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LATTICE PACKING OF NEARLY-EUCLIDEAN BALLS IN
SPACES OF EVEN DIMENSION

by J. A. RUSH*
(Received 29th August 1994)

We consider nearly-Euclidean balls of the shape
2+x) et (G HxB er  H(x2o X)) <

where ¢ is a small positive number, and n is even. If ¢ is small enough, then the maximum lattice-packing
density of this body is essentially greater than the Minkowski-Hlawka bound for large n.
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1. Introduction

Let G be a convex O-symmetric body in R”, and 6,(G) its maximum lattice-packing
density. The Minkowski-Hlawka bound [7] assures us that

6,(G)=2" ""{(n)
for each integer n greater than or equal to two. Thus, for large n,
0, (G)=> 27t +oll),

For specific bodies it is sometimes possible to replace the exponential 27" with an
exponential function of n which decays less rapidly. For example, for the body

xTH+x3+ - +xp<l,

—0.67424266...n(1+0(1

as was found in [11]. Since this multiplication of the Minkowski-Hlawka density by an
exponential factor is more important than the discarded factor 2{(n) which was
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absorbed by the error term, it is usual to call it an essential improvement. Improve-
ments on the lattice-packing density of a given body by a factor which grows more
slowly than any exponential are called nonessential.

In [4], an essential improvement to the Minkowski—-Hlawka density was obtained for
the ball

[xy |74 |x2 |7+ + | x| 7 <1
for each real o greater than 2. The present paper follows the procedure used there for

the case ¢ =2 +¢, insofar as this is permitted by the new complications which arise.
We shall prove this result:

Theorem. If the positive number ¢ is sufficiently small, then the nearly-Euclidean ball
defined in the abstract admits an essential improvemént to the Minkowski—~Hlawka bound.

It seems possible that the theorem remains true not only for small ¢, but for all
positive epsilon, but our proof does not show this. (See the table) Moreover, it is
probably possible, with more effort, to treat quite general nearly-Euclidean balls of the
shape

e+ X)) T R (R o xR T Oy o XD <,

where k divides n, and volume given by

k 1\ |
{15 1
2 ( +2 1+£)

n 1 k
r n_2 Jad
<1+2 1+8) F(1+2)

but here we make no attempt to do so.

2. Preliminaries

Let
g(x) =g(xy,x,) =(x2 +x3)L **
and
)= (x5, x,)=8(xy,X3) +8(x3,X8) + -~ +8(x,_1,X,)
so that

G={xeR" f(x)<1}

is the body under consideration. The volume of G is
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12 o[B8 = eXp(—(2x3 + 2x3) ! * dx,pdx,
et Y memm Yo - eXp(—(2xf +12x3)' 7Y

1/1000 0.8717866971783  1.0000199223957
1/100 1.012069610695 1.0003797729768
1/10  1.235107979915 1.009465385326
1 1.31539855203 1.15778133146
2 1.24356276816 1.28474664325
3 1.19389418169 1.3699454725
9 1.08743468370 1.5748604946
99  1.01050144672 1.7479678259

Table. For each given ¢, the positive number ¢ provides a global maximum for the elaborate expression at the
head of the third column. That maximum exceeds unity in each case, providing an essential improvement to
the Minkowski—Hlawka bound for the ball defined in the abstract. Decimal numbers are shown truncated, not

rounded.
1 n/2
7"2I < 1+ —)
14+¢

vol(G)= (1)

Equation (1) can be established by various means. The easiest seems to be to evaluate
the integral over R" of exp(—f(x)) in two different ways and equate the results, as in [4]
and [13]. The methods used in those articles also give, in the present case,

1 [exp(—g(Ax))dV\'*+ot»
6L(G)2<2 sup Sexp(—g(A%) ) o

in which x=(x,, x,),dV=dx,dx,, the integral is over all x in R2, the sum is over all x in
the lattice Z? of points with integer coordinates, and the supremum is taken over all
nonsingular linear transformations 4: R2—R2. (In [13] the author conjectured that (2)
holds with equality for a large class of functions g.)

Inequality (2) is our point of departure.

3. Proof of theorem
The plan is to estimate the ratio of sum to integral in (2), when A is the dilation
(x1,x2)—(txy,1x3)

and t>0 is a function of ¢ to be specified to our advantage later. The ratio will exceed
1, giving the claimed essential improvement.
Under the square-root sign in (2) we have

£ fe o EXP(— (P} + 2D Y dxdx,
2.2
3w Y0 EXP(— (X +2xD) 79

https://doi.org/10.1017/50013091500022872 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500022872

166 J. A.RUSH

or
o= — ol == w €XP(=(xf +x})" **)dx,dx, 3)
YR e Lo XP(—(x]+17x3)1 )

In (3), denote the numerator by _[ and the denominator by Z As t approaches zero,
{/>—1, because Y is a Riemann sum for |. Note, incidentally, that | can be evaluated

explicitly:
j= j (I?:(x}h%)n”e_zdz)dxzdxl
(x1,x2)eR2
= 5 e’ j dedxl dZ
z=0 (x1,x2)eR2
(x}+x3t+e<z
= | e 7z OVol(x? +x} < 1)dz
z=0
1+¢
write

2 X

Since ) is positive, we will be finished if Y, — | can be made negative.
By Poisson summation,

L2 @

[+ o]

= ¥ ki/rkfr) (5)
(’:‘;::22);(:)%)

where @ is the Fourier transform of exp(—(v? +v2)! *9), that is

-] =)
O(w,,w,)= I j‘ e~ wi+odttep2mitwion +wao gy dp,

= [ exp(—(v?+v3) *I)cos2nv- w)ydV
veR2

in which v=(v,,0;,), w=(w;,w,), and dV=dv,dv,. Letting b=v?+v? and expanding
exp(—b'**) in powers of ¢, we get

-b_ blogb 2(—1+b)b(logb)2 3(-—1+3b——b2)b(logb)3
e € 5 +¢ 2¢b +¢€ o +
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blogb+R,

-b
=g —&
eb

say. Fix any real number ¢> 1, and integer m> 1. Then £~ 2R and its first m partials are
uniformly O(exp(—(v?+v3)/c)) for b bounded strictly away from the origin and e
bounded strictly away from infinity, so the Fourier transform of ¢ 2R s
O((w? +w2)~%2). The Fourier transform of e? is

—(v2 W =7€e - w ' W ’
e (')l""’%)eznlli dV Xp( (7! 1 2))
veR2

and the Fourier transform of (blogb)/e” is
¢ ) o
é= [ e 92 4 v2) log(v? + vi)cos(2m(v, w, +vaw,))dv,dy,
V1=~ 2= — @
as a function of the rectangular coordinates (w,, w,). Let us change to polar:

v,=rcosf, v,=rsinf,
w,=pcos¢d, w,=psing.
Then

&p, )= zjn dj? e~ "'r?log(r?) cos (2nrp cos (8 — ¢))rdrdo.

=0 r=0

This does not depend on ¢, so we take ¢ =0, getting

Ep)=2=n T e~ "r*log (r’)Jo(2nrp)dr (6)
=0

r

in which J, is the Bessel function

L

Jo(z)=l { cos(zcosB)db.
To=0
From (5) we obtain
z_y=( _ exp(——(nzkft‘2+n2k§t‘2)))
ki, k2= — 0
(k1,k2)#(0,0)

ki, k2=—m
(k1,k2)#(0,0)

- (s i é(%, /kf+k§)) +0(e2t3).
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Now we put
n

t=— =
Vlog(1/e)

which makes the second term on the right-hand side much more significant than either
the first term or the error term, so that

T f=—(14o)e Y z(@\/km%) )

ki,ka=—-0
(k1,k2)#(0,0)

as e—~»0+.
Consider &(p) when p is large. From [1, p. 364, eqn. 9.2.1], we have

Jo(2)= 2 cos (z —E> +0(z733).
nz 4

Applying the method described by Erdélyi ([5,§2.6]) to the integral (6), we get
Ep)=0(p~>?) as p—oo. Also &(p)>0 for p>0.573314. Consequently, for all sufficiently
small ¢>0, the double sum on the right-hand side of (7) converges to a positive number.
Thus ), —[ is negative for small enough ¢>0. By (4), we have [/} >1, and the proof is
complete.
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