
1 Motivation

1.1 TheWave–Particle Duality and de Broglie Wavelength

It so happens that nature does not always follow the strict rules set by classical
mechanics. When attempting to describe phenomena occurring on the nanoscale, this
reality becomes most apparent, as we shall see in numerous examples throughout this
book. The structure of atoms and molecules, the organization of matter at the atom-
istic level, the dynamics of charge and energy in different materials, diffraction and
scattering of electromagnetic radiation or elementary particles from nanoscale struc-
tures, and chemical reactivity are but a few phenomena that cannot be explained within
the realm of classical mechanics.

As a concrete example of the breakdown of classicalmechanics on the subnanometer
length scale, let us consider the scattering of an electron beam from a surface of ametal,
as studied by Davisson and Germer in the year 1927 [1.1]. The electron beam was
initially regarded as a flux of particles (the electrons) in classical terms. Considering
the mass and kinetic energy, E, each electron is associated with a linear momentum
p = (px, py, pz), where (neglecting relativistic corrections)

p2 = 2mE. (1.1.1)

In the simplest terms, the metal acts as a perfect mirror when reflecting the electron
beam. In the scattering process, the momentum flips its sign in the direction perpen-
dicular to the surface (e.g., (px, py, pz) → (px, py,−pz)), and consequently, the angle
between the direction of the reflected beam and the surface plane (αout) equals the
impact angle (α in), as depicted in Fig. 1.1.1.

According to this classical interpretation, the reflected flux at αout(= α in) should
depend on the incoming particle flux, but not on the energy of each particle, E. Yet,
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αin αouttFigure 1.1.1 The classical description of electron beam scattering from a metal surface.
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tFigure 1.1.2 The wave description of electron beam scattering from a metallic crystal. The pathway of wave scattering from the
internal atomic layer is longer by 2d sin(α) in comparison to wave scattering from the outer layer, resulting in wave
interference.

in the famous Davisson–Germer experiment a clear dependence of the reflected flux
on the energy of the incoming electrons was observed. Moreover, the intensity of the
reflected beam showed distinctive maxima at specific E values, which was reminiscent of
the result of electromagnetic wave reflection from ordered atomic crystals (X-rays, in
particular). This result couldn’t be interpreted within classical mechanics.

In wave theory, modulations in the reflected flux can be readily explained in terms
of interference of waves originating from different sources, or incoming through dif-
ferent pathways. When waves are scattered from an atomic crystal, the first and second
atomic layers can be regarded as two reflectingmirrors displaced from each other by the
interatomic distance, d. (Scattering from deeper layers may be neglected for moderate
beam energies when the penetration of the beam into the crystal is low.) For particle
scattering, the reflection from the two mirrors is additive and therefore equivalent to
an effective single mirror. In contrast, for wave scattering, the two mirrors define two
scattering pathways with remarkable consequences for the reflected flux owing to inter-
ference. In particular, when the two pathways differ in length by an integer multiplicity
of the wavelength, λ , the interference is constructive, and the reflected beam intensity
should obtain a maximum. Given the scattering angle, αout(= α in), the two pathways
differ in length by 2d sin(α in) (see Fig. 1.1.2). In this case, constructive interference
should occur for a set of discrete wavelengths, satisfying the (Bragg) condition:

λn =
2d sin(α in)

n
; n = 1,2,3, . . . . (1.1.2)

According to the wave theory, the reflected flux should therefore depend on the scat-
tering angle, obtaining a set of maximal values as a function of the wavelength.But how
could such a theory apply to a beam of particles? How could one relate the modulation
in the particle’s energy to modulation in some respective wavelength? The experimen-
tally observed similarities between scattering of electrons and of electromagnetic waves
by a metal crystal led Davisson and Germer to conclude that [1.1] “a description of
the occurrence and behavior of the electron diffraction beams in terms of the scatter-
ing of an equivalent wave radiation by the atoms of the crystal, and its subsequent
interference, is not only possible, but most simple and natural.” Indeed, it was already
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proposed by Louis de Brogliede-Broglie in 1924 [1.2] that a beam of particles (electrons,
included) can be associated with a wavelength, according to the following postulate:

λ ≡ h
p
, (1.1.3)

where h is Planck’s constant (already known by then, from the theory of electromag-
netic radiation [1.3]), and p is the particle’s momentum in the direction of the beam
propagation. The Davisson–Germer experiment reinforced a dual description of an elec-
tron beam in terms of both particles and waves. The maxima in the reflected beam flux as
a function of the electron energy (E) could be correlated with wave properties not only
qualitatively, but also quantitatively. By implementing the conditions for constructive
wave interference (such as Eq. (1.1.2)), the de Broglie relation between momentum and
wavelength (Eq. (1.1.3)), and the classical relation between the momentum and energy
(Eq. (1.1.1)), that is, λn =

h√
2mEn

, the maxima in the reflected flux as a function of the
kinetic energy of the electrons could be explained.

Notice that while the wave properties of the electron beam turn out to be inherent
to its nature, their manifestation in the experiment required special conditions. For
the different interference peaks in the reflected flux to be distinctively resolved, the
ratio (λn − λn+1)/λn+1 should not be too small. From Eq. (1.1.2) it follows that this
ratio equals 1/n, which means that the wave properties are most clearly pronounced
for n = 1, or in physical terms, when the de Broglie wavelength of the electrons is of
the order of the interatomic distance, λ1 = 2d sin(α in). As the de Broglie wavelength
of the electrons becomes smaller (λn/d << 1), for example, at higher kinetic energies,
n becomes too large to enable resolving specific interference peaks. Therefore, the dis-
covery of the wave nature of the electron required that the de Broglie wavelength (set by
the kinetic energy) would be of the order of the (subnanometer) interatomic distances
in the atomic crystal. Moreover, the quantitative verification of de Broglie’s relation
(Eq. (1.1.3)) was based on prior knowledge of the interatomic distance (d), which was
already inferred from X-ray diffraction measurements. Remarkably, it took more than
two centuries after the establishment of classical mechanics for the revelation of the
electron’s wave–particle duality. The characterization of the structure of matter on the
subnanometer scale was an essential precondition for this discovery.

Exercise 1.1.1 The distance between adjacent atomic layers in a nickel crystal is
d = 2.03× 10−10meter. An electron beam is scattered from the face of the crystal at an
angle, αin = 45o. Given the electron mass, m = 9 · 10−31 kg, calculate the kinetic energy
for the three most resolved maxima in the reflected flux at αout = 45o (see Figs. 1.1.1 and
1.1.2).

Exercise 1.1.2 In the “classical world,” the de Broglie wavelength is typically much
smaller than the characteristic length scale of the system under consideration. Consider,
for example, a tennis ball at a mass m = 0.058 kg, flying at a typical serve-velocity, for
example, 50 meter/sec. What is the associated de Broglie wavelength? How does it com-
pare with the length of a tennis court (24 meter), or with the diameter of the ball itself
(6.7 cm)?
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1.2 QuantumMechanics for Nanoscience and Engineering

Quantum mechanics, as detailed in the following chapters of this book, provides a
theoretical framework that accounts consistently and comprehensively for the wave–
particle duality. Indeed, any matter is associated with wave properties, which are
expressed most profoundly when the associated de Broglie wavelength is of the order
of the characteristic length scale of the system under consideration,

λ ≈ d. (1.2.1)

In the realm of nanoscience and engineering, the characteristic length scales are
associated with the typical dimensions of atoms (10−10m), molecules (10−9m), or
nanocrystals (10−8 m). The relevant masses are those of electrons (∼ 10−30 kg) and
small atoms (∼ 10−28 − 10−27 kg), and the relevant kinetic energy scales are typically
∼ 10−2 −101 eV. Translating the masses and energy values to wavelength according to
de Broglie (Eq. (1.1.3)), it immediately follows that the condition for manifestation of
wave properties, Eq. (1.2.1), is often fulfilled. Quantum mechanics is therefore essential
for a proper description of phenomena associated with the nanoscale. These include,
for example, the colors of matter (absorption spectra of atoms, molecules, nanoparti-
cles, etc.), electrical conductivity, interatomic forces, the structure of matter, chemical
reactivity, heat and energy transport, and many more.
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