\right]$ and, by $\left(5.4^{\prime \prime}\right)$, the critical points in $\{(s, t):-1<s<1 /(2 p)-1<t<1\}$ have to satisfy the equations

$$
\begin{aligned}
& 2(1+s)(t-s)-6 t(1+s+t)+1=0, \\
& 2(1+t)(t-s)+6 s(1+s+t)-1=0 .
\end{aligned}
$$

The only critical point in $\{(s, t):-1<s<1 /(2 p)-1<t<1\}$ is

$$
s^{*}=-(1+\sqrt{7}) / 4 \quad \text { and } t^{*}=(\sqrt{7}-1) / 4
$$

which is, by (5.6), a local minimum provided that $3-\sqrt{7}<p<3+\sqrt{7}$. The correspondent value for a_{4} is $F\left(s^{*}, t^{*}\right)=-(p+4) / 4=-1-1 /[8(m+1)]$. Let $A_{4}(p)$ be as in Lemma 5.9 and put $m=1 /(2 p)-1$. Then we get

$$
A_{4}(p)= \begin{cases}4 m\left(2 m^{2}-1\right), & \text { if } 1 / 4<p \leqq(6-\sqrt{6}) / 10 \\ & \text { or } p \leqq(3+\sqrt{6}) / 2 \\ -4 \sqrt{6} / 9, & \text { if }(6-\sqrt{6}) / 10 \leqq p \leqq(3+\sqrt{6}) / 2\end{cases}
$$

Next, observe that

$$
4 m\left(2 m^{2}-1\right)+1+1 /[8(m+1)]=\left(8 m^{2}+4 m-3\right)^{2} /[8(m+1)] \geqq 0 .
$$

Furthermore, we have $-1-p / 4<-4 \sqrt{6} / 9$, whenever $p \geqq 3-\sqrt{7}$, and the interval $[(6-\sqrt{6}) / 10,(3+\sqrt{6}) / 2]$ is contained in the interval $[3-\sqrt{7}, 3+\sqrt{7}]$. By Lemma 5.9, we conclude that for the case $3-\sqrt{7}<p<3+\sqrt{7}$ the function F attains its global minimum at the point $\left(s^{*}, t^{*}\right)$. For the remaining values of p the extremal function is q_{m}.

It is a natural question to ask under what conditions the extremal functions are univalent. The following Lemma gives a partial answer to it.
Lemma 5.11. Let $L \in H^{\prime}(\Delta)$ and $J(t)=L^{*}\left(q_{t}\right),-1 \leqq t \leqq 1$. Suppose that there is a $t^{*} \in[-1,1)$ such that J is convex and increasing on $\left[t^{*}, q\right]$ and J attains the global minimum at t^{*}. Then

$$
\min L^{*}\left(T_{\mathbf{R}}^{-p}\right)=\min L^{*}\left(S_{\mathbf{R}}^{-p}\right)=\min \left\{L^{*}\left(q_{t}\right): 1 /(2 p)-1 \leqq t \leqq q\right\}
$$

for all $p>1 / 4$.

Proof. Let $m=1 /(2 p)-1$ be fixed. If $-1<m \leqq t^{*}$, then $q_{t^{*}} \in S_{\mathbf{R}}^{-p}$ and $J\left(t^{*}\right)=\min L^{*}\left(T_{\mathrm{R}}\right) \leqq \min L^{*}\left(T_{\mathrm{R}}^{-p}\right) \leqq \min L^{*}\left(S_{\mathrm{R}}^{-p}\right) \leqq J\left(t^{*}\right)$. Hence, the result follows for this case. It remains to verify the case $-1 \leqq t^{*} \leqq m<1$. Consider the linear functional $K(f)=a_{2}(f) / 2+i . L^{*}(f), f \in H(\Delta)$. Since $K\left(q_{t}\right)=t+i J(t)$, we conclude from Proposition 5.8 that $K\left(T_{\mathbb{R}}^{-p}\right)$ lies in the strip $\{w: m \leqq \operatorname{Re}\{w\} \leqq 1\}$. Furthermore, Theorem 5.2 and the above assumptions on t^{*} imply that $K\left(T_{\mathbf{R}}^{-p}\right)$ is contained in the set $\{w: m \leqq \operatorname{Re}\{w\} \leqq 1$ and $\operatorname{Im}\{w\} \geqq J(\operatorname{Re}\{w\})\}$. Therefore, we get

$$
\begin{aligned}
J(m) & \leqq \min \left\{\operatorname{Im}\{w\}: w \in K\left(T_{\mathbf{R}}^{-p}\right)\right\}=\min L^{*}\left(T_{\mathbf{R}}^{-p}\right) \\
& \leqq \min L^{*}\left(S_{\mathbf{R}}^{-p}\right) \leqq L^{*}\left(q_{m}\right)=J(m) .
\end{aligned}
$$

The next result is an application of the above Lemma.
Theorem 5.12. For all odd integers $n \geqq 3$ and all $p>1 / 4$, we have $\min a_{n}\left(T_{\mathbf{R}}^{-p}\right)=\min a_{n}\left(S_{\mathbf{R}}^{-p}\right)=\min \{\sin (n x(/ \sin (x): 1 /(2 p)-\leqq \cos (x) \leqq 1\}$.

Proof. Put $t=\cos (x), t_{k}=\cos \left(x_{k}\right)$ and $x_{k}=k \pi / n, k=1,2, \ldots, n-1$. It is sufficient to check that the polynomial

$$
J(t)=a_{n}\left(q_{t}\right)=2^{n-1} \prod_{k=1}^{n-1}\left(t-t_{k}\right)=\omega(x)=\sin (n x) / \sin (x)
$$

satisfies Lemma 5.11 for a suitable t^{*}. For $n=3, J(t)$ is a convex parabole. If $n=5$, then $J(t)=16 t^{4}-12 t^{2}+1$ satisfies Lemma 5.11 with $t^{*}=\sqrt{6} / 4$. Let now $n \geqq 7$. Then $J(-t)=J(t)$ and $J^{\prime}(t)$ has exactly $n-2$ distinct zeros $s_{k} \in\left(t_{k+1}, t_{k}\right), k=1,2, \ldots, n-2$, on the interval $(-1,1)$. Moreover, $J^{\prime \prime}(t)$ has exactly $n-3$ distinct zeros $r_{k} \in\left(s_{k+1}, s_{k}\right), k=1,2, \ldots, n-3$, on $(-1,1)$. Thus we conclude $J>0$ on ($\left.t_{1}, 1\right], J^{\prime}>0$ on ($\left.s_{1}, 1\right]$ and $J^{\prime \prime}>0$ on $\left(r_{1}, 1\right]$. Put $t^{*}=s_{1}$. Then, J is convex and increasing on $\left(t^{*}, 1\right)$. It remains to show that the global minimum of J is attained at t^{*}. Observe that the local minima of J are at the points $s_{2 k-1}=\cos \left(x_{2 k-1}^{*}\right), x_{2 k-1}<x_{2 k-1}^{*}<x_{2 k}$. By the symmetry it is sufficient to check the interval $0<x<\pi / 2$. Put $\xi_{2 k-1}=x_{2 k-1}^{*}-2(k-1) \pi / n \in$ $\left(x_{1}, x_{2}\right)$. Then we get

$$
\omega\left(x_{2 k-1}^{*}\right)=\sin \left(n \xi_{2 k-1}\right) / \sin \left(x_{2 k-1}^{*}\right) \geqq \sin \left(n \xi_{2 k-1}\right) / \sin \left(\xi_{2 k-1}\right) \geqq \omega\left(x_{1}^{*}\right)
$$

and Theorem 5.12 is shown.
The problem of sharp lower bounds for even coefficients of functions in $S_{\mathbf{R}}^{-p}$ is still open. However, for p large enough (depending on n), there is a $q_{t^{*}}$ which minimizes $a_{n}(f)$.

Theorem 5.13. For every $L \in H^{\prime}(\Delta)$ there is a constant p_{L} such that for all $p>p_{L}$ we have $\min L^{*}\left(T_{\mathbf{R}}^{-p}\right)=\min L^{*}\left(S_{\mathbf{R}}^{-p}\right)=\min \left\{L^{*}\left(q_{t}\right): 1 /(2 p)-1 \leqq t \leqq 1\right\}$.

Proof. Let $J(t)=L^{*}\left(q_{t}\right),-1 \leqq t \leqq 1$, and suppose that J attains its global minimum at a point $t^{*} \in(-1,1]$. Then Theorem 5.13 holds for $p_{L}=1 /\left(2+2 t^{*}\right)$. Assume therefore that $t^{*}=-1$ is the only global minimum of J. We shall proceed in two steps.

Step 1. Denote by B the set of all critical points of the function $F(s, t)=$ $L^{*}\left(q_{s} q_{t} / q_{2 p(1+s)(1+t)-1}\right)$ on the domain $\{(s, t):-1<s<t<1\}$. Suppose first that B is nonempty. Then $J^{\prime \prime}$ is not identical zero on $[-1,1]$. We want to show that $s_{o}=\inf \{s:(s, t) \in B\}>-1$. Assume that the contrary holds. Then there is sequence $\left(s_{n}, t_{n}\right) \in B$ such that $\lim _{n \rightarrow \infty} s_{n}=-1$ and $\lim _{n \rightarrow \infty} t_{n}=\tau \in[-1,1]$. The case $\tau \neq-1$ is excluded. Indeed, if $\tau \neq-1$, then (5.4) implies that

$$
[J(\tau)-J(-1)] /(\tau+1)=\lim _{n \rightarrow \infty} J^{\prime}\left(s_{n}\right)\left(1+s_{n}\right) /\left(1+t_{n}\right)=0
$$

which contradicts the assumption $t^{*}=-1$ is the unique global minimum of J. Since J is analytic on $[-1,1]$ and $J^{\prime \prime}$ does not vanish identically there, there is a $\delta>0$ such that $J^{\prime}(t) J^{\prime \prime}(t) \neq 0$ for all $t \in(-1,-1+\delta)$. From the fact that $0<[J(t)-J(-1)] /(t+1)=J^{\prime}(\theta)$ for all $t \in(-1,-1+\delta)$ and some $\theta \in(-1, t)$ we conclude that $J^{\prime}>0$ on $(-1,-1+\delta)$. Moreover, if n is sufficiently large, then, by (5.4), we get $-1<s_{n}<t_{n}<-1+\delta$ and $\left.\left.0<J^{\prime}\left(t_{n}\right)<J^{\prime}\left(t_{n}\right)\left(1+t_{n}\right) /\left(1+s_{n}\right)=J^{\prime}\left(s_{n}\right)\left(1+s_{n}\right)\right) /\left(1+t_{n}\right)<J^{\prime} s_{n}\right)$. In other words we have $J^{\prime \prime}(t)<0$ for all $t \in(-1,-1+\delta)$ and we conclude that $J^{\prime}(-1)>0$.

Next we use again (5.4) and (5.3) and we get for points $(s, t) \in B$

$$
2 L^{*}\left(q_{s} q_{t}\right)=L^{*}\left(q_{t}-q_{s}\right) /(t-s)=2 L^{*}\left(q_{t}^{2}\right)(1+t) /(1+s)
$$

and hence

$$
0=(1+s) L^{*}\left(q_{s} \cdot q_{t}\right)-(1+t) L^{*}\left(q_{t}^{2}\right)=(s-t) L^{*}\left(q_{s} q_{t}^{2} / q_{-1}\right)
$$

In particular, $J^{\prime}(-1)=2 L^{*}\left(q_{-1}^{2}\right)=2 \lim _{n \rightarrow \infty} L^{*}\left(q_{s_{n}} q_{t_{n}}^{2} / q_{-1}\right)=0$ which leads to a contradiction. Therefore, if B is nonempty, $s_{o}>-1$. Put $p_{1}=1 / 4$, if B is empty and $p_{1}=1 /\left(2+2 s_{o}\right)$, if B is otherwise.

Step 2. Let $G(s)=F(s, 1),-1<s<1$ and consider the condition (5.7). First, we claim that there are only finitely many solutions of (5.7). Indeed, if not, then (5.7) holds for all $s \in[-1,1]$, since J is analytic on $[-1,1]$. But the only analytic solution for (5.7) on $[-1,1]$ is the constant function. Therefore, there is an interval $(-1,-1+\rho), \rho>0$, which contains no critical points of G. Put $p_{2}=1 /(2 \rho)$.

Finally, put $p_{L}=\max \left\{p_{1}, p_{2}\right\}$. By Lemma 5.3, Theorem 5.13 follows.

References

1. L. Brickman, Extreme points of the set of univalent functions, Bull. Amer. Soc. 76 (1970), 372-374.
2. L. Brickman, T. H. MacGregor, D. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (971), 91-107.
3. P. L. Duren, Univalent functions, Springer-Verlag Berlin, 1983.
4. P. L. Duren, G. Schober, Nonvanishing univalent functions, Math. Z. 170 (1980), 195-216.
5. M. G. Goluzin, Geometric theory of functions of a complex variable, Translations of Math. Monographs, 26, Amer. Math. Soc. Providence, Rhode Island, 1969.
6. W. Koepf, On nonvanishing univalent functions with real coefficients, Math. Z. 192 (1986), 575-579.
7. G. Schober, Univalent functions - selected topics. Lecture Notes 478, Springer-Verlag Berlin, 1975.
8. W. Szapiel, Points extrémaux dans les ensembles convexes 1. Théorie générale, Bull. Acad. Polon. Sci., Math. 23 (1975), 939-945.
9. - Extreme points of convex sets 2. Influence of normalisation on integral representations, Bull. Acad. Polon. Sci., Math 29 (1981), 535-544.
10. -_Extreme points of convex sets 3. Montel's normalisation, Bull. Acad. Polon. Sci., Math. 30 (1982), 41-47.
11. M. Szapiel, W. Szapiel, Extreme points of convex sets 4. Bounded typically real functions, Bull. Acad. Polon. Sci., Math 30 (1982), 49-57.
12. O. Tammi, Extremum problems for bounded univalent functions, Lecture Notes 646, SpringerVerlag Berlin, 1978.

Département de Mathématiques,
Université Laval
Québec, P.Q., Canada

Institute of Mathematics,
M. Curie - Sklodowska University
Lublin, Poland

