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Abstract

By defining and applying the restricted topology, we have investigated certain connections between the
boundary spectrum, the exponential spectrum, the topological boundary of the spectrum and the connected
hull of the spectrum (see Mouton and Harte [‘Linking the boundary and exponential spectra via the
restricted topology’, J. Math. Anal. Appl. 454 (2017), 730–745]). We now solve a remaining problem
regarding the restricted connected hull.
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1. Introduction and preliminaries

For a complex Banach algebra A with unit 1, let A−1 denote the set of all invertible
elements. We will indicate elements of the form λ1 in A by λ. We denote the spectrum
{λ ∈ C : a − λ � A−1} of an element a in A by σ(a) (or by σ(a, A), if necessary, to avoid
confusion). The symbols ∂σ(a) and ησ(a) will denote the boundary and the connected
hull, respectively, of σ(a). (As usual, the connected hull of a set K in C is the union of
K with its ‘holes’, where a hole of K is a bounded component of C\K.)

With ∂A(A\A−1) denoting the topological (norm) boundary of A\A−1 in A and
Exp(A) the set of all (finite) products of exponentials of elements in A, we will
consider the boundary spectrum S∂(a) := {λ ∈ C : a − λ ∈ ∂A(A\A−1)} (see [6]) and the
exponential spectrum ε(a) := {λ ∈ C : a − λ � Exp(A)} (see [4]) of a in A. Both these
spectra are nonempty compact subsets of the complex plane and, for every a ∈ A,

∂σ(a) ⊆ S∂(a) ⊆ σ(a) ⊆ ε(a) ⊆ ησ(a). (1.1)

Applications of the boundary and exponential spectra can be found in [7,4],
respectively.
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Throughout this note, A will be a complex Banach algebra with unit 1 and B a
closed subalgebra of A such that 1 ∈ B.

In [8, Definition 3.2 and Theorem 3.5], the restricted topology (or the B-topology)
is defined via the restricted closure clB(K) of an arbitrary subset K of A, where clB(K)
is the set of all elements a ∈ A with the property that a − U and K have nonempty
intersection, for every neighbourhood U of 0 in B in the relative (norm) topology.
The set K = A\A−1 being of particular interest in this context, the restricted boundary
of A\A−1 and the component of A−1 containing 1 in the B-topology are denoted by
∂B(A\A−1) and CompB(1, A−1), respectively. The restricted connected hull ηB(A\A−1)
of A\A−1 in A is given by

ηB(A\A−1) := A\CompB(1, A−1). (1.2)

In addition, for an element a ∈ A, the restricted boundary and the restricted connected
hull are defined in [8] as

∂B(a) := ∂B(a, A) = {λ ∈ C : a − λ ∈ ∂B(A\A−1)} (1.3)

and

ηB(a) := ηB(a, A) = {λ ∈ C : a − λ ∈ ηB(A\A−1)}, (1.4)

respectively.
We now recall the following results from [8].

THEOREM 1.1 [8, Corollary 6.4]. For any a ∈ A, ∂C(a) ⊆ ∂B(a) ⊆ ∂A(a), with ∂C(a) =
∂σ(a) and ∂A(a) = S∂(a).

THEOREM 1.2 [8, Corollary 6.9]. For any a ∈ A, ηA(a) ⊆ ηB(a) ⊆ ηC(a), with ηA(a) =
ε(a). In addition, if a � C, then ηC(a) = C, while if a ∈ C, then ηC(a) = ησ(a).

We note that there is a type of duality between the boundary and exponential
spectra:

S∂(a) = ∂A(a) and ε(a) = ηA(a).

The last equation, together with (1.1), implies that ηA(a) ⊆ ησ(a), and since ∂C(a) =
∂σ(a), we have ∂σ(a) ⊆ ∂B(a). However, it is clear from the last part of Theorem 1.2
that we do not, in general, have ηC(a) = ησ(a) or that the inclusion ηB(a) ⊆ ησ(a) holds
(as in the case B = A). In Section 2, we ‘fill the hole’ in this theory by establishing
exactly how far the inclusion ηA(a) ⊆ ησ(a) can be generalised (see Theorems 2.2 and
2.4).

Applying the results in Section 2, we then establish certain mapping properties of
ηB in Section 3.

2. The restricted connected hull relative to the connected hull of the spectrum

We first observe the following result.

LEMMA 2.1. Exp(B) ⊆ CompB(1, A−1).
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This follows trivially, since Exp(B) = CompB(1, B−1), but can alternatively be
obtained by considering a map similar to that in the proof of Lemma 3.2 and applying
[8, Proposition 5.11].

The next result follows easily.

THEOREM 2.2. If a ∈ B, then ηB(a) ⊆ ησ(a).

PROOF. Let λ � ησ(a) := ησ(a, A). Then a − λ ∈ B and, since ησ(b, A) = ησ(b, B) for
all b ∈ B, we have 0 � ησ(a − λ, B). It follows from [1, Theorem 3.3.6] that a − λ ∈
Exp(B), and hence a − λ ∈ CompB(1, A−1), by Lemma 2.1. Therefore, (1.2) implies
that a − λ � ηB(A\A−1), so that λ � ηB(a), by (1.4). �

Although it is possible to have equality in Theorem 2.2 (see [8, Example 6.11]),
the inclusion is, in general, proper. This is shown in the following example, where T
indicates the unit circle and D the open unit disk in C.

EXAMPLE 2.3. Let l2(Z) be the Hilbert space of all bilateral square-summable
sequences, A the Banach algebra L(l2(Z)) of all bounded linear operators on l2(Z)
and a ∈ A the bilateral shift. Then ηA(a) � ησ(a).

PROOF. By [2, Corollary 5.30], A−1 = Exp(A), so that σ(b) = ε(b) for all b ∈ A. Since
σ(a) = T (see [3, Problem 84]), it follows that ε(a) = T and ησ(a) = D. However,
ε(a) = ηA(a), by Theorem 1.2, and hence the result follows. �

Finally, we have the following result.

THEOREM 2.4. If a � B, then ηB(a) = C.

PROOF. By Theorem 1.2, ε(a) = ηA(a) ⊆ ηB(a) for any a ∈ A, and hence it suffices
to prove that C\ε(a) ⊆ ηB(a) whenever a � B. So suppose that a � B and let λ0 ∈
C\ε(a). Then λ0 � σ(a). If G = CompB(a − λ0, A−1), then a − G = CompB(λ0, B\σ(a))
by [8, Proposition 5.10], and since a � B, it follows that 1 � G. Therefore, G �
CompB(1, A−1), so that a − λ0 � CompB(1, A−1). By (1.2), we then have a − λ0 ∈
ηB(A\A−1), so that λ0 ∈ ηB(a), by (1.4). �

3. Mapping properties of the restricted connected hull

Let K(C) denote the set of all nonempty, compact subsets of C. A mapping
ω : A→ K(C) is said to be a Mobius spectrum on A (see [5]) if ω( f (a)) = f (ω(a)):

(a) for all a ∈ A and for all functions f of the form f (λ) = αλ + β (α, β ∈ C); and
(b) for all a ∈ A and f (λ) = 1/λ, such that f is well defined on ω(a) ∪ σ(a).

We immediately have the following result.

PROPOSITION 3.1. ηB is a Mobius spectrum on B.

PROOF. Since ε is a Mobius spectrum on any Banach algebra (see [5]), we have
ε( f (a), B) = f (ε(a, B)) for all a ∈ B and for all functions f of the form f (λ) = αλ + β
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(α, β ∈ C), and that ε(a−1, B) = (ε(a, B))−1 for all a ∈ B such that 0 � ε(a, B) ∪ σ(a, B).
Then the result follows since ηB(x, B) = {λ ∈ C : x − λ ∈ ηB(B\B−1)} = ε(x, B) for any
x ∈ B. �

Returning to ηB(a) := ηB(a, A), we now develop some more mapping properties,
starting with the following lemma.

LEMMA 3.2. If a ∈ Exp(B) and b ∈ B ∩ CompB(1, A−1), then ab ∈ CompB(1, A−1).

PROOF. Let a = eb1 eb2 · · · ebn with b1, b2, . . . , bn ∈ B, and define f : [0, 1]→ A by
f (t) = etb1 etb2 · · · etbn b. Then f (0) = b, f (1) = ab and f is continuous in the norm
topology of A. Since f ([0, 1]) ⊆ B, it follows from [8, Proposition 5.11] that f is
continuous in the B-topology. Therefore, we have a continuous function f in the
B-topology from [0, 1] to A−1 joining b and ab, and so ab ∈ CompB(1, A−1). �

COROLLARY 3.3. If a ∈ B ∩ CompB(1, A−1) and 0 � λ ∈ C, then λa ∈ CompB(1, A−1).

It follows from Corollary 3.3 that, for a ∈ B, (1.4) may equivalently be written as

ηB(a) = {λ ∈ C : λ − a ∈ ηB(A\A−1)}.

THEOREM 3.4. Let a ∈ A and f (λ) = αλ + β with α, β ∈ C. Then ηB( f (a)) = f (ηB(a)).

PROOF. Let a ∈ A. If α = 0 (that is, f is constant), then since

ηB( f (a)) = {λ ∈ C : β − λ � CompB(1, A−1)}
and f (ηB(a)) = {β}, it is clear that f (ηB(a)) ⊆ ηB( f (a)). Now let λ ∈ ηB( f (a)), that
is, β − λ � CompB(1, A−1). By Corollary 3.3, CompB(1, A−1) contains all nonzero
complex scalar multiples of 1, and so λ = β ∈ f (ηB(a)). Hence, ηB( f (a)) ⊆ f (ηB(a)).

If α � 0 and a � B, then f (a) = αa + β � B, and so ηB(a) = C = ηB( f (a)), by
Theorem 2.4. Since f (ηB(a)) = f (C) = C, we have ηB( f (a)) = f (ηB(a)). For the
case α � 0 and a ∈ B, let λ ∈ ηB( f (a)), so that αa + β − λ � CompB(1, A−1). If
μ = α−1(λ − β), then λ = f (μ) and a − μ = α−1(αa + β − λ) � CompB(1, A−1) by
Corollary 3.3, since αa + β − λ ∈ B. Therefore, μ ∈ ηB(a), so that λ ∈ f (ηB(a)). The
other inclusion is obtained similarly. �

Turning to the inverse function, we first observe the following result.

PROPOSITION 3.5. Let a ∈ B with 0 ∈ σ(a, B)\σ(a, A). If f (λ) = 1/λ, then f (ηB(a)) ⊆
ηB( f (a)).

PROOF. This is obvious, since ηB(a−1) = C, by Theorem 2.4. �

We can now prove the following mapping property of ηB.

THEOREM 3.6. Let a ∈ B such that 0 � ησ(a). If f (λ) = 1/λ, then ηB( f (a)) = f (ηB(a)).

PROOF. Let λ ∈ ηB( f (a)) = ηB(a−1), so that a−1 − λ � CompB(1, A−1). If 0 � ησ(a) :=
ησ(a, A), then since ε(a, B) ⊆ ησ(a, B) = ησ(a, A), it follows that 0 � ε(a, B).
Therefore, a ∈ Exp(B), so that a−1 ∈ Exp(B). By Lemma 2.1, a−1 ∈ CompB(1, A−1),

https://doi.org/10.1017/S0004972723000321 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000321


392 S. Mouton and R. Harte [5]

so that λ � 0. If a − λ−1 ∈ CompB(1, A−1), then (λ−1 − a)λ ∈ CompB(1, A−1), by
Corollary 3.3. Since a−1 ∈ Exp(B), it follows from Lemma 3.2 that a−1 − λ =
a−1(λ−1 − a)λ ∈ CompB(1, A−1); which is a contradiction. Hence, a − λ−1 �
CompB(1, A−1), so that λ−1 ∈ ηB(a), and hence λ ∈ f (ηB(a)). The other inclusion is
obtained similarly. �

In the following example, let T indicate the unit circle and D the open unit disk in
C, as before.

EXAMPLE 3.7. Let A = C(T) and B = A(D), as in [8, Example 6.11]. Let a ∈ B denote
the identity function f (λ) = λ on D. Then, σ(a, A) = T, σ(a, B) = D = ηB(a) and
ηB(a−1) = C.

PROOF. The first two statements are given by [9, Problem 9, page 399] and it was
shown in [8, Example 6.11] that ηB(a) = D. Since 0 ∈ σ(a, B)\σ(a, A), we have a−1 ∈
A\B, and hence ηB(a−1) = C, by Theorem 2.4. �

Example 3.7 shows that we do not, in general, have equality in Proposition 3.5, and
also that the condition 0 � ησ(a) in Theorem 3.6 cannot be omitted.
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