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We present a Lagrangian analysis of nonlinear surface waves propagating zonally on
a zonal current in the presence of the Earth’s rotation that shows the existence of
two modes of wave motion. The first, ‘fast’ mode, one with wavelengths commonly
found for wind waves and swell in the ocean, represents the wave–current interaction
counterpart of the rotationally modified Gerstner waves found first by Pollard
(J. Geophys. Res., vol. 75, 1970, pp. 5895–5898) that quite closely resemble Stokes
waves. The second, slower, mode has a period nearly equal to the inertial period and
has a small vertical scale such that very long, e.g. O(104 km) wavelength, waves
have velocities etc. that decay exponentially from the free surface over a scale of
O(10 m) that is proportional to the strength of the mean current. In both cases, the
particle trajectories are closed in a frame of reference moving with the mean current,
with particle motions in the second mode describing inertial circles. Given that the
linear analysis of the governing Eulerian equations only captures the fast mode, the
slow mode is a fundamentally nonlinear phenomenon in which very small free surface
deflections are manifestations of an energetic current.

Key words: geophysical and geological flows, waves in rotating fluids

1. Introduction
In 1802 the Austrian physicist and engineer Franz Josef von Gerstner published

a remarkable solution to the water-wave problem, remarkable because his solution,
obtained through consideration of the Lagrangian equations of motion, is an exact
solution to the Euler equation with a free boundary – see Gerstner (1802); the solution
was rediscovered by Froude (1862) and Rankine (1863). In contrast, Stokes’ solution
published 45 years later only approximately satisfies the free surface condition; see
Stokes (1847). As argued by Lamb (1932), because the Gerstner flow is rotational,
it cannot be generated by conservative forces and so has largely been neglected in
the literature. However, there exist observations that do suggest the possibility of
Gerstner waves: Monismith et al. (2007) report laboratory experiments for which
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mean (wave-averaged) Eulerian flows exactly cancelled the Stokes drift, behaviour
that is the lowest-order observable difference between Gerstner and higher-order
(nonlinear) Stokes waves. Besides their own experiments, Monismith et al. (2007)
showed that other experiments, notably those of Swan (1990), also displayed this
behaviour, although other work in the same flume reported in Swan & Sleath (1990)
showed mean velocity profiles that agreed better with higher-order Stokes wave theory.
Weber (2011) developed a surface boundary layer theory including surface tension for
both Stokes and Gerstner waves, and compared the results to laboratory experiments
of Law (1999). Objective examination of his results suggests that both theories are
of nearly equal accuracy.

The necessity of mean Eulerian flows that cancel the Stokes drift has also been
suggested by Ursell (1950) and Hasselmann (1970), both of whom examined wave
propagation on a rotating Earth. In particular, Hasselmann showed that at steady
state, there would be a wave-averaged force directed along wave crests (that is,
perpendicular to the wave propagation direction) due to distortion of the planetary
vorticity by the waves. The so-called Hasselmann force (see e.g. Lentz et al. 2008)
represents the strong rotation limit of the vortex force identified by Craik & Leibovich
(1976) that arises from interaction of the wave velocity field with the mean vorticity
field, in this case associated with the vertical vorticity (which is nearly equal to the
planetary vorticity, f) and the horizontal, depth-variable Stokes drift.

Pollard (1970) derived an extension of Gerstner’s theory applicable to rotating flows,
showing that for gravity waves, the effect was a very slight (1 part in 104) correction
in the dispersion relation, and a very slight cross-wave tilt to wave orbital motions.
Pollard noted however the important aspect of this solution: it satisfies Hasselmann’s
mean flow constraint; i.e. as with other Gerstner-type wave motions (e.g. Constantin
2001, 2012; Hsu 2015; Henry 2016a), particle trajectories are closed. Moreover, like
non-rotating Gerstner waves, the difference between Stokes waves and Pollard’s wave
is only apparent in a change in the mean flow at second order in wave slope, a
difference that is difficult to discern observationally although there are suggestions
for such a difference in the literature, notably simultaneous ocean observations of
Eulerian and Lagrangian motions reported by Smith (2006). Xu & Bowen (1994)
used an approximate, linear Eulerian analysis to show that because motions parallel
to wave crests are in phase with vertical velocities, there is a weak wave stress. In the
absence of viscosity, this wave stress produces the same steady Eulerian mean flow
that Pollard found for Coriolis-affected Gerstner waves. However, the observations
of Smith (2006) point to a second weakness of Gerstner wave theory: no one has
developed a theory for Gerstner wave groups or has proved that such groups can
exist. Indeed, the generation of the Stokes drift cancellation via the Hasselmann force
presumably requires a time that is comparable to the inertial period (cf. the discussion
in Pollard (1970) or Xu & Bowen (1994)), and thus is not likely to be applicable
to wave group dynamics. Nonetheless, while there are no known solutions to initial
value problems that produce Gerstner waves, neither has it been proven that such
solutions do not exist. At the same time, we are unaware of any explanation based
on Stokes wave theory that can describe Smith’s observations that mean Eulerian
flows developed that cancelled the Stokes drift associated with passing wave groups.

An important aspect of Pollard’s solution is that it does not include the effects of
mean currents. In the present paper we extend Pollard’s solution to include a depth-
invariant mean current. The dispersion relation for the wave motions in this case is
defined by a sixth-order polynomial that we find has 4 real roots. The two larger
of these roots describe the waves that Pollard found, i.e. Gerstner waves as slightly
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altered by rotation, whereas the two small roots define a new type of wave that decays
strongly with depth from the free surface such that very long wavelength motions
still satisfy the requirements of the Lagrangian deep water-wave analysis, i.e. that the
motions are not influenced by the presence of the bottom of the ocean.

2. The governing equations
We investigate surface water waves propagating zonally in a relatively narrow ocean

strip less than a few degrees of latitude wide and so we regard the Coriolis parameters

f = 2Ω sin φ, f̂ = 2Ω cos φ, (2.1a,b)

as constant. Here φ denotes the latitude and Ω = 7.29× 10−5 rad s−1 is the rate of
rotation of the Earth. For example, the values f = f̂ = 10−4 s−1 are appropriate to
45◦ latitude in the Northern hemisphere; see Gill (1982). In terms of the Cartesian
coordinate system with the zonal coordinate x pointing east, the meridional coordinate
y pointing north and the vertical coordinate z pointing up, the governing equations in
the f -plane approximation we solve are the Euler equations

ut + uux + vuy +wuz + f̂ w− f v =−
1
ρ

Px,

vt + uvx + vvy +wvz + f u=−
1
ρ

Py,

wt + uwx + vwy +wwz − f̂ u=−
1
ρ

Pz − g,


(2.2)

coupled with the equation of mass conservation

ρt + uρx + vρy +wρz = 0 (2.3)

and with the condition of incompressibility

ux + vy +wz = 0. (2.4)

Here t is time, (u, v, w) is the fluid velocity, P is the pressure, g= 9.8 ms−2 is the
(constant) gravitational acceleration at the Earth’s surface and ρ is the water’s density.
The appropriate boundary conditions for deep water waves are the dynamic boundary
condition

P= Patm at the free surface z= η(x, y, t), (2.5)

where Patm is the constant pressure of the atmosphere at the surface of the ocean, and

w= ηt + uηx + vηy on z= η(x, y, t), (2.6)

together with the requirement that the wave motion is insignificant at great depths.
For our purposes it is convenient to use the Lagrangian framework. We will show

that an explicit solution to the governing equations (2.2)–(2.6), with a depth-invariant
mean current, is provided by specifying, at time t, the positions

x= q− c0 t− b ems sin[k(q− ct)],
y= r− d ems cos[k(q− ct)],
z= s+ a ems cos[k(q− ct)],

 (2.7)
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514 A. Constantin and S. G. Monismith

of the fluid particles in terms of the labelling variables (q, r, s) and the real parameters
a, b, c, d, k, m. Here c0 is the current velocity, k = 2π/L is the wavenumber
corresponding to the wavelength L, c is the wave speed, and b, d and c are suitably
chosen in terms of k> 0, m> 0 and a> 0; we shall see, cf. (2.30) below, that b> 0
while the sign of d varies (d > 0 in the Southern hemisphere, d < 0 in the Northern
hemisphere and d = 0 on the Equator). Anticipating the relation b2

= a2
+ d2, cf.

(2.28) below, we note that (2.7) represents a wave with crests parallel to the y-axis,
propagating in a West–East direction (see figure 1), with the particles moving in
trochoidal orbits – curves described by a fixed point on a circle of radius b ems, with
a centre at (q− c0t, r, s), rolling at constant speed c0 eastward along the x-axis, in a
plane that is at an angle arctan(d/a) to the vertical (see figure 2). Note that a circle
in three dimensions is parametrized by six numbers (two for the orientation of the
unit vector ν which is normal to the plane of the circle, one for the radius δ of the
circle and three for the circle’s centre C):

{C + δ cos(θ)µ+ δ sin(θ) ν ×µ}θ∈R, (2.8)

where µ is a unit vector orthogonal to ν and θ is the angular position on the circle;
we recover (2.7) with

C = (q− c0t, r, s), µ=

(
0, −

d
b
,

a
b

)
, ν =−

(
0,

a
b
,

d
b

)
,

θ = [k(q− ct)], δ = b ems.

 . (2.9)

Since a> 0, b> 0 and the sign of d changes across the Equator, an examination of the
components of the vector µ shows that only the equatorial waves (for which d=0) are
symmetric with respect to the local vertical in the meridional direction, all other waves
being tilted towards the pole in their hemisphere with an angle of inclination from the
vertical that increases with latitude. Let us also point out that the above considerations
show that the labelling variables do not represent the initial position of the particle
they define. In (2.7), the labelling variable q runs over the entire line, while r covers
an interval (−r0, r0) for some r0, and at every fixed value of r we allow s6 s0(r) for
some value s0(r)< 0 that corresponds to the free surface, to be determined later on: at
the fixed latitude r, setting s= s0(r) in (2.7) provides us with a parametrization of the
surface wave at time t as q varies. Beneath the surface waves, the constraint m > 0
forces the amplitude of the vertical oscillations of a particle to decay exponentially
with increasing depth. With c0 interpreted as the mean flow velocity, the wave–current
interaction specified by (2.7) therefore presents a negligible wave component at large
depths – in such regions the flow is merely a pure horizontal current.

Assuming constant density ρ0 throughout the fluid, let us find the relations between
the various parameters in (2.7) required for it to represent an exact solution. Set

ξ =ms, θ = k(q− ct). (2.10a,b)

The Jacobian of the map relating the particle positions to the Lagrangian labelling
variables is obtained by computing the determinant D of the matrix

∂x
∂q

∂y
∂q

∂z
∂q

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s

=
1− bk eξ cos θ dk eξ sin θ −ak eξ sin θ

0 1 0
−bm eξ sin θ −dm eξ cos θ 1+ am eξ cos θ

 . (2.11)
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FIGURE 1. While the equatorial waves are symmetric with respect to the local vertical,
all other waves are slightly tilted towards the pole in their hemisphere. There is no
change in the y-direction but in some regimes the wave has pronounced flat troughs and
sharp crests: for φ = 60 ◦S, note the trochoidal shape of the wave with c0 = 0.3 m s−1,
k = 6.28× 10−2 m−1, a= 10 m, seen in (a), versus the sinusoidal shape for the smaller
amplitude (and much longer) wave with c0 = 0.3 m s−1, k= 6.28× 10−2 m−1, a= 2 cm,
seen in (b).
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FIGURE 2. Wave-induced particle motions on the water surface for a = 2 cm, c0 =

0.3 m s−1, k= 6.28× 10−7 m−1 and φ= 60 ◦S: (a) trajectory as seen in a fixed coordinate
system; and (b) trajectory as seen in a coordinate system moving with the mean flow,
where the closed orbit that typifies Gerstner waves is readily apparent.
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The flow is volume-preserving if and only if this determinant is time independent.
Since D= (am− bk) eξ cos θ + 1− abmk e2ξ , this yields the relation

am− bk= 0. (2.12)

Furthermore, in addition to (2.12), we also have to impose the constraint

1− abmk e2ξ
6= 0 throughout the flow, (2.13)

in order to ensure, by means of the inverse function theorem, that the labelling (2.7)
represents a valid local diffeomorphic change of coordinates. Due to (2.12) and the
fact that we allow all values ξ 6 s0(r) < 0, (2.13) is equivalent to

a2m2 e2ms0(r) < 1. (2.14)

A glance at (2.7) confirms that aems0(r) is the surface wave amplitude at latitude r, so
that (2.14) expresses the fact that 1/m is an upper bound for the wave amplitude.

Let us now write the Euler equation (2.2) in the form

Du
Dt
+ f̂ w− f v =−

1
ρ0

Px,

Dv
Dt
+ f u=−

1
ρ0

Py,

Dw
Dt
− f̂ u=−

1
ρ0

Pz − g,


(2.15)

where D/Dt stands for the material derivative. From (2.7) we can compute the velocity
and acceleration of a particle as

u=
Dx
Dt
=−c0 + bkc eξ cos θ,

v =
Dy
Dt
=−dk c eξ sin θ,

w=
Dz
Dt
= akc eξ sin θ,


(2.16)

and
Du
Dt
= bk2c2 eξ sin θ,

Dv
Dt
= dk2c2 eξ cos θ,

Dw
Dt
=−ak2c2 eξ cos θ,


(2.17)

respectively. We can therefore write (2.15) as

Px =−ρ0 (bk2c2
+ f̂ akc+ fdk c) eξ sin θ, (2.18)

Py =−ρ0{( fbkc+ dk2c2) eξ cos θ − fc0}, (2.19)

Pz =−ρ0{−(ak2c2
+ f̂ bkc) eξ cos θ + f̂ c0 + g}. (2.20)
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The change of variables

Pq

Pr

Ps

=


∂x
∂q

∂y
∂q

∂z
∂q

∂x
∂r

∂y
∂r

∂z
∂r

∂x
∂s

∂y
∂s

∂z
∂s


Px

Py

Pz

 (2.21)

transforms (2.18)–(2.20) into

Pq = ρ0
{

k (ag+ fc0d+ f̂ c0a− bkc2
− f̂ ac− fdc) eξ sin θ

+ k3c2 (b2
− d2
− a2) e2ξ sin θ cos θ

}
, (2.22)

Pr = ρ0 { fc0 − kc (dk c+ fb) eξ cos θ}, (2.23)

Ps = ρ0
{
−f̂ c0 − g+ f̂ abckm e2ξ

+ fbdc km e2ξ
+mb2k2c2 e2ξ

+ (ak2c2
+ f̂ bkc− agm− f dm c0 − f̂ c0am) eξ cos θ

+mk2c2 (d2
+ a2
− b2) e2ξ cos2 θ

}
. (2.24)

The equality of the mixed partial derivatives of P with respect to the labelling
variables (q, r, s) leads to relations

fb+ dk c= 0 (2.25)

and
mbkc2

+mf dc= ak2c2, (2.26)

if we take (2.12) into account. With the constraints (2.25)–(2.26) in place, note that,
for every constant P0, the gradient of the expression

P(q− ct, r, s) = P0 + ρ0fc0 r− ρ0(g+ f̂ c0) s

+
1
2 ρ0 f̂ abck e2ξ

+
1
2 ρ0 fbdck e2ξ

+
1
2 ρ0 b2k2c2 e2ξ

+ ρ0 (bkc2
+ f̂ ac+ fdc− ag− fdc0 − f̂ c0a) eξ cos θ

+
1
2 ρ0 k2c2 (d2

+ a2
− b2) e2ξ cos2 θ, (2.27)

with respect to the labelling variables is given by the right-hand side of (2.22)–(2.24).
Therefore the free surface is identified at the meridional distance r from the reference
latitude by specifying a value s0(r) of the label s for which the expression in (2.27)
equals to Patm, thus validating (2.5) and (2.6). This is possible if and only if the right-
hand side of the expression (2.27) is time independent, in which case the value of
s0(r) is found by solving the implicit functional equation P= Patm for a fixed value
of r. The time independence of the expression (2.27) holds if

b2
= a2
+ d2, (2.28)

and
bkc2
+ f̂ ac+ fdc− ag− fdc0 − f̂ c0a= 0. (2.29)
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From (2.12) and (2.25) we obtain

b=
am
k
, d=−

fam
k2c

, (2.30a,b)

so that for a 6= 0 we can recast both (2.26) and (2.28) as

m2(k2c2
− f 2)= k4c2. (2.31)

The remaining relation between the parameters, (2.29), takes on the form

m {k2 c3
− f 2(c− c0)} = ck2

{g− f̂ (c− c0)}. (2.32)

Squaring (2.32), we can take advantage of (2.31) to obtain the dispersion relation

{k2 c3
− f 2(c− c0)}

2
= (k2c2

− f 2) {g− f̂ (c− c0)}
2. (2.33)

The non-zero roots of (2.33) are theoretically admissible wave propagation speeds if
c0 6= 0. However, if c0 = 0, then the physically relevant roots of (2.33) are those that
differ from c=±f /k; thus, the latter are extraneous roots, ruled out by (2.31).

For equatorial waves we have f = 0 and f̂ = 2Ω , so that (2.33) reduces to

kc2
= g− 2Ω(c− c0), (2.34)

yielding

c=
−Ω ±

√
Ω2 + k(g+ 2c0Ω)

k
. (2.35)

In the absence of an underlying current (for c0= 0) we recover a result of Hsu (2015).
On the other hand, at mid-latitudes we have f 6= 0 and it is convenient to write the
dispersion relation (2.33) as

{X3
− ε2 (X − X0)}

2
− (X2

− ε2) {1− εF (X − X0)}
2
= 0, (2.36)

in terms of the non-dimensional variables

X = c

√
k
g
, X0 = c0

√
k
g
, ε=

f
√

gk
, F=

f̂
f
. (2.37a−d)

We can consider the extent to which surface wind waves might be affected by rotation
by noting that their wavelengths typically range from 16 m to 400 m, so that

√
k/g

ranges from 0.2 to 0.04 s m−1, while
√

gk ranges from 2 s−1 to 0.4 s−1. Note that
X = O(1) corresponds to a wind-wave speed c in the range from 18 km h−1 to
80 km h−1. Given that f is of the order of 10−4 s−1, we see that ε = O(10−4), and
so, as concluded by Pollard (1970), the effect of rotation is small. Typical currents
do not exceed 1 m s−1, so that X0 =O(10−1).

The non-dimensional dispersion relation at mid-latitudes, (2.36), can be written out
explicitly as a polynomial equation of degree six P(X)= 0, where

P(X) = X6
− ε2(2+ F2)X4

+ 2ε{F+ ε (1+ F2)X0}X3

−{1+ 2εF X0 + ε
2F2X2

0 − ε
4(1+ F2)}X2

− 2ε3
{F+ ε(1+ F2)X0}X

+ ε2
{1+ 2εF X0 + ε

2(1+ F2)X2
0}. (2.38)

In linear wave propagation theory one can take advantage of the superposition
principle by seeking a Fourier decomposition of an oscillatory wave motion in
eigenmodes eik(q−ct), with the following interpretation for the disturbance from a state
of equilibrium, at a fixed wavenumber k> 0:
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FIGURE 3. (a) Plot of the polynomial P(X) showing the locations (circles) of the two
O(1) roots; (b) plot of P(X) showing the locations (circles) of the two O(ε) roots. Coriolis
and mean flow parameters are chosen to match the Antarctic circumpolar current ( f ≈
−1.3× 10−4 s−1 and c0 =−0.3 m s−1).

(i) a real root c of the dispersion relation generates two oscillatory eigenmodes of
fixed amplitude, cos[k(q− ct)] and sin[k(q− ct)], which differ only by a phase;

(ii) a complex root c=α+ iβ, with α ∈R and β ∈R \ {0}, is indicative of evanescent
or amplifying modes (according to whether β > 0 or β < 0), e−kβt cos[k(q− αt)]
and e−kβt sin[k(q−αt)], propagating at the speed α with an amplitude that decays
or is amplified in time by the exponential factor k|β|.

In contrast to this, (2.33) is the dispersion relation for the nonlinear wave–current
interaction specified by the flow (2.7), and imaginary complex roots c ∈ C \ R have
to be discarded.

3. Solution of the dispersion relation and a description of the resulting wave
motions
The exact roots of the polynomial P(X) that defines the dispersion relation at mid-

latitudes cannot be found analytically. An example plot of P with parameters chosen
to match the Antarctic circumpolar current (ACC), i.e. for 65 ◦S f ≈−1.3× 10−4 s−1

and a mean current c0 = 0.3 m s−1 (see Constantin & Johnson (2016) for field data),
is shown in figure 3 where two roots near ±1 (figure 3a) can be seen and two roots
near ±ε (figure 3b) can also be seen. One can prove that the polynomial P has exactly
four real roots, two positive and two negative (see the discussion in the Appendix).

Examination of figure 3 suggests that accurate analytical approximations of the roots
to P(X) can be found by a perturbation expansion in ε:

X = x0 + εx1 + ε
2x2 + ε

3x3 + · · · (3.1)
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After substitution into P(X) and collecting different powers of ε, we find that at O(1)

(x6
0 − x2

0)= 0. (3.2)

Thus
x0 ∈ {0, 1,−1, i,−i}. (3.3)

Note that the roots to the sixth-order polynomial that are near ±1 correspond to
Gerstner waves that are very slightly modified by rotation, of the type found by
Pollard (1970). Since only real roots are relevant, in the rest of what follows we
focus on the O(ε) roots. Assuming x0 = 0, then 1 − x2

1 = 0 at O(ε), which derives
from the O(ε2) expansion, so that

x1 =±1. (3.4)

Consideration of the O(ε3) terms shows that x2= 0 and finally, from the O(ε4) terms,
we find that X2

0 ∓ 2x3 = 0, that is,

x3 =±
X2

0

2
. (3.5)

Thus an approximate solution to (3.1) shows two possible small roots that are
approximately

X =±ε
(

1+
ε2X2

0

2

)
+O(ε4). (3.6)

Equation (3.6) implies that in dimensional terms, to O(ε2),

c≈±
f
k
. (3.7)

For example for a 500 m long wave (k≈ 1.3× 10−2 m−1) on the ACC, c≈ 1 cm s−1

since f ≈−1.25× 10−4 s−1. On the other hand, for a 104 km long wave (k ≈ 6.2×
10−7 m−1), c ≈ 200 m s−1, comparable to typical open ocean barotropic long wave
speeds. Note that the period T for these waves is quite close to the inertial period
since

T ≈

2π

k
f
k

=
2π

f
= Ti, (3.8)

i.e. these slow waves are inertial waves, with inertial period Ti.
The correction to X at O(ε3) is important in light of (2.31), which can be written

as

m2
=

k4c2

k2c2 − f 2
, (3.9)

implying that

m≈±
k2c

f εX0
=±

gk
fc0
. (3.10)

This gives a wavenumber that is much larger than k since g/( fc0)� 1. On the other
hand, this also means that waves that are quite long with respect to the depth can
produce surface-trapped motions that satisfy the fundamental assumption that the
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wave motions are not affected by the ocean’s bottom. For example, a wave with a
wavelength of 104 km (k≈ 6.28× 10−7 m−1) on a mean flow of 0.3 m s−1 produces
a vertical decay scale of approximately 6 m. We note that using satellite altimetry,
White & Peterson (1996) show evidence of waves in the ACC with wavelengths of
approximately 11× 103 km, and so it seems possible that waves can exist in the ACC
that are sufficiently long to produce physically plausible decay scales according to our
model. Moreover, consideration of the vertical scale also highlights the importance of
the mean current in that if c0 = 0, then (2.33) and (3.9) with c≈

√
g/k yield

m≈±
gk

g− f̂ c
, (3.11)

and so the corresponding decay scale is much smaller than in the presence of a mean
current.

We now compute the amplitude d of the lateral motions for the O(ε) roots:

d=−
fam
k2c
≈±

fa
k2c

gk
fc0
=± a

g
kcc0
≈± a

g
fc0

(3.12)

in view of (2.30), (3.7) and (3.9). Thus, while the vertical scale of these waves is
small, they should have large sideways motions. Moreover, by (2.30), (3.7) and (3.12),

b=−d
kc
f
≈± a

g
fc0

kc
f
≈± a

g
fc0
, (3.13)

i.e. particles travel in large inertial circles of radius b (or d) with very slight vertical
motions. For the maximum possible amplitude wave (a = 1/m), the limiting lateral
excursion would be

d=±
g

mfc0
≈

1
k
, (3.14)

by (2.30), (3.7), (3.10), whereas the limiting longitudinal excursion is also 1/k:

b=−
dk c

f
≈±

c
f
≈

1
k

(3.15)

due to (2.30), (3.7) and (3.14). However, given that these excursions must take place
over an inertial period, implying huge velocities, the surface amplitude a must be quite
small relative to the (theoretically) maximum possible amplitude. Indeed, (2.12), (2.16)
and (2.28) yield

u2
+ v2
+w2

= c2
0 + a2m2c2 e2ξ

− 2c0 amceξ cos θ, (3.16)

with amc≈ ag/c0 due to (3.7) and (3.10), so that it is easily seen that the maximum
particle velocity is

vmax = c0 +
ga
c0
. (3.17)

Thus, choosing vmax = 1 m s−1 and assuming that c0 = 0.3 m s−1, the corresponding
amplitude of the free surface deflection would be a ≈ 2 cm. For this velocity, the
inertial circle radius would be approximately 5 km, in view of (3.13)–(3.15).

For the sake of comparison the small roots to P(X) were computed numerically
using the MatlabTM function ‘fzero’ which uses a combination of bisection, secant and
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inverse quadratic interpolation methods; see Forsythe, Malcolm & Moler (1976). A
summary comparison of the perturbation expansion results for c etc. with numerically
determined values is given in figure 4. These results show that the perturbation
expansion is remarkably accurate, something that is hardly surprising given that ε is
generally quite small.

We conclude our discussion of the wave motion induced by (2.7) by pointing out
that the flow velocity is independent of the y variable. Indeed, inverting the matrix in
(2.11) yields

∂q
∂x

∂r
∂x

∂s
∂x

∂q
∂y

∂r
∂y

∂s
∂y

∂q
∂z

∂r
∂z

∂s
∂z



=


1+ am eξ cos θ

1− a2m2e2ξ
−

dk eξ sin θ
1− a2m2e2ξ

ak eξ sin θ
1− a2m2e2ξ

0 1 0

−
bm eξ sin θ
1− a2m2e2ξ

−
dm eξ cos θ − dm kb e2ξ

1− a2m2e2ξ

1− am eξ cos θ
1− a2m2e2ξ

 (3.18)

if we take (2.12)–(2.13) into account. Combining this with (2.16), by means of the
change of variables

Uy =Uq
∂q
∂y
+Ur

∂r
∂y
+Us

∂s
∂y

(3.19)

applied to each component of the fluid velocity yields

uy = vy =wy = 0. (3.20)

Note that (2.19) in conjunction with (2.30) ensure

Py = ρ0fc0, (3.21)

so that in the absence of an underlying current the pressure is also independent of y.

4. Linear analysis
The linearized momentum and continuity equations for a wave–current interaction

with an underlying uniform current propagating eastwards at the speed c0, in a
homogeneous layer of water (whose density we normalize to unit value), are

ut − c0 ux + f̂ w− f v =−Px,

vt − c0 vx + f u=−Py,

wt − c0 wx − f̂ u=−Pz − g,
ux + vy +wz = 0.

 (4.1)

Assuming that the flow velocity is independent of y, the exact boundary conditions
on the surface z= η(x, y, t) are

w= ηt + (u− c0)ηx on z= η(x, y, t), (4.2)
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FIGURE 4. Plots of exact and approximate expressions for the (a) non-dimensional and (b)
dimensional wave phase speeds, and dimensional vertical decay scale (c) and maximum
horizontal wave displacement (d). Background conditions as in figure 2. In all four panels,
the numerical solutions are shown with solid lines and the approximations given by
equation (3.10) are shown with symbols.

P= Patm on z= η(x, y, t). (4.3)

Linearization of (4.2) and transfer to z= 0 gives

w= ηt − c0 ηx on z= 0. (4.4)

The linearization of (4.3) is more complicated since we do not assume that the flow
is irrotational. Constancy of the pressure of the free surface implies that the gradient
of the pressure along the free surface defined by the tangent vector, τ , is zero:

∇P · τ = Px +
ηx√

1+ η2
x

Pz = 0 on z= η(x, y, t). (4.5)

Thus

ut − c0 ux + f̂ w− f v +
ηx√

1+ η2
x

(wt − c0 wx − f̂ u+ g)= 0 on z= η(x, y, t). (4.6)

To leading order, the dynamic boundary condition (4.3) is

ut − c0 ux + f̂ w− f v + gηx = 0 on z= 0. (4.7)
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For a flow velocity that is independent of y, the last equation in (4.1) permits us
to introduce a streamfunction Ψ (x, z, t), i.e.

u=Ψz, w=−Ψx. (4.8a,b)

The x- and z-momentum equations in (4.1) can be combined to produce

(1Ψ )t − c0(1Ψ )x − f vz = 0, (4.9)

whereas differentiation of the x-momentum equation with respect to y yields Pxy = 0,
allowing the y-momentum equation to be rewritten as follows, in a way that does not
involve P:

vxt − c0 vxx =−f Ψxz. (4.10)

We now seek travelling-wave solutions

Ψ =Ψ0 emz cos[k(x− ct)], v = V0 emz sin[k(x− ct)], (4.11a,b)

with m> 0 and k> 0, where the surface wave is defined as

η= η0 cos[k(x− ct)]. (4.12)

Substitution of these forms into (4.10) produces the relation

V0 =
fm
kλ
Ψ0, (4.13)

where
λ= c+ c0 (4.14)

is the wave phase speed relative to the underlying current. Likewise, (4.9) yields

V0 =
kλ(m2

− k2)

fm
Ψ0. (4.15)

Combining (4.13) and (4.15) results in

λ2k2(m2
− k2)= f 2m2, (4.16)

noting that m is still unknown, as is c. The linearized kinematic free surface condition
(4.4) connects Ψ and η:

Ψ0 = λη0. (4.17)

Finally, using (4.13) and (4.17), the linearized dynamic boundary condition (4.7)
becomes

mk2λ2
+ f̂ k2λ− f 2m− gk2

= 0, (4.18)

which gives

λ=−
f̂

2m
±

√
f̂ 2

4m2
+

f 2

k2
+

g
m
. (4.19)

Note that choosing f = f̂ = 0 and c0 = 0, the classical deep water gravity-wave
dispersion wave is recovered from (4.18), with c2

= g/k, since (4.16) would give
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c= 0 unless m= k. On the other hand, multiplying (4.18) by m and using (4.16), we
find

f̂λ= g−
k2λ2

m
= g−

f 2m
m2 − k2

, (4.20)

which yields by (4.16), after squaring both sides, the quartic polynomial equation

(g2k2
− f 2 f̂ 2)m4

− 2gf 2k2m3
+ k2( f 4

− 2g2k2
+ f 2 f̂ 2)m2

+ 2gk4f 2m+ g2k6
= 0, (4.21)

allowing us to solve for m > 0 in terms of k. If we make the above equation non-
dimensional using

ε=
f
√

gk
, ξ =

m
k
, F=

f̂
f
, (4.22a−c)

the equation for the dimensionless vertical decay scale is

(1− ε4F2)ξ 4
− 2ε2ξ 3

− [2− ε4(1+ F2)]ξ 2
+ 2ε2ξ + 1= 0. (4.23)

The quartic polynomial P in (4.23) has two positive roots between 1 + ε2/2 ± ε3,
since

P(1+ ε2/2− ε3) > 0,
P(1+ ε2/2)=−ε6F2

+O(ε8) < 0,
P(1+ ε2/2+ ε3) > 0.

 (4.24)

Note that, by Viète’s formulas, the product of the four roots of P is positive, while
the sum of all possible subproducts, taken three at a time, is negative. This ensures
that there are no further positive roots. Since only values ξ > 0 are physically relevant,
we deduce that

ξ = 1+ 1
2 ε

2
+O(ε3). (4.25)

Substitution of (4.25) into (4.16) shows that

λ2
=

g
k
ε2ξ 2

ξ 2 − 1
=

g
k
(1+O(ε)). (4.26)

Therefore the linear analysis only identifies the ‘fast’ wave that is a standard deep
water gravity wave modified very slightly by the Earth’s rotation.

5. Conclusions
The Lagrangian analysis we present shows that including rotation and mean currents

yields Gerstner wave solutions like that of Pollard (1970), excepting that we find that
there are two kinds of waves possible. The first, described by Pollard, is a slightly
modified Gerstner wave, that, like other Gerstner waves, does not have net wave
transport and thus satisfies the steady state condition of no net transport on a rotating
Earth given by Ursell (1950) and Hasselmann (1970). The second, much slower, type
of wave motion requires a mean current in order that the vertical decay scale is finite;
i.e. in the absence of currents, the second mode of motion would not be possible.

The second mode of motion, which we propose here to call an inertial Gerstner
wave, produces waves that have extremely small vertical scales for gravity-wave
wavelengths, while for very long wavelengths (thousands of km) it is one with waves
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with vertical decay scales of metres that can coexist with substantial currents even
for relatively small amplitudes. At this time, we are unaware of any observations that
might prove its existence, although given that it is at the inertial period it would be
hard to detect using satellite methods (cf. White & Peterson 1996) since these tend
to average out motions at time scales shorter than a few days at best. Likewise, given
the ubiquity of inertial motions in the ocean, it might also be difficult to detect in
data collected using fixed moorings (e.g. Gordon 1988). Nonetheless, given that the
inertial Gerstner wave is an exact solution to the Euler equations and one that satisfies
the exact free surface conditions on the deformed free surface, it must be seen to
represent a possible form of large-scale oceanic wave motion, and thus, ultimately
may be important to the dynamics of energetic currents like the ACC.
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Appendix A
This appendix describes an analytic approach towards the identification of the

location of the roots of the polynomial equation (2.38). Note that, due to the
lack of significant surface waves at latitudes within 15◦ from the poles, we have
|F|> 2−

√
3> 0.25, while |F|< 2.4 outside the tropical zone (at latitudes that exceed

23◦ 26′ 16′′), with F > 0 in the Northern hemisphere, while F < 0 in the Southern
hemisphere since f̂ > 0 but f changes sign across the Equator.

A.1. The case c0 = 0
In this setting we recover the solution obtained by Pollard (1970). If X0= 0, then, as
pointed out in § 2, the roots X=±ε of (2.36) are ruled out, and of relevance are only
the roots of the polynomial

P0(X)= X4
− ε2(1+ F2)X2

+ 2εF X − 1, (A 1)

obtained by factoring out the term (X2
− ε2) in (2.36).

Note that P0(0) = −1 < 0 ensures the existence of at least one positive and one
negative root of P0. Computing the discriminant of the derivative polynomial

P′0(X)= 4X3
− 2ε2(1+ F2)X + 2εF, (A 2)

as
∆(P′0)= 128 ε6(1+ F2)3 − 1728 ε2F2 < 0, (A 3)

we infer that P′0 has exactly one real root; see Prasolov (2010). Since between each
pair of adjacent roots there must be a critical point, we deduce that P0 has exactly
two real roots: X−0 < 0 and X+0 > 0. Since F=O(1) and ε=O(10−4), the estimates

P0(±1)=±2εF+O(ε2),

P0(1− εF)= 2εF+O(ε2),

P0(−1− εF)=−2εF+O(ε2),

 (A 4)

yield that at mid-latitudes (between 23◦ 26′ 16′′ and 75◦) we have:

(i) X−0 + 1 ∈ (−εF, 0) and X+0 − 1 ∈ (−εF, 0) in the Northern hemisphere;
(ii) X−0 + 1 ∈ (0,−εF) and X+0 − 1 ∈ (0,−εF) in the Southern hemisphere.
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A.2. The case c0 6= 0
The third derivative of the polynomial in (2.38),

P′′′(X)= 120X3
− 24ε2(2+ F2)X + 12ε{F+ ε(1+ F2)X0}, (A 5)

clearly has a negative discriminant, so that P′ has exactly one real root and therefore
P has at most four real roots. Note that P(0) > 0, while from (2.36) we infer the
estimates

P(±ε)= ε4X2
0 > 0,

P(±(ε+ ε3X2
0))=−ε

4X2
0 +O(ε5) < 0,

P(±1)=±2ε F (1∓ X0)+O(ε2),

P(±1− εF(1∓ X0))=∓2ε F (1∓ X0)+O(ε2).

 (A 6)

Since X0 = O(10−1), ε = O(10−4) and F = O(1) at mid-latitudes, we deduce that the
polynomial P has exactly four real roots, two positive and two negative: a negative
root in the interval (−ε− ε3X2

0,−ε), a positive root in the interval (ε, ε+ ε3X2
0) and

(i) a second negative root in the interval (−1− εF(1+X0),−1) and another positive
root in the interval (1− εF(1− X0), 1) for F> 0 (in the Northern hemisphere);

(ii) a second negative in the interval (−1,−1− εF(1+X0)) and another positive root
in the interval (1, 1− εF(1− X0)) for F< 0 (in the Southern hemisphere).
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