EXTREMAL PROBLEMS FOR THE CLASSES S_{R}^{-p} AND T_{R}^{-p}

WALTER HENGARTNER AND WOJCIECH SZAPIEL

1. Introduction. Let H(D) be the linear space of analytic functions on a domain D of \mathbb{C} endowed with the topology of locally uniform convergence and let H'(D) be the topological dual space of H(D). For domains D which are symmetric with respect to the real axis we use the notation $H_{\mathbb{R}}(D) = \{f \in H(D) : f(D \cap \mathbb{R}) \subset \mathbb{R}\}$. Furthermore, denote by S the set of all univalent mappings f defined on the unit disk Δ which are normalized by f(0) = 0 and f'(0) = 1. A well studied subclass of $H(\Delta)$ is the set $T_{\mathbb{R}}$ of typically real functions f which have the following properties:

(1)
$$f(0) = f'(0) - 1 = 0$$

(2)
$$\operatorname{Im}\{z\}$$
. $\operatorname{Im}\{f(z)\} \ge 0$ for all $z \in \Delta$.

There is a one-to-one correspondence between $T_{\mathbf{R}}$ and the set $\mathbb{P}_{[-1,1]}$ of all probability measure μ on the Borel σ -algebra over [-1, 1]. Indeed, if $\mu \in \mathbb{P}_{[-1,1]}$, then

(1.1)
$$f(z) = \int_{[-1,1]} z/(1-2tz+z^2)d\mu(t)$$

belongs to the class $T_{\mathbf{R}}$. Conversely, for each $f \in T_{\mathbf{R}}$ there is a unique $\mu \in \mathbb{P}_{[-1,1]}$ such that (1.1) holds. It follows from there that $T_{\mathbf{R}}$ is convex and compact. For simplicity, we shall use the notation

(1.2)
$$q_t(z) = z/(1-2tz+z^2), -1 \le t \le 1.$$

Observe that the mappings q_t are univalent on Δ and that

$$q_t(\Delta) = \mathbb{C} \setminus \{ (-\infty, -1/(2+2t)] \cup [1/(2-2t), \infty) \}.$$

The set of all univalent mappings in $T_{\mathbf{R}}$ we shall denote by $S_{\mathbf{R}}$.

If $f \in T_{\mathbf{R}}$, then f is strictly monotone increasing on the interval (-1, 1). For simplicity, we shall denote the radial limit of f at z = -1 by

(1.3)
$$f(-1) = \lim_{x \to -1} f(x).$$

Received by the editors February 21, 1989.

The first author was supported in part by grants from the National Research Council of Canada and FCAR, Québec.

¹⁹⁸⁰ Mathematics Subject classification 30C45.

Let A be a compact subset of $H(\Delta)$.

Definition 1.1.

(a) A function $f \in A$ is called to be a *support point* of A, $f \in \sigma(A)$, if there is an $L \in H'(\Delta)$ such that $\operatorname{Re}\{L(f)\} = \max\{\operatorname{Re}\{L(g)\} : g \in A\}$ and that $\operatorname{Re}\{L\}$ is not constant on A.

(b) A function $f \in A$ is called to be an *extreme point* of $A, f \in \mathcal{E}(A)$, if f is not a proper convex combination of two other functions in A.

The set of all finite convex combination of functions in A we denote by co(A) and its closure by $\overline{co}(A)$. For example, $\mathcal{E}(T_{\mathbb{R}}) = \{q_t : -1 \leq t \leq 1\}$ and $\sigma(T_{\mathbb{R}}) = co(\mathcal{E}(T_{\mathcal{R}}))$ and

(1.4)
$$\overline{co}(S_{\mathbb{R}}) = T_{\mathbb{R}}$$

Lately, W. Koepf [6] has shown that $\mathcal{E}(S_{\mathbf{R}}) = \sigma(S_{\mathbf{R}}) = \mathcal{E}(T_{\mathbf{R}})$.

The class of univalent mappings $f \in H(\Delta)$ with fixed value f(0) and fixed omitted values was examined by G. M. Goluzin and others (see e.g. [3], [5]). Recently, P. Duren and G. Schober [4] gave some geometric properties of extreme points and support points of the class S_o of univalent nonvanishing functions f on Δ with f(0) = 1. The corresponding case, when f has real coefficients, was studied by W. Koepf [6]. In this paper we consider the classes

(1.5)
$$T_{\mathbf{R}}^{-p} = \{f = z + \sum_{k \ge 2} a_k(f) z^k \in T_{\mathbf{R}} : f \text{ omits a given point } -p\}, p > 0$$

and

$$(1.6) \qquad S_{\mathbf{R}}^{-p} = T_{\mathbf{R}}^{-p} \cap S.$$

Since we require that f'(0) = 1, the choice of p is important. For instance, $T_{\mathbf{R}}^{-p}$ and $S_{\mathbf{R}}^{-p}$ are empty, if $0 , and contain only the Koebe mapping <math>q_1$, if p = 1/4. Furthermore, for 1/4 < s < t, we have the strict inclusions $T_{\mathbf{R}}^{-s} \subset T_{\mathbf{R}}^{-t}$ and $S_{\mathbf{R}}^{-s} \subset S_{\mathbf{R}}^{-t}$ and $T_{\mathbf{R}}^{-\infty}(S_{\mathbf{R}}^{-\infty} \text{ resp.})$ is the usual class $T_{\mathbf{R}}(S_{\mathbf{R}} \text{ resp.})$. Hence, the solutions of most of the optimization problems will depend on the omitted value -p.

There is a close relation between $S_{\mathbf{R}}^{-p}$ and the class $S_{\mathbf{R}}(M)$ of all univalent typically real functions which are bounded by M. Indeed, if $g \in S_{\mathbf{R}}(M)$, then $f = M \cdot q_1(g/M) \in S_{\mathbf{R}}^{-M/4}$ and, vice versa, if $f \in S_{\mathbf{R}}^{-p}$, then $g = 4pq_1^{-1}(f/(4p)) \in S_{\mathbf{R}}(4p)$. The class $S_{\mathbf{R}}(M)$ has been studied extensively by O. Tammi [12].

Extremal functions in $S_{\mathbb{R}}^{-p}$, p > 1/4, (i.e. extreme points and support points) are slit mappings (Proposition 3.7 and Corollary 3.10) but they can split at several finite points or at infinity (Theorem 3.5). However, if -p is not an endpoint of the slit on the negative real axis, then no splitting can occur at infinity (Proposition 3.8). The main result of section 3 is a kind of a Schiffer-Goluzin differential equation (Theorem 3.9).

In section 4 we complete a result of W. Koepf in determining explicitly the set of all support points of the class $(S_o)_{\mathbf{R}}$ which consists of all univalent nonvanishing mappings f, f(0) = 1, which have real coefficients.

Section 5 deals with the class $T_{\mathbf{R}}^{-p}$, p > 1/4. Evidently $T_{\mathbf{R}}^{-p}$ is compact and convex but, in contrast to (1.4), $T_{\mathbf{R}}^{-p}$, p > 1/4, is not the closed convex hull of $S_{\mathbf{R}}^{-p}$ (Proposition 5.1). There is an interesting difference between the extreme points different from q_t , $1/(2p) - 1 \le t \le 1$, in $S_{\mathbf{R}}^{-p}$ and $T_{\mathbf{R}}^{-p}$. While in the first class splitting occurs, they are two-valent in the second class and all its boundary values lie in $\mathbb{R} \cup \infty$ (Theorem 5.2). Indeed, the set of extreme points for the class $T_{\mathbf{R}}^{-p}$ is exactly the set of all mappings

(1.7)
$$f = q_s q_t / q_{2p(1+s)(1+t)-1}, -1 \le s \le 1/(2p) - 1 \le t \le 1.$$

Note that any f of the form (1.7) can be expressed as a convex combination of q_s and q_t . First we give sharp lower bounds and upper bounds for f(x), f'(x), $a_2(f)$, $a_3(f)$, and $a_4(f)$ (Proposition 5.4, Theorem 5.6, Proposition 5.8, and Theorem 5.10) and we determine in Theorem 5.5 the set of values of f(z) for a given nonreal z in Δ . Next (Lemma 5.11), we give a sufficient condition for $L \in H'(\Delta)$ in order to get a univalent extremal function. In theorem 5.12 we apply the above Lemma to the odd coefficients of f. The last Theorem is surprising. We show that for each $L \in H'(\Delta)$ there is a $p_L > 0$ such that, if $p > p_L$, there is a univalent mapping $f \in T_{\mathbf{R}}^{p}$ such that $\operatorname{Re}\{L(f)\} = \max \operatorname{Re}\{L(T_{\mathbf{R}}^{-p})\}$.

2. Some auxiliary Lemmas. For $A \subset H(\Delta)$ let $\mathcal{E}(A)$, $\sigma(A)$, co(A) and $\overline{co}(A)$ denote the set of all extreme points of A, the set of all (proper) support points of A, the convex hull of A and the closed convex hull of A respectively. Let T be a compact metrizable space and \mathbb{P}_T the set of all probability measures μ on the σ -algebra of Borel subsets of T. The support of μ we denote by $\operatorname{supp}(\mu)$. Furthermore, $\mathcal{E}(\mathbb{P}_T)$ consists of all Dirac measures δ_t concentrated at the points $t \in T$. The Krein Milman Theorem states that \mathbb{P}_T is the closed convex hull of $\mathcal{E}(\mathbb{P}_T)$ with respect to the weak*-topology of the dual space of C(T). Finally, if $\mu \in \mathbb{P}_T$ and A is a Borel set of T, we shall use the notation

(2.1) $\mu_A(B) = \mu(A \cap B)$ for all Borel sets B in T.

Our first Lemma characterizes compact and convex sets in $H(\Delta)$.

LEMMA 2.1. A set $A \subset H(\Delta)$ is compact and convex if and only if there exists T described as above and a continuous function $Q : \Delta \times T \to \mathbb{C}$ such that $Q(\cdot, t) \in H(\Delta)$ for all $t \in T$ and

(2.2)
$$A = \left\{ f_{\mu} = \int_{T} Q(\cdot, t) d\mu(t) : \mu \in \mathbb{P}_{T} \right\}.$$

Furthermore, we have

(2.3)
$$\mathcal{E}(A) \subset \{Q(\cdot, t) : t \in T\}.$$

Equality holds if the mapping $\mu \to f_{\mu}$ is injective on \mathbb{P}_{T} , (i.e. if the linear space spanned by $f \equiv 1$, the real parts and imaginary parts of the Taylor coefficients (as functions of t) of the kernel function is dense in C(T)).

The necessity of the existence of Q was shown in [8] and the sufficiency can be found in [2]. The case of equality is discussed in [9]. For example, the simplest realisation of the Lemma is the case

 $T = \overline{\mathcal{E}(A)}$ and $Q(z, f) \equiv f(z)$.

The next Lemma considers a special case of Lemma 2.1.

LEMMA 2.2. Let T and Q be as in Lemma (2.1). If T is a line segment or a circle and if Q is analytic at each point of $\Delta \times T$, then we have

(2.4)
$$\sigma(A) \subset co(\mathcal{E}(A)).$$

Proof. Let $L \in H'(\Delta)$ such that $m = \max\{\operatorname{Re}\{L(f) : f \in A\} > \min\{\operatorname{Re}\{Lf)\} : f \in A\}$. Consider the hyperplane $M = \{f \in H(\Delta) : \operatorname{Re}\{L(f)\} = m\}$ which supports the set A. Denote by t^* the reflected point of t with respect to T and let $\Phi(t)$ be defined by

$$\Phi(t) = L(Q(\cdot, t)) + \overline{L(Q(\cdot, t^*))}.$$

By the above assumptions, the function Φ is analytic on a domain containing T and Φ is not constant on T. Therefore there are only finitely many functions $Q(\cdot, t)$ which belong to $A \cap M$. From (2.3) we conclude that

$$\sigma(A) \cap M = A \cap M = co(\mathcal{E}(A \cap M)) \subset co(\mathcal{E}(A)).$$

The following Lemma is a particular case of a more general result given in [8, see also 9–11]. For the convenience of the reader we shall give a proof of it.

LEMMA 2.3. Let $\Phi : \mathbb{P}_{[a,b]} \to \mathbb{R}$ be an affine continuous mapping. Then we have for all $\tau \in \Phi(\mathbb{P}_{[a,b]})$

(2.5)
$$\mathcal{E}\left\{\mu \in \mathbb{P}_{[a,b]} : \Phi(\mu) = \tau\right\} = \left\{\nu = (1-\lambda)\delta_s + \lambda\delta_t : s, t \in [a, b], \\ 0 \le \lambda \le 1, \Phi(\nu) = \tau\right\}.$$

Proof. Let $\nu \in \mathcal{E} \{ \mu \in \mathbb{P}_{[a,b]} : \Phi(\mu) = \tau \}$ and assume that $\operatorname{supp}(\mu)$ contains at least three points $x_1, x_2, x_3, a \leq x_1 < x_2 < x_3 \leq b$. Choose $c \in (x_1, x_2)$ and $d \in (x_2, x_3)$. Then the intervals $T_1 = [a, c), t_2 = [c, d]$ and $T_3 = (d, b]$ form a partition of [a, b] and we have

$$\nu(T_j) > 0, \sum_{j=1}^{3} \nu(T_j) = 1 \quad \text{and} \quad \nu = \sum_{j=1}^{3} \nu(T_j) \mu_j,$$

where $\mu_j = \nu_{T_j} / \nu(T_j) \in \mathbb{P}_{[a,b]}.$

Next, there are three real numbers s_i such that

$$\sum_{j=1}^{3} s_j = 0, \ \sum_{j=1}^{3} |s_j| > 0 \quad \text{and} \ \sum_{j=1}^{3} s_j \Phi(\mu_j) = 0.$$

Consider now the real measure $\nu_0 = \epsilon \sum_{j=1}^3 s_j \mu_j$, $0 < \epsilon < \min\{\nu(T)\}/\max\{|s_j|\}$. Then $\nu_o(T_j) = \epsilon \cdot s_j$ and ν_0 is not the zero measure. Moreover we have

$$\nu = [\nu - \nu_0) + \{\nu + \nu_0\}/2,$$

$$\nu \pm \nu_0 = \sum_{j=1}^3 [\nu(T_j) \pm \epsilon s_j] \mu_j \in \mathbb{P}_{[a,b]} \text{ and }$$

$$\Phi(\nu \pm \nu_0) = \sum_{j=1}^3 [\nu(T_j) \pm \epsilon s_j] \Phi(\mu_j) = \Phi(\nu) = \tau.$$

which leads to a contradiction.

The converse inclusion is trivial since supp $[(1 - s)\nu_1 + s\nu_2] = \text{supp}[\nu_1] \cup \text{supp}[\nu_2]$ for all $\nu_1, \nu_2 \in \mathbb{P}_{[a,b]}$ and all 0 < s < 1.

To each $L \in H'(\Delta)$ we associate the linear functional $L^* \in H'(\Delta)$ defined by

(2.6)
$$L^*(f) = (1/2)[L(f) + L(f^*)]$$

where

(2.7)
$$f^*(z) = f(\bar{z}).$$

The Toeplitz representation for L and L^* is then of the form

$$L(f) = \sum_{n=0}^{\infty} b_n a_n(f) \text{ and } L^*(f) = \sum_{n=0}^{\infty} \operatorname{Re}(b_n) a_n(f)$$

where $a_n(f) = f^{(n)}(0)/n!$.

Furthermore, if $f \in H_{\mathbf{R}}(\Delta)$, then $L^*(f) = \mathbf{Re}\{L(f)\}$.

LEMMA 2.4. Let $L \in H'(\Delta), c \in \mathbb{R}$ and suppose that the equation $L^*(q_t) = c$ $(L^*(q_t/z) = c$ respectively) has an infinite number of solutions. Then we have $L^*(f) = \operatorname{Re}\{b_o\}.f(0) + c.f'(0)$ $(L^*(f) = c.f(0)$ resp.) for all $f \in H(\Delta)$.

Proof. Since $L^*(q_t)$ ($L^*(q_t/z)$ resp.) as a function of t is analytic on [-1, 1], we conclude that $L^*(f)$ ($L^*(f/z)$ resp.) is constant on $T_{\mathbf{R}}$ and we have therefore $L^*(z) = L^*(z+z^n/n) = c$ ($L^*(1) = L^*(1+z^{n-1}/n) = c$ resp.) for all $n = 2, 3, \ldots$ and the result follows.

3. Extremal Problems for $S_{\mathbf{R}}^{-p}$. In this section we are interested in the class $S_{\mathbf{R}}^{-p}$ of univalent mappings defined on the unit disk Δ which have the following properties:

(1) f(0) = f'(0) - 1 = 0

(2) f is real on the interval (-1, 1)

(3) f omits a given point -p on the negative real axis.

Since $S_{\mathbf{R}}^{-p}$ is empty for $0 and contains only the Koebe mapping <math>q_1(z) = z/(1-z)^2$, if p = 1/4, we shall assume that p > 1/4. Observe also that for 1/4 < s < t, $S_{\mathbf{R}}^{-p}$ is strictly included in $S_{\mathbf{R}}^{-t}$ and that $S_{\mathbf{R}}^{-\infty}$ is the usual class $S_{\mathbf{R}}$ of all normalized univalent typically real functions. Furthermore, for each $t \in [1/(2p) - 1, 1]$ the mapping $q_t(z) = z/(1 - 2tz + z^2)$ belongs to $S_{\mathbf{R}}^{-p}$. They are also extreme points and support points for this class. There are many other support or extreme points for $S_{\mathbf{R}}^{-p}$.

We start our investigation with an elementary automorphism on $S_{\mathbf{R}}^{-p}$. Let $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$ Then the correspondence $f \to g_f$ defined by

(3.1)
$$g_f(z) = -p \cdot f(-z)/[p + f(-z)]$$

= $z - (a_2 - 1/p)z^2 + (a_3 - 2a_2/p + 1/p^2)z^3 + \dots$

is a homoeomorphism from $S_{\mathbf{R}}^{-p}$ onto itself. For instance, the function q_t is mapped onto $q_{-t+1/(2p)}$, $1/(2p) - 1 \le t \le 1$. As an immediate consequence we get the following elementary results.

PROPOSITION 3.1. For
$$f \in S_{\mathbf{R}}^{-p}$$
, $p \ge 1/4$, we have
(i) $2 \ge a_s(f) \ge -2 + 1/p$
(ii) $3 \ge a_3(f) \ge \begin{cases} (1 - 1/p)(3 - 1/p), & \text{if } 1/4 \le p \le 1/2 \\ -1, & \text{if } p \ge 1/2 \end{cases}$
(iii) $a_{1/(2p)-1}(x) \le f(x) \le a_1(x), & \text{if } -1 < x < 1.$

For each case, equality holds only for $f = q_t$ with t = 0, t = 1/(2p) - 1 or t = 1.

Proof. Statement (*i*) follows from the fact that $a_2(f) \leq 2$ for all $f \in T_{\mathbf{R}}$ and that $a_2(g_f) = (1/p) - a_2(f)$. The upper bound for $a_3(f)$ holds also for all $f \in T_{\mathbf{R}}$ and its lower bound follows from the inequality $a_3(f) \geq a_2^2(f) - 1$ which is true for all $f \in T_{\mathbf{R}}$. Next, we have $q_{-1}(|x|) \leq |f(x)| \leq q_1(|x|)$ for all $x \in (-1, 1)$ and all $f \in T_{\mathbf{R}}$ which implies that $f(x) \leq q_1(x)$ for all $x \in (-1, 1)$. Finally, $g_f(x) \leq q_1(x)$ implies that $[1 - (2 - (1/p))x + x^2]f(-x) \geq -x$. Replacing x by -x statement (*iii*) follows.

The following proposition creates a chain in $S_{\mathbf{R}}^{-p}$ from any mapping $f \in S_{\mathbf{R}}^{-p}$ to q_t , $1/(2p) - 1 \leq t \leq 1$.

PROPOSITION 3.2. Let $f \in S_{\mathbf{R}}^{-p}$, $p \ge 1/4$, $0 < r \le 1$, and $1/(2p) - 1 \le t \le 1$. Put $\tau = p/[1 + (1 - r)(2p(1 + t) - 1)]$. Then $1/4 < \tau \le p$ and

(3.2)
$$F(\cdot, r, t) = f(q_t^{-1}(rq_t(\cdot))/r \in S_{\mathbf{R}}^{-\tau} \subset S_{\mathbf{R}}^{-p}$$

Moreover, $F(\cdot, 0^+, t) = q_t$ and $F(\cdot, 1, t) = f$.

Proof. Fix $t \in [1/(2p) - 1, 1]$ and let $d = q_t^{-1}(rq_t(-1))$. Then $q_t(d) = -r/(2+2t) = 1/[(d+1/d) - 2t]$ and, by proposition 3.1 (*iii*), we have

$$F(-1, r, t) = f(d)/r \ge q_{1/(2p)-1}(d)/r$$

= 1/{r[(d + 1/d) + 2 - 1/p]} = $-\tau \ge -p$.

As an immediate consequence we get

PROPOSITION 3.3. (i) If $f \in S_{\mathbf{R}}^{-p}$ and $1/(2p) - 1 \leq t \leq 1$, then

$$F(\cdot, r, t) = f - [f'q_t/q'_t - f](1 - r) + o(1 - r) \in S_{\mathbb{R}}^{-p}$$
 as r tends to 1.

(ii) The chain F satisfies the differential equation

$$r\partial F/\partial r = (\partial F/\partial z)(q_t/q_t') - F, F(z, 0^+, t) \equiv q_t(z)$$

and $F(z, 1, t) \equiv f(z)$.

(iii) Let $L \in H'(\Delta)$ and suppose that $f \in S_{\mathbf{R}}^{-p}$ is a solution of max $L^*(S_{\mathbf{R}}^{-p})$. Then we have $L^*(f) \ge L^*(f'q_t/q'_t)$ for all $t \in [1/2p) - 1, 1]$.

The next result is a direct application of Proposition 3.2.

PROPOSITION 3.4. Let $L \in H'(\Delta)$ and put $\phi(p) = \max L^*(S_{\mathbb{R}}^{-p})$, p > 1/4. Then ϕ satisfies locally the Lipschitz condition.

Proof. For p > 1/4, choose $\epsilon > 0$ such that $p - \epsilon > 1/4$. Then $S_{\mathbf{R}}^{-(p-\epsilon)} \subset S_{\mathbf{R}}^{-p}$ and $\phi(p-\epsilon) \leq \phi(p)$. Let $f \in S_{\mathbf{R}}^{-p}$ be an extremal function for L^* (i.e. $\phi(p) = L^*(f)$). Put $\tau = p - \epsilon$ and t = 1 in relation (3.2). Then $r = 1 - \epsilon/[(4p-1)(p-\epsilon)] \in (0, 1)$ and from Proposition 3.2 we conclude that $F(\cdot, r, 1) \in S_{\mathbf{R}}^{-(p-\epsilon)}$. On the other hand, by Proposition 3.3 (*i*), we have

$$0 \le \phi(p) - \phi(p - \epsilon) \le \phi(p) - L^*(F(\cdot, r, 1))$$

= $L^*(f'q_1/q'_1 - f)(1 - r) + o(1 - r),$

where $r = 1 - \epsilon/[(4p-1)(p-\epsilon)]$ tends to 1 as ϵ tends to zero. Therefore $0 \leq [\phi(p) - \phi(p-\epsilon)]/\epsilon \leq L^*(f'q_1/q'_1 - f)/[(4p-1)(p-\epsilon)] + o(1) = O(1)$ as ϵ tends to 0.

The class $S_{\mathbf{R}}^{-p}$ is closely related to the class $S_{\mathbf{R}}(M)$ which consists of all mappings in $S_{\mathbf{R}}$ which are bounded by M. Indeed, consider the transformation

(3.3)
$$g \to f_g = 4pq_1(g/(4p)).$$

Then $f_g \in S_{\mathbf{R}}^{-p}$, if and only if $g \in S_{\mathbf{R}}(4p)$. Tammi [12] has extensively studied the class $S_{\mathbf{R}}(M)$. In particular he derived a Löwner-type differential equation for

a dense subclass of $S_{\mathbf{R}}(M)$ consisting of mappings whose images are the disk $\{w: |w| < M\}$ minus two slits. Applying the transformation (3.3) one gets the differential equation

$$t \cdot \partial F(z, t) / \partial t = -F^2(z, t) [1 + \cos(\theta(t))] / [2t + [1 - \cos(\theta(t))]F(z, t)],$$

$$F(\cdot, 1/4) = q_1 \text{ and } F(\cdot, p) = f,$$

where $\theta(t)$ is a real continuous function on [1/4, p].

We get the following nontrivial examples of support points.

THEOREM 3.5. For $f \in S_{\mathbf{R}}^{-p}$ we have the inequalities

$$\begin{aligned} -1 - 1/(4p^2) &\leq a_3(f) - a_2(f)/p \\ &\leq \begin{cases} 1 - 3/(8p^2), & \text{if } 1/4 \leq p \leq e/4 \\ 1 - 3/(8p^2) + (4p\sigma - 1)^2/(8p^2), & \text{if } p \geq e/4, \end{cases} \end{aligned}$$

where σ is the unique solution of the equation $4p\sigma \ln(\sigma) + 1 = 0$ in the interval [1/e, 1). The lower bound is reached by the function $q_{1/(4p)}$ and the upper bound by the solutions $f = F(\cdot, p)$ of the above Löwner differential equation, where

- (i) $\cos(\theta(t)) \equiv 0$ and $a_2(f) = 2/e$, if $1/4 \leq p < e/4$,
- (ii) $\cos(\theta(t)) = -2\lambda t$, $|\lambda| \leq 2/e$, and $a_2(f) = \lambda + 2/e$, if p = e/4,

(iii)
$$\cos(\theta(t)) = \int \pm 4\sigma t; 1/4 \leq t \leq 1/(4\sigma)$$

(iii) $\cos(\theta(t)) = \begin{cases} \pm \pi \sigma, & r \neq 0 \\ \pm 1; & 1/(4\sigma) \leq t \leq p \end{cases}$ and $a_2(f) = \pm 2\sigma + 2/e$, if p > e/4

All extremal functions map Δ either

(a) onto the complement of a three-fork slit consisting of the halfline $(-\infty, -p]$ and a bounded symmetric are cutting the interval $(-\infty, -2p]$ or

(b) onto the complement of three slits consisting of the halfline $(-\infty, -p]$ and two unbounded Jordan arcs which are symmetric with respect to the real axis and which contain no points of \mathbb{R} , or

(c) onto the complement of two slits consisting of the halfline $(-\infty, -p]$ and a two-fork slit which contains a real halfline $[a, \infty)$ for some a > 0.

Proof of Theorem 3.5. The lower estimate follows immediately from Proposition 3.1 (i) and the inequality $a_3(f) \ge a_2^2(f) - 1, f \in T_{\mathbf{R}}$. Let $f \in S_{\mathbf{R}}^{-p}$ and $g = 4pq_1^{-1}(f/(4p))$. Then $g \in S_{\mathbb{R}}(4p)$ and $a_3(g) = a_3(f) - a_2(f)/p + 5/(16p^2)$. Apply now the results of Tammi to $a_3(g)$.

Remark. Tammi has also discussed the extremal functions in $S_{\mathbf{R}}(M)$ which correspond to the linear functional $a_4(g)$. The homeomorphism (3.3) transforms $a_4(g)$ to a concave functional on $S_{\mathbf{R}}^{-p}$.

In what follows, we give some geometric properties of extreme points and support points of $S_{\mathbf{R}}^{-p}$. The next Lemma will be useful later on.

LEMMA 3.6. Let $f \in S_{\mathbf{R}}^{-p}$, p > 1/4, $L, \in H'(\Delta)$ and suppose that there is an infinite number of points $a \in \mathbb{C} \setminus f(\Delta)$ for which

(i)
$$L^*(f^2(f+p)/(f-a)^2) = 0$$

or

(ii) $L^*(f(f+p)/(f-a)) + c/a = 0$, c = const.holds. Then $L^*(f) = \operatorname{Re}\{b_o\}f(0) + \operatorname{Re}\{b_1\}f'(0)$.

Proof. Suppose that (i) holds. Let μ be a representing measure for L^* whose support lies in a compact set $K \subset \Delta$. Put $d\mu_1(w) = w^2(w+p)d\mu(f^{-1}(w))$. Then the function

(3.4)
$$a \to L^*(f^2(f+p)/(f-a)^2)$$

is analytic in a neighborhood of infinity and μ_1 is a complex Borel measure with support in f(K). Observe that the function (3.4) vanishes at infinity and that all its Laurent coefficients are zero. In other words, we have

(3.5)
$$(n-1)\int_{K}f^{n}(z)(f(z)+p)d\mu(z) = (n-1)\int_{f(K)}w^{n-2}d\mu_{1}(w) = 0$$

for all n = 2, 3, ...

Define now L_o by $L_o(F) = \int_{f(K)} F(w) d\mu_1(w)$ and let $F \in H_{\mathbf{R}}(f(\Delta))$. By Runge's Theorem there is a sequence of polynomials p_n which converges uniformly to F on f(K). Replacing p_n by p_n^* defined in (2.7) we may assume that the coefficients of p_n are real. From (3.5) we conclude that L_o vanishes on $H_{\mathbf{R}}(f(\Delta))$. Put $g_n(z) = z^n/[f^2(z)(f(z)+p)], n = 2, 3, \ldots$. Then, $g_n(f^{-1}) \in H_{\mathbf{R}}(f(\Delta))$ and we have

$$L_o(g_n(f^{-1})) = \int_K g_n(z)d\mu_1(f(z)) = \int_K z^n d\mu(z) = L^*(z^n) = 0$$

for all n = 2, 3, ..., which shows the case (i). The proof for the case (ii) is similar.

PROPOSITION 3.7. If f is an extreme point or a support point of $S_{\mathbf{R}}^{-p}$, p > 1.4, then $f(\Delta)$ is dense in \mathbb{C} .

Proof. Let $f \in S_{\mathbf{R}}^{-p}$ and suppose that $f(\Delta)$ omits an open set \mathcal{D} . Then there is a closed disk $\{w: |w-a| \leq \epsilon\} \subset \mathcal{D} \cap \{w: \operatorname{Im}\{w\} \neq 0\}$ and there is a $\delta > 0$, such that the functions

(3.6)
$$\Phi_j(w) = w + (-1)^j \delta w^2 (w+p) [(w-a)^{-2} + (w-\bar{a})^{-2}], \ j = 1, 2,$$

have the following properties:

(i) They are analytic and univalent in $\{w: |w - a| > \epsilon\} \cap \{w: |w - \bar{a}| > \epsilon\} = \Omega$. Indeed, $[\Phi_j(w) - \Phi_j(\omega)]/[w - \omega] = 1 + \delta$. $\Xi_j(w, \omega)$ where $\Xi_j(w, \omega)$ is bounded in $\Omega \times \Omega$.

(ii) They are strictly increasing on \mathbb{R} and $\Phi'_i(0) = 1$.

(iii) $\Phi_j(w) > -p$ for all real w > -p. Indeed, $\Phi_j(-p) = -p$, $\Phi'_j(0) > 0$ and $\Phi_j(w)$ is univalent on the real axis. Therefore, $\Phi_j(f) \in S_{\mathbb{R}}^{-p}$ and $f = [\Phi_1(f) + \Phi_2(f)]/2$.

Suppose first that f is an extreme point of $S_{\mathbf{R}}^{-p}$. Then $f^2(f+p)[(f-a)^{-2} + (f-\bar{a})^{-2}] \equiv 0$ on Δ which leads to a contradiction.

Next, suppose that f is a support point of $S_{\mathbf{R}}^{-p}$. Then there is an $L \in H'(\Delta)$ for which L^* is not constant on $S_{\mathbf{R}}^{-p}$ and

$$L^{*}(f) = \max L^{*}(S_{\mathbf{R}}^{-p}) \ge L^{*}(\Phi_{j}(f))$$

= $L^{*}(f) + 2(-1)^{j}\delta \operatorname{Re}\{L^{*}[f^{2}(f+p)/(f-a)^{2}]\}.$

This implies that $\operatorname{Re}\{L^*[f^2(f+p)/(f-a)^2]\}=0$ for all *a* in the exterior of $f(\Delta)$. But this is impossible by Lemma 3.6.

Suppose now that D is a simply connected domain of C and let a and b, $a \neq b$, be in $\mathbb{C}\setminus D$. Then both functions

(3.7)
$$\Psi_i(w) = w + (-1)^j [(w-a)(w-b)]^{1/2}$$

are univalent and analytic on D and they have disjoint images. Historically, L. Brickman [1] has used this two functions to show that extreme points of S are monotonic slit mappings. Later, W. Koepf [6] adapted the method of Brickman to the class $(S_o)_{\mathbf{R}}$. Unfortunately, this method gives not so strong results for the class $S_{\mathbf{R}}^{-p}$. Indeed, if $f \in S_{\mathbf{R}}^{-p}$ and f(-1) = -p in the sense of (1.3), then only one of the two mappings

$$[\Psi_{i}(f) - \Psi_{i}(0)]/\Psi_{i}'(0), b = \bar{a},$$

belongs to the class $S_{\mathbf{R}}^{-p}$. However, we have:

PROPOSITION 3.8. Let $f \in S_{\mathbf{R}}^{-p}$, p > 1/4, and f(-1) > -p in the sense of (1.3). If there is a sequence of nonreal $a_n \in \mathbb{C} \setminus f(\Delta)$ which converges to infinity, then f is neither a support point nor an extreme point of $S_{\mathbf{R}}^{-p}$.

Proof. Let $f(-1) = -p_1 > -p$, $a \in \mathbb{C} \setminus f(\Delta)$ with $\operatorname{Im}\{a\} \neq 0$, and let

(3.8)
$$\Phi_j(f) = [\Psi_j j(f) - \Psi_j(0)] / \Psi_j'(0), j = 1, 2$$

where $\Psi_j(w)$ is defined in (3.7) with $b = \bar{a}$ and $(|a|^2)^{1/2} = |a|$. Then, for j = 1, 2, define $f_j = \Psi_j(f) \in S_{\mathbf{R}}$. Then $f = \lambda_1 f_1 + \lambda_2 f_2$, $\lambda_j = 1 - (-1)^j \operatorname{Re}\{a\}/|a| > 0$ and $\lambda_1 + \lambda_2 = 1$. Since $f_2(-1) = \Phi_2(-p_1) > -p_1 > -p$, we conclude that $f_2 \in S_{\mathbf{R}}^{-p}$. On the other hand, Φ_1 converges locally uniformly to the identity on a simply connected domain containing $f(\Delta)$ and $\{-p_1\}$ as a tends to infinity. Hence, we have $f_1(-1) = \Phi_1(-p_1) > -p$ for sufficiently large non real $a \in \mathbb{C} \setminus f(\Delta)$ and $f_1 \in S_{\mathbf{R}}^{-p}$. This shows that f is not an extreme point of $S_{\mathbf{R}}^{-p}$. For any $L \in H'(\Delta)$ for which L^* is not constant on $S_{\mathbf{R}}^{-p}$ we conclude from Proposition 3.7 that max $L^*(S_{\mathbf{R}}^{-p}) > L^*(f_j)$ and therefore f is also not a support point of $S_{\mathbf{R}}^{-p}$.

Remark. Proposition 3.8 is not in contradiction with the examples of support points we have given in Theorem 3.5, since we require here that f(-1) > -p.

We present now an analogue of the Goluzin variation (see [5, p. 99] for the general form and p. 106 for the specific choice of Q(w)). Let A_k , $1 \le k \le n$, be *n* arbitrary complex numbers and let a_k , $1 \le k \le n$, be *n* arbitrary nonreal numbers. For p > 1/4, consider the function

(3.9)
$$w^*(w, \lambda) = w + \lambda Q(w)$$
, where

$$Q(w) = \sum_{k=1}^n A_k \frac{w(w+p)}{w-a_k} + \overline{A_k} \frac{w(w+p)}{w-\overline{a_k}}.$$

Then w^* is analytic and univalent in w on any domain

(3.10)
$$\{w \in \mathbb{C} : |w - a_k| > \delta \text{ and } |w - \overline{a_k}| > \delta, 1 \le k \le n\}$$

whenever

(3.11)
$$|\lambda| < \left[2\sum_{k=1}^{n} |A_k|(1+|a_k||a_k+p|/\delta^2)\right]^{-1}$$

Indeed, this follows from

$$\frac{w^*(w, \lambda) - w^*(u, \lambda)}{w - u} = 1 + \lambda \sum_{k=1}^n A_k \left(1 - \frac{a_k(a_k + p)}{(w - a_k)(u - a_k)} \right) + \overline{A_k} \left(1 - \frac{\overline{a_k}(\overline{a_k} + p)}{(w - \overline{a_k})(u - \overline{a_k})} \right).$$

Let $f \in S_{\mathbf{R}}^{-p}$ and suppose that for some r, 0 < r < 1, all the points a_k are in $f(\{z: |z| < r\})$. Then, for sufficiently small $|\lambda|$, the function $w^*(w, \lambda)$ is analytic and univalent on the annulus $\{z: r < |z| < 1\}$.

Choose *n* nonreal numbers z_k , $1 \le k \le n$, in Δ such that $a_k = f(z_k)$. Then the function Q(f)/[z.f'] has only simple poles in Δ which lie on the set $\{z_k: 1 \le k \le n\}$. The Goluzin interior variation $f^{\#}$ of f as given in equation 2 in [5, p. 100] takes the form

(3.12)
$$f^{\#} = f + \lambda \sum_{k=1}^{n} [A_k H_{a_k} + \overline{A_k} H_{\overline{a_k}}] + O(\lambda^2) \in S_{\mathbb{R}}^{-p+O(\lambda^2)}, \ \lambda \in \mathbb{R}, \ \lambda \to 0,$$

under the condition that

(3.13) Re
$$\left\{\sum_{k=1}^{n} A_k H'_{a_k}(0)\right\} = 0,$$

where

(3.14)
$$G_{\zeta}(z) = z f'(z)(1-z^2)/[(1-\zeta z)(1-z/\zeta)]$$

and

(3.15)
$$H_{\zeta}(z) = f(\zeta)[f(\zeta) + p]G_{\zeta}(z)/[\zeta f'(\zeta)]^2 + f(z)[f(z) + p]/[f(z) - f(\zeta)].$$

Observe that $H_{\zeta}(z) \in H(\Delta \times \Delta)$ as a function of the variables z and ζ and that $f^{\#}$ is typically real.

From the variation formula (3.12), (3.13) we deduce the following Schiffertype differential equation.

THEOREM 3.9. Let f be a support point of $S_{\mathbf{R}}^{-p}$, p > 1/4, and let $L \in H'(\Delta)$ for which L^* is not constant on $S_{\mathbf{R}}^{-p}$ and for which $L^*(f) = \max L^*(S_{\mathbf{R}}^{-p})$. Using the notations (3.14) and (3.15) the following conclusions hold:

- (i) $g(\zeta) = L^*(H_{\zeta})/H'_{\zeta}(0)$ is constant on Δ .
- (ii) For all $\zeta \in \Delta$ we have:

(3.16)
$$\left\{L^*\left(\frac{f(f+p)}{f-f(\zeta)}\right) + \frac{pC}{f(\zeta)}\right\} \frac{f(\zeta)}{f(\zeta)+p} \left[\frac{\zeta f'(\zeta)}{f(\zeta)}\right]^2 + L^*(G_\zeta) - C = 0$$

(iii) $C = g(0) = 2L^*(f + p[1 - (1 - z^2)f'])/(1 - 2pa_2(f))$ whenever $a_2(f) \neq 1/(2p)$. If $a_2(f) = 1/(2p)$, then $L^*(f + p[1 - (1 - z^2)f']) = 0$.

Proof. Take n = 2 in (3.12) and (3.13). By Proposition 3.4, the function $\Phi(p) = \max L^*(S_{\mathbf{R}}^{-p}), p > 1/4$, satisfies the local Lipschitz condition. Since $L^*(H_{\bar{z}}) \equiv \overline{L^*(H_z)}$, we get

$$L^*(f^{\#}) = \Phi(p) + 2\lambda \operatorname{Re}\left\{L^*\left(\sum_{k=1}^2 A_k H_{a_k}\right)\right\} + O(\lambda^2)$$
$$\leq \Phi(p + 0(\lambda^2)) = \Phi(p) + 0(\lambda^2)$$

as λ tends to zero. Therefore we have

(3.17) Re
$$\left\{\sum_{k=1}^{2} A_k L^*(H_{a_k})\right\} = 0$$
 and Re $\left\{\sum_{k=1}^{2} A_k H'_{a_k}(0)\right\} = 0.$

Next, put in (3.17) $a_1 = \zeta$, $a_2 = \eta$, $A_1 = e^{i\alpha}$ and $A_2 = \gamma e^{i\beta}$, where α , β and γ are real numbers. Then we get

(3.18)
$$e^{i\alpha}L^*(H_{\zeta}) + e^{-i\alpha}L^*(H_{\bar{\zeta}}) + \gamma e^{i\beta}L^*(H_{\eta}) + \gamma e^{-i\beta}L^*(H_{\bar{\eta}}) = 0$$

which holds under the restriction

(3.19)
$$\operatorname{Re}\left\{e^{i\alpha}H'_{\zeta}(0) + \gamma e^{i\beta}H'_{\eta}(0)\right\} = 0.$$

630

Now, we multiply both sides of (3.18) by

2 Re{
$$e^{i\beta}H'_{\eta}(0)$$
} = $e^{i\beta}H'_{\eta}(0) + e^{-i\beta}H'_{\bar{\eta}}(0)$

and we use (3.19) in order to eliminate γ . Since α and β are arbitrary real number, we conclude that

$$H'_{\eta}(0)L^{*}(H_{\zeta}) = H'_{\zeta}(0)L^{*}(H_{\eta}), H'_{\bar{\eta}}(0)L^{*}(H_{\zeta}) = H'_{\zeta}(0)L^{*}(H_{\bar{\eta}})$$

and therefore

$$H'_{\zeta}(0)\{H'_{\eta}(0)L^{*}(H_{\bar{\eta}}) - H'_{\bar{\eta}}(0)L^{*}H_{\eta})\} = 0 \text{ for all } \zeta \text{ and } \eta \text{ in } \Delta.$$

The function $H'_{\zeta}(0) = f(\zeta)(f(\zeta) + p)/(\zeta f'(\zeta))^2 - p/f(\zeta)$ is analytic on Δ and is identically zero if and only if

(3.20)
$$f(z) = f_0(z) = 4pq_1(z/(4p)) = z + z^2/(2p) + \dots$$

Observe that f_0 is bounded and belongs to the class $S_{\mathbf{R}}^{-p}$ but is not a support point of $S_{\mathbf{R}}^{-p}$ (see Proposition 3.7). Hence

$$H'_{\bar{n}}(0)L^*(H_n) \in \mathbb{R}$$
 for all $\eta \in \Delta$.

On the other hand, $g(\eta) = L^* H_{\eta} / H'_{\eta}(0)$ is meromorphic and real on Δ and therefore g is constant on Δ .

COROLLARY 3.10. If f is a support point of $S_{\mathbf{R}}^{-p}$, p > 1/4, then $\mathbb{C} \setminus f(\Delta)$ is a finite union of analytic arcs.

Proof. Let $f \in \sigma(S_{\mathbb{R}}^{-p})$ and let $L \in H'(\Delta)$ for which L^* is not constant on $S_{\mathbb{R}}^{-p}$ and for which $L^*(f) = \max L^*(S_{\mathbb{R}}^{-p})$. By Lemma 3.6 (ii), the function $b(w) = L^*(f(f+p)/(f-w)) + pC/w$, C defined in Theorem 3.9 (iii), is not constant on $\mathbb{C}\setminus f(\Delta)$. Furthermore, $L^*(G_{\zeta})$ is real on the unit circle $\partial\Delta$. Hence, except for a finite number of points of $\partial\Delta$, the differential equation (3.16) determines a finite system of analytic arcs (see e.g. [3, 5, 7]).

4. A completion of a result of W. Koepf. In this section we weaken the conditions which we have imposed on the mappings in $T_{\mathbf{R}}^{-p}$ and $S_{\mathbf{R}}^{-p}$. We shall no more require that f'(0) = 1, but rather let it be free. There is no essential importance which negative prescribed value -p has to be omitted. Historically, one finds rather the normalization f(0) = 1 and the omitted point is w = 0. In concordance with this fact, we shall use the notations:

(4.1)
$$(T_0)_{\mathbf{R}} = \{ f \in H(\Delta) : f(0) = 1, w = 0 \in \mathbb{C} \setminus f(\Delta)$$

and $\operatorname{Im}\{f(z)\}$. $\operatorname{Im}\{z\} > 0$ on $\Delta\}$,
 $(S_0)_{\mathbf{R}} = \{ f \in H_{\mathbf{R}}(\Delta) : f \quad \text{univalent on } \Delta, f(0) = 1$
and $w = 0 \in \mathbb{C} \setminus f(\Delta)\}$,
 $(S_0)_{\mathbf{R}}^+ = \{ f \in (S_0)_{\mathbf{R}} : f'(0) > 0 \}.$

Observe, that f'(x) > 0 for all $x \in (-1, 1)$ and all $f \in (T_0)_{\mathbb{R}}$ and that $(S_0)_{\mathbb{R}}$ is not contained in $(T_0)_{\mathbb{R}}$. The following result was shown in [11] but we give a new proof for it.

THEOREM 4.1. The following relations hold. (i) $\mathcal{E}((T_0)_{\mathbf{R}}) = \{q_t/q_{-1} : -1 \leq t \leq 1\},$ (ii) $(T_0)_{\mathbf{R}} = \overline{co}\{(S_0)_{\mathbf{R}}^*\} = \{f/q_{-1} : f \in T_{\mathbf{R}}\} = \{f_{\mu} = \int_{[-1,1]} [q_t/q_{-1}] d\mu(t) : \mu \in \mathbb{P}_{[-1,1]}\}.$ (iii) Furthermore, we have $f_{\mu}(-1) = \mu(\{-1\}).$

Proof Let $f \in (T_0)_{\mathbb{R}}$. Then except for f = 1 the function

Proof. Let $f \in (T_0)_{\mathbb{R}}$. Then, except for $f \equiv 1$, the function $(f-1)/f'(0) \in T_{\mathbb{R}}^{-1/f'(0)}$ and therefore there is a positive measure λ on the Borel σ -algebra over [-1, 1] such that for all r, 0 < r < 1,

$$-1 \leq f(-r) - 1 = \int_{[-1,1]} q_t(-r) d\lambda(t) = -\int_{[-1,1]} q_{-t}(r) d\lambda(t).$$

Define λ_r by $d\lambda_r(t) = q_{-t}(r)d\lambda(t)$. Then λ_r is again a positive measure on the Borel σ -algebra over [-1, 1] whose total mass is $\lambda_r([-1, 1]) \leq 1$. By the Banach-Alaoglu Theorem and by the Riesz representation Theorem for C'([-1, 1]) there exists a Borel measure μ_1 such that λ_r converges to μ_1 in the weak*-topology as r tends to 1. (Strictly speaking one should take a weak* convergent sequence of λ_r as r tends to 1. However, by Lemma 2.1, μ_1 is uniquely determined.) For each fixed $z \in \Delta$ we have

$$f(z) = 1 + 2 \int_{[-1,1]} (1+t)q_l(z)d\lambda_r(t) + (\sqrt{r} - 1/\sqrt{r})^2 \int_{[-1,1]} q_l(z)d\lambda_r(t).$$

Letting r tend to 1, we get

$$f(z) = 1 + 2 \int_{[-1,1]} (1+t)q_t(z)d\mu_1(t) = \int_{[-1,1]} [q_t/q_{-1}](z)d\mu(t),$$

where $\mu = \mu_1 + [1 - \mu_1([-1, 1])]\delta_{-1} \in \mathbb{P}_{[-1, 1]}$. Thus,

$$(T_0)_{\mathbf{R}} \subset \overline{co} \{ q_t / q_{-1} : -1 \leq t \leq 1 \} \subset (T_0)_{\mathbf{R}}.$$

Hence, we have

$$(T_0)_{\mathbf{R}} = \{ f/q_{-1} : f \in T_{\mathbf{R}} \}$$
 and $\mathcal{E}((T_0)_{\mathbf{R}}) = \{ f/q_{-1} : f \in \mathcal{E}(T_{\mathbf{R}}) \}$

and (i) follows.

Statement (ii) follows from (i) and the facts that $(S_0)_{\mathbb{R}}^+$ is contained in $(T_0)_{\mathbb{R}}$ which is compact and convex and that $q_t/q_{-1} = 1 + 2(1+t)q_t$ is univalent on Δ for each $t, -1 < t \leq 1$. Finally, the inequality

$$\left| f_{\mu}(x) - \mu(\{-1\}) - \int_{[y,1]} [q_t/q_{-1}](x)d\mu(t) \right|$$

= $\left| \int_{(-1,y)} [q_t/q_{-1}](x)d\mu(t) \right| \leq \mu((-1,y))$

holds for all $x \in (-1, 0)$ and all $y \in (-1, 1)$. Letting first x tend to -1 and then y tend to -1 statement (iii) follows.

For the class $(S_0)_{\mathbf{R}}$ W. Koepf [6] has obtained the following result:

THEOREM 4.2. The following relations hold: (i) $\mathcal{E}((S_0)_{\mathbf{R}}) = \{q_t/q_{-1} : -1 < t \leq 1\} \cup \{q_t/q_1 : -1 \leq t < 1\}.$ (ii) $\sigma((S_0)_{\mathbf{R}}) \subset \{q_t/q_s : -1 \leq s, t \leq 1, s \neq t\}.$

We shall now complete statement (ii) of the above Theorem.

Theorem 4.3. We have $\sigma((S_0)_{\mathbf{R}}) = \{q_t/q_{-1} : -1 < t \leq 1\} \cup \{q_t/q_1 : -1 \leq t < 1\} = \mathcal{E}((S_0)_{\mathbf{R}}).$

Proof. Let $f \in \sigma((S_0)_{\mathbb{R}})$. If f'(0) > 0, then, by Lemma 2.2 and Theorem 4.1 (i), we conclude that $f \in \sigma((T_0)_{\mathbb{R}}) \subset co\{q_t/q_{-1} : -1 \leq t \leq 1\}$. Moreover, since f is univalent, there is a $\lambda \in [0, 1)$ and an $s \in (-1, 1]$ such that $f = (1 - \lambda)q_s/q_{-1} + \lambda$. Moreover, there is an $L \in H'(\Delta)$ such that $L^*(f) = \max L^*((S_0)_{\mathbb{R}})$ and L^* is not constant on $(S_0)_{\mathbb{R}}$. In particular, we have $L^*(f - q_t/q_{\pm 1}) \geq 0$ for all $t \in [-1, 1]$ which implies that

$$(4.2) \quad (1-\lambda)(1+s)L^*(q_s) - (\pm 1+t)L^*(q_t) \ge 0 \quad \text{for all } t \in [-1, 1].$$

Put t = 1. Then (4.2) becomes $(1-\lambda)(1+s)L^*(q_s) \ge 0$ which is satisfied if either $\lambda = 1$ or $L^*(q_s) \ge 0$. The first case is excluded since $f \equiv 1$ is not univalent. Next, put t = s. Then (4.2) reduces to $-\lambda(1+s)L^*(q_s) \ge 0$ which holds if either $\lambda = 0$ or $L^*(q_s) \le 0$. Suppose that $\lambda \ne 0$. Then $L^*(q_s) = 0$ and, by (4.2), we have $(\pm 1 - t)L^*(q_t) \ge 0$ for all $t \in [-1, 1]$. Therefore, $L^*(q_t) = 0$ for all $t \in (-1, 1)$. By Lemma 2.4, we conclude that L^* is constant on $(S_0)_{\mathbb{R}}$. Therefore, the only possible case is $\lambda = 0$, i.e. $f = q_s/q_{-1}$ for some $s \in (-1, 1]$.

Let now f'(0) < 0. Put $f_1(z) \equiv f(-z)$ and $L_1(f) = L(f_1)$ and apply the above proof. Therefore we have

$$\sigma((S_0)_{\mathbf{R}}) \subset \{q_t/q_{-1} : -1 < t \leq 1\} \cup \{q_t/q_1 : -1 \leq t < 1\}.$$

It remains to show that the converse inclusion holds. Fix $s \in (-1, 1]$ and consider the continuous linear functional

(4.3)
$$L(f) = \sum_{k=1}^{n+1} b_k(n) a_k(f),$$

where -(n-1)/(n+1) < s and $L(q_t) = [(n+1)s+n-t]^n$. The coefficients $b_k(n)$ exist since the polynomials $a_1(q_t), a_2(q_t), \ldots, a_{n+1}(q_t)$ form an algebraic basis for the linear space of all real polynomials of degree at most *n*. First, observe that $(n+1)s+n-t > 1-t \ge 0$ for all $t \in [-1, 1]$ and that $(1+t)[(n+1)s+n-t]^n$ has the unique global maximum at the point t = s on the interval [-1, 1]. Since $L(q_t/q_{-1}) - L(q_t/q_q) = 4L(q_t) > 0$, we conclude that

$$L(q_t/q_1) \leq L(q_t/q_{-1}) = 2(1+t)L(q_t) \leq L(q_s/q_{-1})$$
 for all $t \in [-1, 1]$.

Therefore, $\{q_s/q_{-1} : -1 < s \leq 1\} \subset \sigma((S_0)_{\mathbb{R}}).$

Similarly, for fixed $s \in [-1, 1)$ and (n - 1)/(n + 1) > s, we have $-(n+1)s + n + t > 1 + t \ge 0$, $t \in [-1, 1]$. Put $L(q_t) = [-(n+1)s + n + t]^n$. Then the functional (4.3) has the property

$$L(q_t/q_{-1}) \ge L(q_t/q_1) = -2(1-t)L(q_t)$$

$$\ge L(q_s/q_1) \text{ for all } t \in [-1, 1].$$

Therefore, $\{q_s/q_1 : -1 \leq s < 1\} \subset \sigma((S_0)_{\mathbb{R}})$ and Theorem 4.3 is established.

5. Extremal problems for the class $T_{\mathbf{R}}^{-p}$. In this section we solve some extremal problems for the class $T_{\mathbf{R}}^{-p}$ of all normalized (f(0) = f'(0) - 1 = 0) typically real functions which omit a given point -p on the negative real axis. Again, $T_{\mathbf{R}}^{-p}$ is empty for $0 and contains only the Koebe mapping <math>q_1(z) = z/(1-z)^2$, if p = 1/4. Furthermore, if 1/4 < s < t, then $T_{\mathbf{R}}^{-p}$ is strictly included in $T_{\mathbf{R}}^{-t}$ and $T_{\mathbf{R}}^{-\infty}$ is the usual class $T_{\mathbf{R}}$ of all normalized typically real functions. The mappings

$$q_t(z) = z/(1 - 2tz + z^2); t \in [1/(2p) - 1, 1]$$

belong to $T_{\mathbf{R}}^{-p}$ and are extreme points and support points for this class. However, there are many other support or extreme points for $T_{\mathbf{R}}^{-p}$ which are different from those for $S_{\mathbf{R}}^{-p}$. The first proposition shows that there is no similar relation to (1.4) for this class.

PROPOSITION 5.1. For each p > 1/4 we have the strict inclusions

$$\overline{co}\{q_t: 1/(2p) - 1 \leq t \leq 1\} \subset \overline{co}\{S_{\mathbf{R}}^{-p}\} \subset T_{\mathbf{R}}^{-p}.$$

Proof. Both inclusions are obvious. Let us show that they are strict. For any $f \in T_{\mathbf{R}}$ we have the unique Robertson representation

(5.1)
$$f(z) = \int_{[0,\pi]} q_{\cos(t)}(z) d\mu(t),$$

where $\mu = \mu_f \in \mathbb{P}_{[0,\pi]}$. Each μ_f is the weak^{*} limit of the sequence $\mu_n \in \mathbb{P}_{[0,\pi]}$ defined by

$$d\mu_n = (2/\pi) \operatorname{Im} \{ f((1-1/n)e^{it}) \} \sin(t) dt, \ 0 \leq t \leq \pi.$$

(a) The mappings $f_r(z) = q_1(rz)/r$ belong to $S_{\mathbf{R}}^{-p}$ for all r close to 1, 0 < r < 1. The unique measure μ of the representation (5.1) for f_r is

$$d\mu_r = (2/\pi)$$
. Im $\{q_1(re^{it})/r\} \sin(t)dt$.

https://doi.org/10.4153/CJM-1990-033-x Published online by Cambridge University Press

Since $\mu_r(\cos^{-1}[-1, 1/(2p) - 1)) > 0$, we conclude that f_r does not belong to $\overline{co}\{q_t : 1/(2p) - 1 \le t \le 1\}$. Also the examples given in Theorem 3.5 show that the first inclusion is strict.

(b) Let $f = (1 - \lambda)q_s + \lambda q_t$, $0 < \lambda < 1$, -1 < s < 1/(2p) - 1 < t < 1, such that f(-1) = -p. Then $f \in T_{\mathbf{R}}^{-p} \setminus S$. In particular, f is not an extreme point of the closed convex hull of $S_{\mathbf{R}}^{-p}$ (Krein Milman). Suppose now that f is a convex combination of two other functions f_1 and f_2 in $T_{\mathbf{R}}^{-p}$. Then the support of the representing measures (5.1) of both functions consists of at most two points. Since $f_1(-1) = f_2(-1) = -p$ in the sense of (1.3), we conclude that $f_1 = f_s = f$ and therefore $f \in \mathcal{E}(T_{\mathbf{R}}^{-p})$.

In the next theorem we determine the set of all extreme points for the class $T_{\mathbf{R}}^{-p}$.

THEOREM 5.2. Let p > 1/4. Then the following relations hold: (i) $\mathcal{E}(T_{\mathbf{R}}^{-p}) = \{q_s q_t / q_{2p(1+s)(1+t)-1} : -1 \leq s \leq 1/(2p) - 1 \leq t \leq 1\}.$ and hence

(*ii*) $T_{\mathbf{R}}^{-p} = \{ f_{\mu} = \int_{E} [q_{s}q_{t}/q_{2p(1+s)(1+t)-1}] d\mu(s, t) : \mu \in \mathbb{P}_{E} \},$ where $E = \{ (s, t) \in \mathbb{R}^{2} : -1 \leq s \leq 1/(2p) - 1 \leq t \leq 1 \}.$

Remark. Observe that for every $(s, t) \in E$ we have

$$q_{s}q_{t}/q_{2p(1+s)(1+t)-1} = (1-\lambda)q_{s} + \lambda q_{t},$$

where $\lambda = [1-2p(1+s)](1+t)/(t-s) \in [0,1]$, if s < t, and $\lambda = 0$ or 1 if s = t = 1/(2p) - 1. Furthermore, if $-1 < s \le t \le 1$, then $q_s q_t / q_{2p(1+s)(1+t)-1}(-1) = -p$.

Proof. We have $T_{\mathbf{R}}^{-p} = \{f : f/p + 1 \in (T_0)_{\mathbf{R}} \text{ and } f'(0) = 1\}$. Using Theorem 4.1 (ii) and the relation $q_t/q_{-1} = 1 + 2(1+t)q_t$ we get

$$T_{\mathbf{R}}^{-p} = \{ f_{\mu} = 2p \int_{[-1,1]} (1+t)q_t d\mu(t) : \mu \in \mathbb{P}_{[-1,1]}$$

and $2p \int_{[-1,1]} (1+t)d\mu(t) = 1 \}.$

Next, we want to apply Lemma 2.3. Since the correspondence $\mu \rightarrow f_{\mu}$ is an affine homeomorphism, we get

$$\mathcal{E}(T_{\mathbf{R}}^{-p}) = \left\{ f_{\mu} : \mu \in \mathcal{E} \left\{ \nu \in \mathbb{P}_{[-1,1]} \right\}$$

such that $2p \int_{[-1,1]} (1+t) d\nu(t) = 1 \right\}$

Putting $\Phi(\nu) = 2p \int_{[-1,1]} (1+t)d\nu(t)$ we get from (2.5) that f is an extreme point of $T_{\mathbf{R}}^{-p}$ if and only if $f = 2p(1-\lambda)(1+s)q_s + 2p\lambda(1+t)q_t$ under the condition that $f'(0) = 1 = 2p(1-\lambda)(1+s)+2p\lambda(1+t)$. Without loss of generality we may

assume that $s \leq t$. The last condition shows that $-1 \leq s \leq 1/(2p) - 1 \leq t \leq 1$ and the result follows.

Let $L \in H'(\Delta)$ and let L^* be as defined in (2.6). Then any linear optimisation problem over the class $T_{\mathbf{R}}^{-p}$, $M = \max L^*(T_{\mathbf{R}}^{-p}) (\min L^*(T_{\mathbf{R}}^{-p})$ resp.), can be reduced by means of Theorem 5.2 to a classical optimization problem involving a real-valued differentiable function of two real variables, i.e.

$$M = \max(\min)\{F(s, t) : -1 \le s \le 1/(2p) - 1 \le t \le 1\},\$$

where

(5.2)
$$F(s, t) = L^*(q_s q_t / q_{2p(1+s)(1+t)-1}).$$

In all the calculations it is convenient to use the following relations:

(5.3)
$$(q_t - q_s)/(t - s) = 2q_sq_t, \quad q_t/q_s = 1 + 2(t - s)q_t, \\ \partial^n(q_t)/\partial t^n = 2^m n! q_t^{n+1}, \quad q_t' = (z^{-2} - 1)q_t^2, \\ ((1 + t)q_t - (1 + s)q_s)/(t - s) = q_sq_t/q_{-1}, \\ (t - s)F(s, t) = [1 - 2p(1 + s)](1 + t)L^*q_t) \\ - [1 - 2p(1 + t)](1 + s)L^*(q_s).$$

The classical necessary and sufficient conditions for a local maximum (local.minimum resp.) of F are summarized in the Lemma below.

LEMMA 5.3. Let $J(t) = L^*(q_t)$. Then the following statements hold.

(i) If (s, t) is a critical point of F in $\{(s, t) : -1 < s < 1/(2p) - 1 < t < 1\}$, then it is a solution of the two equations

$$(5.4) \quad (J(t) - J(s))/(t - s) = J'(t)(1 + t)/(1 + s) = J'(s)(1 + s)/(1 + t).$$

(ii) Let (s, t), -1 < s < 1/(2p) - 1 < t < 1, be a critical point of F. Then (s, t) is a local maximum (local minimum resp.) of F if

(5.5)
$$(1+s)J''(s) + 2J'(s) < 0$$
 and $(1+t)J''(t) + 2J'(t) < 0$

(5.6)
$$((1+s)J''(s) + 2J'(s) > 0 \text{ and } (1+t)J''(t) + 2J'(t) > 0 \text{ resp.}).$$

(iii) If s is a critical point of G(s) = F(s, 1), -1 < s < 1/(2p) - 1, then it is a solution of the equation:

$$(5.7) \qquad (J(1) - J(s))/(1 - s) = J'(s)(1 + s)/2.$$

If, in addition, (1 + s)J''(s) + 2J'(s) < 0 (> 0 resp.), then s is a local maximum (local minimum resp.) of G.

636

In Proposition 5.1 we have seen that the convex hull of $S_{\mathbf{R}}^{-p}$ is contained in $T_{\mathbf{R}}^{-p}$ but there are functions in $T_{\mathbf{R}}^{-p}$ which do not belong to the convex closure of $S_{\mathbf{R}}^{-p}$. The next Proposition is an easy application of Lemma 5.3 and could also be shown by the same way as Proposition 3.1 (iii).

PROPOSITION 5.4. If $f \in T_{\mathbf{R}}^{-p}$, $p \ge 1/4$, then we have for all x, -1 < x < 1, the sharp inequalities:

$$q_{1/(2p)-1}(x) \leq f(x) \leq q_1(x).$$

Proof. The upper bound holds for all functions in $T_{\mathbf{R}}$. Fix $x \in (-1,0) \cup (0,1)$ and put $L^*(f) = f(x)$. Condition (5.4) becomes

$$(q_t(x) - q_s(x))/(t - s) = 2q_s(x)q_t(x) = 2q_t^2(x)(1 + t)/(1 + s)$$
$$= 2q_s^2(x)(1 + s)/(1 + t) > 0$$

which implies that $q_t(x)(1+t) = q_s(x)(1+s)$. But there is no point (s, t), -1 < s < 1/(2, p) - 1 < t < 1 such that

$$\frac{((1+t)q_t(x) - (1+s)q_s(x))}{(t-s)} = \frac{q_s(x)q_t(x)}{q_{-1}(x)} = 0.$$

In other words, there is no critical point in -1 < s < 1/(2p) - 1 < t < 1. On the boundary part $\{(s, 1) : -1 \le s \le 1/(2p) - 1\}$ the function G(s) = F(s, 1)is a homography of the variable *s*. Therefore, *G* has no critical point on $\{(s, 1) :$ $-1 < s < 1/(2p) - 1\}$. The same fact holds for the function H(t) = F(-1, t) =J(t) on the boundary part $\{(-1, t) : 1/(2p) - 1 \le t \le 1\}$. Observe furthermore that $F(s, 1/(2p) - 1) \equiv F(1/(2p) - 1, t) \equiv q_{1/(2p)-1}(x)$. Therefore, the extremal functions are q_1 and $q_{1/(2p)-1}$. The first gives the maximum value and the second the minimum value of f(x).

THEOREM 5.5. Fix p > 1/4 and $z \in \Delta$, $\text{Im}\{z\} \neq 0$. Then the set

(5.8) $E = \{ w = f(z) : f \in T_{\mathbf{R}}^{-p} \}$

is the closed circular lens which is bounded by the two arcs

$$\gamma_1 = \{q_t(z) : 1/(2p) - 1 \le t \le 1\} \text{ and} \gamma_2 = \{q_1(z)q_s(z)/q_{4p(1+s)-1}(z) : -1 \le s \le 1/(2p) - 1\}.$$

Furthermore, γ_2 is tangent to the straightline segment from $q_{-1}(z)$ to $q_1(z)$ at the point $q_1(z)$.

Proof. Consider the functional $L(f) = e^{i\alpha}f(z)$ where α is a real number. The equations (5.4) lead to the equalities

$$\operatorname{Re}\left\{e^{i\alpha}q_{s}(z)q_{t}^{2}(z)/q_{-1}(z)\right\} = \operatorname{Re}\left\{e^{i\alpha}q_{t}(z)q_{s}^{2}(z) q_{-1}(z)\right\} = 0.$$

Hence, $q_s(z)/q_t(z) \in \mathbb{R}$. Since $q_s(z)$ and $q_t(z)$ lie on a circle passing through the origin, this situation is impossible for $t \neq s$. Therefore, there is no critical point of F in -1 < s < 1/(2p) - 1 < t < 1. On the other hand, through each boundary point of the compact convex set E defined by (5.8) passes a straight line which supports E. Thus, by theorem 5.2 (i),

$$E = co\{[q_sq_t/q_{2p(1+s)(1+t)-1}](z) : (s, t) \in \partial([-1, 1/(2p) - 1] \\ \times [1/(2p) - 1, 1])\} \\ = co\{\gamma_1 \cup \gamma_2\}. \quad \text{Finally, } \gamma_1 \cup \gamma_2 = \partial E.$$

The next Theorem gives estimates for the derivative of f at a given point in (-1, 1).

THEOREM 5.6. Let p > 1/4 and let x_o be the unique solution in (-1, 0) of $x_o + 1/x_o = -1 - (1+2/p)^{1/2}$. Put $s = [(x+1/x)^2 + 2(x+1/x) - 4]/4$. If $f \in T_{\mathbb{R}}^{-p}$, then

(i) $q'_{1/(2p)-1}(x) \leq f'(x) \leq q'_1(x), \text{ if } 0 \leq x < 1.$ (ii) $q'_1(x) \leq f'(x) \leq q'_{1/(2p)-1}(x), \text{ if } x_o \leq x \leq 0.$ (iii) $q'_1(x) \leq f'(x) \leq [q_1q_s/q_{4p(1+s)-1}]'(x), \text{ if } -1 < x \leq x_o.$

Proof. First observe that $xf'(x) \le xq'_1(x)$ for all $x \in (-1, 1)$. Let $L(f) = f'(x), -1 < x < 1, x \ne 0$, and put $J(t) = q'_t(x) = (x^{-2} - 1)q_t^2(x)$. We now show that F(s, t) has no critical points in -1 < s < 1/(2p) - 1 < t < 1. Indeed, Condition (5.4) becomes

$$(q_t^2(x) - q_s^2(x))/(t - s) = 2q_s(x)q_t(x)[q_s(x) + q_t(x)]$$

= $4q_t^3(x)(1 + t)/(1 + s) = 4q_s^3(x)(1 + s)/(1 + t)$

which implies that $[q_s(x)q_t(x)(q_s(x)+q_t(x))]^2 = 4q_s^3(x)q_t^3(x)$ or $[q_s(x)q_t(x)(q_s(x)-q_t(x))]^2 = 0$ which leads to a contradiction for $s \neq t$. Therefore there are no critical points in -1 < s < 1/(2p) - 1 < t < 1. Consider now the function H(t) = F(-1, t) = J(t) on the boundary part $\{(-1, t) : 1/(2p) - 1 \leq t \leq 1\}$. Since xJ'(t) > 0 for all $x \in (-1, 1) \setminus \{0\}$, we have

$$q'_{1/(2p)-1}(x) = J(1/(2p)-1) \le J(t) \le J(1) = q'_1(x), \text{ if } 0 < x < 1$$

and

$$q'_{1/(2p)-1}(x) = J(1/(2p)-1) \ge J(t) \ge J(1) = q'_1(x), \text{ if } -1 < x < 0.$$

Consider now the function G(s) = F(s, 1) on the boundary part $\{(s, 1) : -1 \le s \le 1/(2p) - 1\}$. Then the condition (5.4) becomes

(5.9)
$$q_1(x)[q_1(x) + q_s(x)] = (1+s)q_s^2(x), -1 < s < 1/(2p) - 1.$$

Substituting $Q = q_1(x)/q_s(x)$ in (5.9) we get Q(Q+1) = 1 + s. Since Q > 0, we obtain $Q = [-1 + (1 + 4(1 + s))^{1/2}]/2$. Put w = (x + 1/x)/2. Then $|w| \ge 1$ and

$$5+4s = (2Q+1)^2 = [2(w-s)/(w-1)+1]^2$$

and therefore

$$(s-1)(s-w^2-w+1) = 0.$$

Since -1 < s < 1/(2p) - 1, the only possible solution is $s^* = w^2 + w - 1$ which implies that $-[1 + (1 + 2/p)^{1/2}]/2 < w < -1$ or $-1 < x < x_o$. Therefore, if $x_o \le x < 1$, the only extremal functions are $q_{1/(2p)-1}$ and q_1 and the statements (i) and (ii) are proved.

It remains the case (iii). For all $x \in (-1, 0)$, we have

$$(1+s^*)J''(s^*)+2J'(s^*)=8(x^{-2}-1)q_{s^*}^3(x)[3(1+s^*)q_{s^*}(x)+1]<0.$$

Therefore, the function G(s) has a local maximum at s^* and we have the inequalities

$$q'_{1}(x) \leq f'(x) \leq \max\{q'_{1/(2p)-1}(x), [q_{1}q_{s^{*}}/q_{4p(1+s^{*})-1}]'(x)\}, -1 < x \leq x_{o}.$$

It remains to show that for all $x, -1 < x \leq x_o$,

$$(5.10) \quad [q_1 q_{s^*} / q_{4p(1+s^*)-1}]'(x) \ge q'_{1/(2p)-1}(x).$$

For convenience put u = -w and m = 1/(2p) - 1. Then we have $s^* = u^2 - u - 1$ and $1 < u < [1 + (1 + 2/p)^{1/2}]/2$. First, observe that

(5.11)
$$q_1 q_{s^*} / q_{4p(1+s^*)-1} = (1-\lambda)q_{s^*} + \lambda q_1$$

where $\lambda = [2 - 4p(1 + s^*)]/(1 - s^*) = [2 - 4pu(u - 1)]/[(1 + u)(2 - u)] \in (0, 1)$. Using the fact that $u + s^* = u^2 - 1$, we are lead to show that

$$(5.10') \quad [(1-\lambda)+\lambda(u-1)^2]/(u^2-1)^2-1/(u+m)^2 \ge 0.$$

But

$$[(1 - \lambda) + \lambda(u - 1)^2]/(u^2 - 1)^2 = [1 - \lambda u(2 - u)]/(u^2 - 1)^2$$
$$= (4pu^2 - 1)/[(u^2 - 1)(u + 1)^2].$$

From the identity

$$(4pu2 - 1)(u + m)2 - (u2 - 1)(u + 1)2 = (4p - 1)(u2 - u - 1 - m)2$$

we conclude that (5.10) holds. Equality holds if and only if $x = x_o$.

The following Lemma will be useful for our next result.

LEMMA 5.7. For all positive integers and all $x \in (o, \pi)$ we have

(5.12) $\sin(nx)/[\sin(x)] < [2 + \cos(nx)]/[2 + \cos(x)].$

Proof. Put $u(x) = \frac{\sin(x)}{[x(2 + \cos(x))]}$ and v(x) = xu(x). Since

$$[u'(x)x^{2}(2 + \cos(x))^{2}]' = 2.\sin(x)[\sin(x) - x] < 0$$

we conclude that u'(x) < 0 for all $x \in (0, \pi)$ and therefore u(x) is strictly decreasing on $[0, \pi]$. Moreover, v(x) is strictly increasing on $[0, 2\pi/3]$ and decreasing on $[2\pi/3, \pi]$. Therefore, for $0 < x \le \pi/n$, we have:

(5.13)
$$\sin(nx)/[2 + \cos(nx)] = v(nx) = nxu(nx) < nxu(x) = nv(x)$$

= $n \sin(x)/[2 + \cos(x)].$

Next we show that (5.12) holds for all $x \in [\pi(n-1)/n, \pi)$. If n is even and $\pi(n-1)/n \leq x < \pi$, then

$$\frac{\sin(nx)}{[\operatorname{nsin}(x)]} = -\frac{\sin(n(\pi - x))}{[\operatorname{nsin}(\pi - x)]} \leq 0.$$

For odd *n* and $\pi(n-1)/n \le x < \pi$ we have $\cos(x) < \cos(nx)$ and, according to (5.13), we get

$$\frac{\sin(nx)}{[n\sin(x)]} = \frac{\sin(n(\pi - x))}{[n\sin(\pi - x)]}$$

$$< \frac{[2 + \cos(n(\pi - x))]}{[2 + \cos(\pi - x)]}$$

$$= \frac{[2 - \cos(nx)]}{[2 - \cos(x)]}$$

$$< \frac{[2 + \cos(nx)]}{[2 + \cos(x))]}.$$

Observe also that it is sufficient to show (5.12) for the subset of $x \in (0, \pi)$ for which $\sin(nx) \ge 0$, i.e. if the integer part of nx/π is even. Let now $\pi/n < x < (n-1)\pi/n$ be fixed and let the integer part of nx/π be equal to 2k where k is an integer in (0, (n-1)/2). Then we have $0 \le x - 2k\pi/n < \pi/n$ and, by (5.13), we conclude that

$$v(nx) = v(n(x - 2\pi k/n)) \le nv(x - 2\pi k/n) < nv(\pi/n).$$

If $x \in (\pi/n, 2\pi/3]$, then, by the monotonicity of v we have $v(nx) < nv(\pi/n) < nv(x)$. Similarly, if $x \in (2\pi/3, \pi - \pi/n)$, then

$$nv(x) > nv(\pi - \pi/n) \ge nv(\pi/n) > v(nx).$$

This completes the proof.

In what follows, we are interested in sharp estimates of some coefficients of functions in the class $T_{\mathbf{R}}^{-p}$. Using the same proof as for Proposition 3.1 (i) and (ii) we have

PROPOSITION 5.8. If $f \in T_{\mathbf{R}}^{-p}$, $p \ge 1/4$, then the following sharp estimates hold: (i) $2 \ge a_2(f) \ge -2 + 1/n$

(i)
$$2 \ge a_2(f) \ge -2 + 1/p$$

(ii) $3 \ge a_e(f) \ge \begin{cases} (1 - 1/p)(3 - 1/p), & \text{if } 1/4 \le p \le 1/2 \\ -1, & \text{if } p \ge 1/2 \end{cases}$. The extremal

functions are $q_{1/(2p)+1}$ or q_0 for the minimum and q_1 for the maximum.

Evidently, $a_n(f) \leq n$ for all $n, \in \mathbb{N}$, since $q_1 \in T_{\mathbb{R}}^{-p}$ for all $p \geq 1/4$. The situation is quite different for the minimum of $a_4(f)$. We shall use the same method as we have applied for the previous Theorems. Put $J(t) = a_n(q_t)$ and

(5.14)
$$F(s, t) = a_n(q_sq_t/q_{2p(1+s)(1+t)-1}) = (1-\lambda)a_n(q_s) + \lambda a_n(q_t),$$

where $\lambda = [1-2p(1+s)](1+t)/(t-s) \in [0, 1]$ and $-1 \le s \le 1/(2p)-1 \le t \le 1$.

LEMMA 5.9. Let p > 1/4 and put $A_n(p) = \min\{a_n(q_t) : (2p) - 1 \le t \le 1\}$. Denote by B the set of all critical points of (5.14) in the open rectangle $\{(s, t) : -1 < s < 1/(2p) - 1 < t < 1\}$. Then we have:

$$\min\{a_n(T_{\mathbf{R}}^{-p})\} = \min\{A_n(p), \min\{F(s, t) : (s, t) \in B\}\}.$$

Proof. First, observe that $F(-1, t) = a_n(q_t)$, $F(s, 1/(2p) - 1) = F(1/(2p) - 1, t) = a_n(q_{1/(2p)-1})$. Put $s = \cos(x)$. Then, by Lemma 5.7, we conclude that

$$[\partial F/\partial s](s, 1) = (4p - 1)n(2 + \cos(x))$$
$$\times \left\{ \frac{\sin(nx)}{n\sin(x)} - \frac{2 + \cos(nx)}{2 + \cos(x)} \right\} < 0$$

for all $x \in (0, \pi)$.

In contrast to the cases of $\min\{a_2(T_{\mathbf{R}}^{-p})\}\)$ and $\min\{a_3(T_{\mathbf{R}}^{-p})\}\)$ we get for the problem $\min\{a_4(T_{\mathbf{R}}^{-p})\}\)$ extremal functions which are not univalent for some values of p.

THEOREM 5.10. If $f \in T_{\mathbf{R}}^{-p}$, p > 1/4, then we have the sharp estimate

$$a_4(f) \ge \begin{cases} 4m(2m^2 - 1), & \text{if } 1/4$$

where m = 1/(2p) - 1. The extremal function is q_m for the upper case and $q_{s^*}q_{t^*}/q_{2p(1+s^*)(1+t^*)-1}$ for the lower case where $s^* = -(1 + \sqrt{7})/4$ and $t^* = (\sqrt{7} - 1)/4$.

Proof. Put $J(t) = a_4(q_t) = 4t(2t^2 - 1)$ and Y(s, t) = (1 + s)(1 + t)(J(t) - J(s))/(t - s). Then $Y(t, t) = (1 + t)^2 J'(t)$ and (5.4) can be written in the form

$$(5.4') \quad Y(s, t) = Y(t, t) = Y(s, s), -1 < s < 1/(2p) - 1 < t < 1.$$

or

$$(5.4'') \quad [Y(s, t) - Y(t, t)]/[(t - s)(1 + t)] = [Y(s, t) - Y(s, s)]/[(t - s)(1 + s)] \\ = 0, -1 < s < 1/(2p) - 1 < t < 1.$$

But $Y(s, t) = 4(1+s)(1+t)[2(t^2+ts+s^2)-1]$ and, by (5.4"), the critical points in $\{(s, t): -1 < s < 1/(2p) - 1 < t < 1\}$ have to satisfy the equations

$$2(1+s)(t-s) - 6t(1+s+t) + 1 = 0,$$

$$2(1+t)(t-s) + 6s(1+s+t) - 1 = 0.$$

The only critical point in $\{(s, t) : -1 < s < 1/(2p) - 1 < t < 1\}$ is

$$s^* = -(1 + \sqrt{7})/4$$
 and $t^* = (\sqrt{7} - 1)/4$

which is, by (5.6), a local minimum provided that $3 - \sqrt{7} . The correspondent value for <math>a_4$ is $F(s^*, t^*) = -(p+4)/4 = -1 - 1/[8(m+1)]$. Let $A_4(p)$ be as in Lemma 5.9 and put m = 1/(2p) - 1. Then we get

$$A_4(p) = \begin{cases} 4m(2m^2 - 1), & \text{if } 1/4$$

Next, observe that

 $4m(2m^2-1)+1+1/[8(m+1)] = (8m^2+4m-3)^2/[8(m+1)] \ge 0.$ Furthermore, we have $-1-p/4 < -4\sqrt{6}/9$, whenever $p \ge 3-\sqrt{7}$, and the interval $[(6-\sqrt{6})/10, (3+\sqrt{6})/2]$ is contained in the interval $[3-\sqrt{7}, 3+\sqrt{7}]$. By Lemma 5.9, we conclude that for the case $3-\sqrt{7} the function <math>F$ attains its global minimum at the point (s^*, t^*) . For the remaining values of p the extremal function is q_m .

It is a natural question to ask under what conditions the extremal functions are univalent. The following Lemma gives a partial answer to it.

LEMMA 5.11. Let $L \in H'(\Delta)$ and $J(t) = L^*(q_t), -1 \leq t \leq 1$. Suppose that there is a $t^* \in [-1, 1)$ such that J is convex and increasing on $[t^*, q]$ and J attains the global minimum at t^* . Then

$$\min L^*(T_{\mathbf{R}}^{-p}) = \min L^*(S_{\mathbf{R}}^{-p}) = \min \{L^*(q_t) : 1/(2p) - 1 \le t \le q\}$$

for all p > 1/4.

Proof. Let m = 1/(2p) - 1 be fixed. If $-1 < m \le t^*$, then $q_{t^*} \in S_{\mathbf{R}}^{-p}$ and $J(t^*) = \min L^*(T_{\mathbf{R}}) \le \min L^*(T_{\mathbf{R}}^{-p}) \le \min L^*(S_{\mathbf{R}}^{-p}) \le J(t^*)$. Hence, the result follows for this case. It remains to verify the case $-1 \le t^* \le m < 1$. Consider the linear functional $K(f) = a_2(f)/2 + i \cdot L^*(f), f \in H(\Delta)$. Since $K(q_t) = t + iJ(t)$, we conclude from Proposition 5.8 that $K(T_{\mathbf{R}}^{-p})$ lies in the strip $\{w : m \le \operatorname{Re}\{w\} \le 1\}$. Furthermore, Theorem 5.2 and the above assumptions on t^* imply that $K(T_{\mathbf{R}}^{-p})$ is contained in the set $\{w : m \le \operatorname{Re}\{w\} \le 1$ and $\operatorname{Im}\{w\} \ge J(\operatorname{Re}\{w\})\}$. Therefore, we get

$$J(m) \leq \min\{\operatorname{Im}\{w\} : w \in K(T_{\mathbb{R}}^{-p})\} = \min L^*(T_{\mathbb{R}}^{-p})$$
$$\leq \min L^*(S_{\mathbb{R}}^{-p}) \leq L^*(q_m) = J(m).$$

The next result is an application of the above Lemma.

THEOREM 5.12. For all odd integers $n \ge 3$ and all p > 1/4, we have $\min a_n(T_{\mathbf{R}}^{-p}) = \min a_n(S_{\mathbf{R}}^{-p}) = \min \{\sin(nx(/\sin(x) : 1/(2p)) - \le \cos(x) \le 1\}.$

Proof. Put t = cos(x), $t_k = cos(x_k)$ and $x_k = k\pi/n$, k = 1, 2, ..., n-1. It is sufficient to check that the polynomial

$$J(t) = a_n(q_t) = 2^{n-1} \prod_{k=1}^{n-1} (t - t_k) = \omega(x) = \frac{\sin(nx)}{\sin(x)}$$

satisfies Lemma 5.11 for a suitable t^* . For n = 3, J(t) is a convex parabole. If n = 5, then $J(t) = 16t^4 - 12t^2 + 1$ satisfies Lemma 5.11 with $t^* = \sqrt{6}/4$. Let now $n \ge 7$. Then J(-t) = J(t) and J'(t) has exactly n - 2 distinct zeros $s_k \in (t_{k+1}, t_k), k = 1, 2, \ldots, n-2$, on the interval (-1, 1). Moreover, J''(t) has exactly n-3 distinct zeros $r_k \in (s_{k+1}, s_k), k = 1, 2, \ldots, n-3$, on (-1, 1). Thus we conclude J > 0 on $(t_1, 1], J' > 0$ on $(s_1, 1]$ and J'' > 0 on $(r_1, 1]$. Put $t^* = s_1$. Then, J is convex and increasing on $(t^*, 1)$. It remains to show that the global minimum of J is attained at t^* . Observe that the local minima of J are at the points $s_{2k-1} = \cos(x_{2k-1}^*), x_{2k-1} < x_{2k-1}^* < x_{2k}$. By the symmetry it is sufficient to check the interval $0 < x < \pi/2$. Put $\xi_{2k-1} = x_{2k-1}^* - 2(k-1)\pi/n \in (x_1, x_2)$. Then we get

$$\omega(x_{2k-1}^*) = \frac{\sin(n\xi_{2k-1})}{\sin(x_{2k-1}^*)} \ge \frac{\sin(n\xi_{2k-1})}{\sin(\xi_{2k-1})} \ge \omega(x_1^*)$$

and Theorem 5.12 is shown.

The problem of sharp lower bounds for even coefficients of functions in $S_{\mathbf{R}}^{-p}$ is still open. However, for p large enough (depending on n), there is a q_{t^*} which minimizes $a_n(f)$.

THEOREM 5.13. For every $L \in H'(\Delta)$ there is a constant p_L such that for all $p > p_L$ we have $\min L^*(T_{\mathbf{R}}^{-p}) = \min L^*(S_{\mathbf{R}}^{-p}) = \min \{L^*(q_t) : 1/(2p) - 1 \le t \le 1\}$.

Proof. Let $J(t) = L^*(q_t), -1 \le t \le 1$, and suppose that J attains its global minimum at a point $t^* \in (-1, 1]$. Then Theorem 5.13 holds for $p_L = 1/(2+2t^*)$. Assume therefore that $t^* = -1$ is the only global minimum of J. We shall proceed in two steps.

Step 1. Denote by B the set of all critical points of the function $F(s, t) = L^*(q_sq_t/q_{2p(1+s)(1+t)-1})$ on the domain $\{(s, t) : -1 < s < t < 1\}$. Suppose first that B is nonempty. Then J" is not identical zero on [-1, 1]. We want to show that $s_o = \inf\{s : (s, t) \in B\} > -1$. Assume that the contrary holds. Then there is sequence $(s_n, t_n) \in B$ such that $\lim_{n\to\infty} s_n = -1$ and $\lim_{n\to\infty} t_n = \tau \in [-1, 1]$. The case $\tau \neq -1$ is excluded. Indeed, if $\tau \neq -1$, then (5.4) implies that

$$[J(\tau) - J(-1)]/(\tau + 1) = \lim_{n \to \infty} J'(s_n)(1 + s_n)/(1 + t_n) = 0$$

which contradicts the assumption $t^* = -1$ is the unique global minimum of J. Since J is analytic on [-1, 1] and J'' does not vanish identically there, there is a $\delta > 0$ such that $J'(t)J''(t) \neq 0$ for all $t \in (-1, -1 + \delta)$. From the fact that $0 < [J(t) - J(-1)]/(t + 1) = J'(\theta)$ for all $t \in (-1, -1 + \delta)$ and some $\theta \in (-1, t)$ we conclude that J' > 0 on $(-1, -1 + \delta)$. Moreover, if n is sufficiently large, then, by (5.4), we get $-1 < s_n < t_n < -1 + \delta$ and $0 < J'(t_n) < J'(t_n)(1+t_n)/(1+s_n) = J'(s_n)(1+s_n))/(1+t_n) < J's_n)$. In other words we have J''(t) < 0 for all $t \in (-1, -1 + \delta)$ and we conclude that J'(-1) > 0.

Next we use again (5.4) and (5.3) and we get for points $(s, t) \in B$

$$2L^{*}(q_{s}q_{t}) = \frac{L^{*}(q_{t} - q_{s})}{(t - s)} = \frac{2L^{*}(q_{t}^{2})(1 + t)}{(1 + s)}$$

and hence

$$0 = (1+s)L^*(q_s, q_t) - (1+t)L^*(q_t^2) = (s-t)L^*(q_sq_t^2/q_{-1}).$$

In particular, $J'(-1) = 2L^*(q_{-1}^2) = 2 \lim_{n\to\infty} L^*(q_{s_n}q_{t_n}^2/q_{-1}) = 0$ which leads to a contradiction. Therefore, if *B* is nonempty, $s_o > -1$. Put $p_1 = 1/4$, if *B* is empty and $p_1 = 1/(2+2s_o)$, if *B* is otherwise.

Step 2. Let G(s) = F(s, 1), -1 < s < 1 and consider the condition (5.7). First, we claim that there are only finitely many solutions of (5.7). Indeed, if not, then (5.7) holds for all $s \in [-1, 1]$, since J is analytic on [-1, 1]. But the only analytic solution for (5.7) on [-1, 1] is the constant function. Therefore, there is an interval $(-1, -1 + \rho), \rho > 0$, which contains no critical points of G. Put $p_2 = 1/(2\rho)$.

Finally, put $p_L = \max\{p_1, p_2\}$. By Lemma 5.3, Theorem 5.13 follows.

REFERENCES

1. L. Brickman, Extreme points of the set of univalent functions, Bull. Amer. Soc. 76 (1970), 372–374.

- L. Brickman, T. H. MacGregor, D. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (971), 91–107.
- 3. P. L. Duren, Univalent functions, Springer-Verlag Berlin, 1983.
- 4. P. L. Duren, G. Schober, Nonvanishing univalent functions, Math. Z. 170 (1980), 195-216.
- 5. M. G. Goluzin, *Geometric theory of functions of a complex variable*, Translations of Math. Monographs, 26, Amer. Math. Soc. Providence, Rhode Island, 1969.
- 6. W. Koepf, On nonvanishing univalent functions with real coefficients, Math. Z. 192 (1986), 575–579.
- 7. G. Schober, Univalent functions selected topics. Lecture Notes 478, Springer-Verlag Berlin, 1975.
- 8. W. Szapiel, Points extrémaux dans les ensembles convexes 1. Théorie générale, Bull. Acad. Polon. Sci., Math. 23 (1975), 939–945.
- 9. *Extreme points of convex sets 2. Influence of normalisation on integral representations,* Bull. Acad. Polon. Sci., Math 29 (1981), 535–544.
- 10. Extreme points of convex sets 3. Montel's normalisation, Bull. Acad. Polon. Sci., Math. 30 (1982), 41–47.
- 11. M. Szapiel, W. Szapiel, *Extreme points of convex sets 4. Bounded typically real functions*, Bull. Acad. Polon. Sci., Math 30 (1982), 49–57.
- 12. O. Tammi, *Extremum problems for bounded univalent functions*, Lecture Notes 646, Springer-Verlag Berlin, 1978.

Département de Mathématiques, Université Laval Québec, P.Q., Canada

Institute of Mathematics, M. Curie – Sklodowska University Lublin, Poland