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A CENTRAL LIMIT PROPERTY UNDER
A MODIFIED EHRENFEST URN DESIGN

YUNG-PIN CHEN,∗ Lewis & Clark College

Abstract

We consider a stochastic process in a modified Ehrenfest urn model. The modification
prescribes there to be a minimum number of balls in each urn, and the process records the
differences between treatment assignments under a sampling scheme implemented with
this modified Ehrenfest urn model. In contrast to the result that the difference process
forms a Markov chain and converges to a stationary distribution under the Ehrenfest
urn model, the corresponding process under this modified Ehrenfest urn design satisfies
the central limit property. We prove this asymptotic normality property using a central
limit theorem for dependent random variables, renewal theory, and two Kolmogorov-type
maximal inequalities.
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1. Introduction

In 1907, Paul and Tatiana Ehrenfest, two physicists, proposed an urn model that describes the
diffusion of molecules through a membrane between two isolated bodies [8]. In their model,
there are in total 2w balls (w ≥ 1) distributed between two urns, which represent the two
bodies. One ball is randomly chosen at a time. This ball is removed from its urn and placed in
the other urn. These steps are repeated. If Wn denotes the number of balls in one urn after n

steps, then Wn forms a Markov chain on the state space {0, 1, 2, . . . , 2w}, with 0 and 2w as its
two completely reflecting barriers. The process Wn is known as the Ehrenfest chain.

In the Ehrenfest urn model, the probability that one urn will lose a ball to the other is
proportional to the number of balls in the first urn. Thus, there is a tendency toward balance
in the process of ball transitions. Feller interpreted this transition tendency toward balance as
diffusion with a central force [9, pp. 377–378]. Bingham [4] focused on the fluctuation theory
that analyzes the stochastic behavior of the first passage time between the two extreme states
under the Ehrenfest urn design. In [15] and [16], as sequels to [4], Palacios elegantly used
the electric network approach to study the Ehrenfest urn. Besides playing an important role in
statistical mechanics and its many applications in other, related fields, the Ehrenfest urn model
is employed to assign treatments in clinical trials and is found to be quite favorable, in terms of
randomness and balance properties, when compared with the sampling designs implemented
with a biased coin [6]. The trial settings and the Ehrenfest urn design (EUD) can be described
as follows.
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1. Trial settings. Two treatments, say 1 and 2, are assigned to sequentially arriving subjects
in a trial. Suppose that each assignment is not necessarily adapted to the treatment responses.
The clinician looks for a design that forces treatment assignments to be sufficiently balanced
while simultaneously remaining sufficiently random.

2. Ehrenfest urn design.

(i) Each of the two urns, respectively labeled 1 and 2, initially contains w balls (w ≥ 1).

(ii) One ball is chosen at random from the 2w balls. The selection of a ball from urn i

corresponds to the assignment of treatment i, i = 1, 2.

(iii) The chosen ball is removed from its urn and is placed in the other urn.

(iv) The operations in (ii) and (iii) are repeated until the trial is terminated.

Let Wn,i be the number of balls in urn i, i = 1, 2, after n steps. The Ehrenfest urn design is
then determined by the sequence of probability vectors (Wn,1/2w, Wn,2/2w). Let Tn,i be the
number of times treatment i is assigned after n steps, and let �n = Tn,1 − Tn,2 denote the net
difference between treatment assignments after n steps. It can be shown that

�n = w − Wn,1. (1)

That is, under the EUD, the difference between treatment assignments after n steps is determined
by the difference between the initial number of balls, w, and the number of balls in either urn after
n steps. Note that �n is a Markov chain on the state space {−w, −w+1, . . . , −1, 0, 1, . . . , w}
because Wn,1 is an Ehrenfest chain.

The difference process, �n, provides a measure of how balanced a design is. It was shown
in [6] that the EUD is more balanced than the biased coin design when both designs are held to
have the same selection bias (defined in [5]). A major source of selection bias under the EUD
comes from when an urn is empty and a deterministic treatment assignment has to be made.
To avoid such deterministic treatment assignments, we modify the EUD as follows.

3. Modified Ehrenfest urn design (MEUD).

(i) Both urn 1 and urn 2 initially contain w balls (w ≥ 1). In addition, we specify an integer
v, 0 < v < w, to be the minimum number of balls each urn should at all times contain.

(ii) When v < Wn,1 < 2w − v, we follow the EUD.

(iii) When Wn,1 = v (and, thus, Wn,2 = 2w − v),

(a) we set (Wn+1,1, �n+1) = (v, �n + 1) if a ball from urn 1 is selected;

(b) we set (Wn+1,1, �n+1) = (v + 1, �n − 1) if a ball from urn 2 is selected.

When Wn,1 = 2w − v (and, thus, Wn,2 = v), we perform similar operations.

(iv) The operations in (ii) and (iii) are repeated until the trial is terminated.

We will call this scheme of assigning treatments a modified Ehrenfest urn design with an initial
number of balls w and minimum number of balls v, and denote it by MEUD(w, v).
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Note that if, on the one hand, we set v = 0, then MEUD(w, v = 0) reduces to the EUD and
|�n| converges weakly to the distribution with the probability mass function

p0 =
(

2w

w

)(
1

2

)2w

, pj = 2

(
2w

j

)(
1

2

)2w

, j = 1, 2, . . . , w.

If, on the other hand, we set v = w, then MEUD(w, v = w) becomes the repeated simple
random sampling design, and �n is the sum of independent and identically distributed random
variables assuming the values 1 and −1 with equal probability. In this case, �n/

√
n converges

weakly to the standard normal distribution. The main goal of this paper is to show the central
limit property of the net difference process, �n, under MEUD(w, v) with 0 < v < w.

Note further that Wn,1, the number of balls in urn 1, forms a Markov chain on the state space
{v, v + 1, . . . , 2w − v} with partially reflecting barriers v and 2w − v. We will call v + 1,
v +2, . . . , 2w −v −1 the interior states. When Wn,1 hits barrier v (and, thus, Wn,2 hits barrier
2w − v), it may stay there for a random number of steps. The simple equation stated in (1) no
longer holds if v > 0.

The paper is organized as follows. In Section 2, we will present a decomposition of �n into
three components. The major component is a random sum of stationary random variables. In
Section 3, we use a central limit theorem for dependent summands to give a basic approximation
of the major component of �n. Then we apply renewal theory to compute the asymptotic
variance, in Section 4. In Section 5, two maximal inequalities are used to establish the central
limit property of �n. We conclude with some remarks and future research, in Section 6.

2. A decomposition of the difference process, �n

To analyze �n under MEUD(w, v), we need to look at two different events. The first event
is when Wn,1 stays at an interior state, i.e. when v < Wn,1 < 2w − v. In this case, as for the
EUD, we find that �n = w − Wn,1. The second event is when Wn,1 hits either barrier v or
barrier 2w − v (and may thus stay there for a random number of steps). When Wn,1 hits barrier
v or 2w − v from an interior state, the net difference �n will increase or, respectively, decrease
by 1. This unit change is also accounted for by the quantity w − Wn,1. The part that is not
accounted for by w − Wn,1 is the random number of steps for which Wn,1 stays at the barrier.
Let W ∗

n = max(Wn,1, Wn,2), and define the following stopping times:

τ0 = 0,

τk = inf{j > τk−1 : W ∗
j−1 < 2w − v, W ∗

j = 2w − v}, k ≥ 1, (2)

ηk = inf{j > τk : W ∗
j−1 = 2w − v, W ∗

j < 2w − v}, k ≥ 1. (3)

Of these, τk records the time at which Wn,1 hits a barrier from an interior state for the kth time
and ηk is the time at which Wn,1 leaves that barrier after hitting it for the kth time. The amount
of time (measured as the number of steps) that Wn,1 stays at a barrier after the kth hit, excluding
the step in which Wn,1 hits that barrier, is

Gk = ηk − τk − 1, k ≥ 1. (4)

Note that Gk, k ≥ 1, are independent and identically geometrically distributed random vari-
ables counting the number of steps stayed (i.e. failures) by Wn,1 at a barrier before it leaves
there (i.e. before the first success occurs). The probability that Wn,1 departs from a barrier is
1 − v/2w.
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The quantity Gk contributes positively or negatively to �n according to whether Wn,1 hits
barrier v or 2w − v. Now consider the process

Hk = w − Wτk,1

w − v
, k ≥ 1, (5)

which indicates whether a positive or a negative contribution is made to �n. It follows from
the strong Markov property that the process Hk is a Markov chain on the state space {1, −1}.
Let

φ = Pr{Hk+1 = 1 | Hk = 1}
be a one-step transition probability of Hk . It can be seen that φ is the probability that Wn,1 hits
barrier v before barrier 2w−v, conditional on Wn,1 starting at v +1. A routine calculation [10,
pp. 29–31] for the birth-and-death chain Wn,1 shows that

φ = Pr{Hk+1 = 1 | Hk = 1} = Pr{Hk+1 = −1 | Hk = −1}

=
∑2w−v−1

j=v+1

(2w−1
j

)−1

∑2w−v−1
j=v

(2w−1
j

)−1 = 1 −
(2w−1

v

)−1

∑2w−v−1
j=v

(2w−1
j

)−1 (6)

and

1 − φ = Pr{Hk+1 = −1 | Hk = 1} = Pr{Hk+1 = 1 | Hk = −1} =
(2w−1

v

)−1

∑2w−v−1
j=v

(2w−1
j

)−1 .

Note that 1
2 ≤ φ < 1 and, hence, 0 ≤ 2φ − 1 < 1. We will use these inequalities later. Also,

because both urns start with the same number of balls and the two barriers, v and 2w − v, are
equally likely to be visited by Wn,1, Hk has the initial distribution

Pr{H1 = −1} = Pr{H1 = 1} = 1
2 .

This initial distribution is also the stationary distribution of Hk , so Hn is a stationary process.
Finally, care must be taken in formulating the last time Wn,1 hits a barrier after n steps. Let

Nn = sup{k : τk ≤ n} (7)

count the number of times Wn,1 hits a barrier after n steps. Two different scenarios can occur
between time τNn and time n. One scenario is that Wn,1 may stay at a barrier the whole time.
In this case we have τNn ≤ n < ηNn , and the quantity contributed to �n is HNn(n − τNn).
The other scenario is that Wn,1 may have left the barrier it most recently visited. This means
that τNn < ηNn ≤ n, and the quantity contributed to �n is HNn(ηNn − τNn − 1) = HNnGNn .
(Once Wn,1 is at an interior state, w −Wn,1 will again account for the difference.) The absolute
change in �n is thus n − τNn or GNn , whichever is smaller.

By combining the above results, we can explicitly decompose �n as follows:

�n = (w − Wn,1) +
Nn−1∑
k=1

HkGk + HNn min(n − τNn, GNn). (8)

Under the EUD, whenever Wn,1 hits a barrier it reflects back to the nearest interior state with
probability 1. Hence, Gk is 0 for all k and (8) reduces to (1).
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Since we are interested in the asymptotic behavior of �n under MEUD(w, v), we ask whether
there exist constants µn and σn such that (�n − µn)/σn converges weakly. The first term,
w − Wn,1, on the right-hand side of (8) is a finite Markov chain, so n−r (w − Wn,1) converges
weakly (in fact almost surely) to 0 for any r > 0. The magnitude of the last term on the
right-hand side of (8) is no larger than a truncated geometric random variable and, hence, also
converges weakly to 0 if divided by n−r , for any r > 0. Regarding the middle term, it can
be shown that the counting process, Nn, in (7), which is a delayed renewal process, tends to
∞ almost surely as n → ∞. Therefore, when n is large, �n is essentially dominated by the
series

∑Nn−1
k=1 HkGk . We will now show that the summands HkGk form a strictly stationary

sequence.

Theorem 1. Let Gk and Hk be respectively defined as in (4) and (5). Then {HkGk} forms a
strictly stationary sequence with E(HkGk) = 0 for all k ≥ 1.

Proof. We have noted that Gk, k ≥ 1, are independent and identically geometrically
distributed random variables. For the process Hk , we have shown it to be a Markov chain
on {−1, 1} with initial stationary distribution Pr{H1 = −1} = Pr{H1 = 1} = 1

2 . Hence,
Hk is strictly stationary. In addition, the number of steps for which Wn,1 stays at a barrier is
independent of which barrier it visits, so Gk and Hk are independent for all k ≥ 1. This proves
the strict stationarity of HkGk and shows that E(HkGk) = E(Hk) E(Gk) = E(H1) E(Gk) = 0
for all k ≥ 1.

3. A central limit property of Sn = ∑n
k=1HkGk

Before tackling the series
∑Nn−1

k=1 HkGk , we will first consider Sn = ∑n
k=1 HkGk , a sum

of a fixed number of stationary terms. Both [11] and [12] are good references for the central
limit theorems for dependent random variables. We will show that Sn satisfies the central limit
property, using the results of [18]. Specifically, we use Theorem 4.1 and Corollary 4.1.1 of [18]
because we can identify the asymptotic variance in the process of establishing the central limit
property.

Lemma 1. Let {Xj } be a sequence of random variables, and let Sa,n = ∑a+n
j=a+1 Xj . Let

F b
a = σ(Xa, Xa+1, . . . , Xb) be the σ -field generated by the random variables Xa, Xa+1,

. . . , Xb, where −∞ ≤ a ≤ b ≤ ∞. If {Xj } satisfies the following conditions then it has
the central limit property.

(A1) E(Xj ) = 0 for all j .

(A2) As n → ∞, var(Sa,n) ∼ nA2 uniformly in a, where A > 0.

(A3) There are constants δ > 0 and M, 0 < M < ∞, such that E(|Xj |2+δ) ≤ M for all j .

(D1) E(| E(n−1/2Sa,n | F a−∞)|) ≤ O(n−θ1) uniformly in a for some θ1 > 0.

(D2) E(| E(n−1S2
a,n | F a−∞) − E(n−1S2

a,n)|) ≤ O(n−θ2) uniformly in a for some θ2 > 0.

Furthermore, S0,n/(
√

nA) converges weakly to the standard normal distribution.

Serfling [18] referred to conditions (A1), (A2), and (A3) as the basic assumptions and
conditions (D1) and (D2) as the dependence restrictions, which require the mean deviations of
the first and second conditional moments given the history F a−∞ up to time a to converge to 0
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uniformly in a as n → ∞. We will verify that the sequence {HjGj } satisfies each of the five
conditions of this lemma.

Condition (A1) has been shown to hold in Theorem 1. To check condition (A2), it suffices
to show that var(

∑n
j=1 HjGj ) ∼ nA2 because of the stationarity of HjGj . It can be shown

that Hj has the nth order transition probabilities

Pr{Hn+1 = 1 | H1 = 1} = Pr{Hn+1 = −1 | H1 = −1} = 1
2 + 1

2 (2φ − 1)n,

Pr{Hn+1 = 1 | H1 = −1} = Pr{Hn+1 = −1 | H1 = 1} = 1
2 − 1

2 (2φ − 1)n,

and the covariance cov(Hi, Hj ) = E(HiHj ) = (2φ − 1)j−i , i < j. Thus, we have

var

( n∑
j=1

HjGj

)
=

n∑
j=1

var(HjGj ) + 2
∑ ∑
1≤i<j≤n

cov(HiGi, HjGj )

= n E(H 2
1 G2

1) + 2
∑ ∑
1≤i<j≤n

E(HiGiHjGj )

= n[var(G1) + E(G1)
2] + 2 E(G1)

2
n∑

j=2

j−1∑
i=1

(2φ − 1)j−i

= n

[
2vw

(2w − v)2 +
(

v

2w − v

)2]

+ 2

(
v

2w − v

)2[
(n − 1)

2φ − 1

2 − 2φ
− (2φ − 1)2

(2 − 2φ)2 + (2φ − 1)n+1

(2 − 2φ)2

]

∼ nA(φ, w, v)2, (9)

where

A(φ, w, v)2 = 2vw + v2 + (2φ − 1)v2/(1 − φ)

(2w − v)2 = 2vw + φv2/(1 − φ)

(2w − v)2 . (10)

Note that the quantity A(φ, w, v)2 is positive unless v = 0. Condition (A2) is thus satisfied.
Condition (A3) trivially holds because |Hj | = 1 for all j and |HjGj | has the same

distribution as G1, which has moments of all orders.
BecauseHjGj is Markovian and initially stays stationary at epoch j = 1, it is enough to show

that conditions (D1) and (D2) hold for a = 1. We thus consider F a−∞ = F 1−∞ = σ(H1, G1) and
let S1,n = ∑n+1

j=2 HjGj . Because Gj is a sequence of independent and identically geometrically
distributed random variables independent of Hj , we have

E(HjGj | σ(H1, G1)) = E(Gj ) E(Hj | H1) = v

2w − v
H1(2φ − 1)j−1, j ≥ 2.

Hence,

| E(n−1/2S1,n | F 1−∞)| =
∣∣∣∣E

(
n−1/2

n+1∑
j=2

HjGj

∣∣∣∣ H1

)∣∣∣∣

= n−1/2 v

2w − v
|H1|

n+1∑
j=2

(2φ − 1)j−1.
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Because 0 ≤ 2φ − 1 < 1, this verifies that condition (D1) holds with θ1 = 1
2 . To verify

that condition (D2) holds, it can be shown that E(HiHj | H1) = (2φ − 1)j−i for all i and
j, 1 < i < j , and that

E(S2
1,n | F 1∞) = E(S2

1,n) = E

((n+1∑
j=2

HjGj

)2)
= A(φ, w, v)2,

the quantity given in (10). Clearly, condition (D2) holds.
Having verified that all the conditions of Lemma 1 hold, we deduce the following asymptotic

normality of Sn = ∑n
j=1 HjGj .

Theorem 2. Let Gk and Hk be respectively defined as in (4) and (5) under the MEUD. The
partial sum Sn = ∑n

j=1 HjGj then has the central limit property. Moreover,

L

(
Sn√

nA(φ, w, v)

)
→ N(0, 1), where A(φ, w, v)2 = 2vw + φv2/(1 − φ)

(2w − v)2 ,

and φ is the transition probability of the chain Hn given in (6).

4. The limit of Nn/n

Now we examine the process defined in (7), Nn, which is a delayed renewal process counting
the number of times Wn,1 hits a barrier after n steps. It follows from renewal theory that Nn/n

converges to the reciprocal, θ , of the mean interarrival time of the renewal process Nn almost
surely, as n → ∞. We will compute θ in this section.

The interarrival time of the renewal process Nn consists of two parts. The first part is the
random number of steps for which Wn,1 stays at barrier v or barrier 2w − v, plus the one jump
to the nearest interior state, v + 1 or 2w − v − 1. Let us denote this random number of steps
by the random variable X. This in fact has the same distribution as τk − ηk , where τk and ηk

are as defined in (2) and (3), respectively, and

E(X) = 2w

2w − v
.

The second part of Nn is the random number of steps taken by Wn,1 to return to a barrier
since its last departure from one. It is the same as the number of steps Wn,1 will take to hit either
barrier when Wn,1 starts at state v + 1 (or 2w − v − 1). We know that Wn,1 is a birth-and-death
chain on the set {v, v + 1, . . . , 2w − v}. Let px and qx respectively be the birth and death
probabilities of Wn,1, and let ξ(x) be the mean time at which Wn,1 will hit either barrier when
starting at state x ∈ {v, v+1, . . . , 2w−v} with the boundary conditions ξ(v) = ξ(2w−v) = 0.
For x ∈ {v + 1, . . . , 2w − v − 1}, we have

ξ(x) = qx[ξ(x − 1) + 1] + px[ξ(x + 1) + 1]
= qxξ(x − 1) + pxξ(x + 1) + 1,

which further implies that

ξ(x) − ξ(x + 1) = qx

px

[ξ(x − 1) − ξ(x)] + 1

px

.
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We can inductively show that, for x ∈ {v + 1, . . . , 2w − v − 1},

ξ(x) − ξ(x + 1) =
x∏

l=v+1

ql

pl

[ξ(v) − ξ(v + 1)]

+ qxqx−1 · · · qv+2

pxpx−1 · · · pv+1
+ · · · + qxqx−1

pxpx−1px−2
+ qx

pxpx−1
+ 1

px

= −
x∏

l=v+1

ql

pl

ξ(v + 1) +
x∑

l=v+2

1

pl−1

x∏
j=l

qj

pj

+ 1

px

.

By summing the above equations over x = v+1, . . . , 2w−v−1 and using the initial condition
that ξ(2w − v) = 0, we obtain

ξ(v + 1) = −ξ(v + 1)

2w−v−1∑
x=v+1

x∏
l=v+1

ql

pl

+
2w−v−1∑
x=v+1

[
1

px

+
x∑

l=v+2

1

pl−1

x∏
j=l

qj

pj

]
.

Hence,

ξ(v + 1) =
(2w−v−1∑

x=v+1

1

px

+
2w−v−1∑
x=v+2

x∑
l=v+2

1

pl−1

x∏
j=l

qj

pj

)(
1 +

2w−v−1∑
x=v+1

x∏
l=v+1

ql

pl

)−1

.

By making the substitutions px = (2w−x)/2w and qx = x/2w, for x ∈ {v+1, . . . , 2w−v−1},
and letting

γx =
x∏

l=v+1

ql

pl

= (v + 1)(v + 2) · · · x
(2w − v − 1)(2w − v − 2) · · · (2w − x)

= x! (2w − x − 1)!
v! (2w − v − 1)! =

(2w−1
v

)
(2w−1

x

) ,

we conclude the following result.

Theorem 3. Under the MEUD the renewal process Nn, defined in (7), satisfies

Nn

n
→ θ ≡ θ(w, v) almost surely as n → ∞,

where

θ−1 = 2w

2w − v
+

(2w−v−1∑
x=v+1

2w

2w − x
+

2w−v−1∑
x=v+2

x∑
l=v+2

2w

2w − l + 1

γx

γl−1

)(
1 +

2w−v−1∑
x=v+1

γx

)−1

with γx = (2w−1
v

)
/
(2w−1

x

)
.

5. A central limit property for SNn

In this section, we will establish the central limit property for SNn :

L

(
SNn

A
√

nθ

)
→ N(0, 1),

where A and θ are respectively obtained from Theorem 2 and Theorem 3.
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First, note that if 
x� denotes the largest integer not exceeding x, then nθ/
nθ� → 1 as
n → ∞. Thus, it is enough to show that SNn/(A

√
nθ�) converges weakly to N(0, 1). Second,
note that

SNn

A
√
nθ� = S
nθ�

A
√
nθ� + SNn − S
nθ�

A
√
nθ�

and that, from Theorem 2, S
nθ�/(A
√
nθ�) converges weakly to N(0, 1). It thus suffices to

show that (SNn − S
nθ�)/
√
nθ� converges to 0 in probability as n → ∞. Now let ε > 0 be

chosen arbitrarily and consider the following partition:

{|SNn − S
nθ�| ≥ ε
√
nθ�} = ({|SNn − S
nθ�| ≥ ε

√
nθ�} ∩ {|Nn − 
nθ�| ≥ ε3
nθ�})
∪ ({|SNn − S
nθ�| ≥ ε

√
nθ�} ∩ {|Nn − 
nθ�| < ε3
nθ�}).
The occurrence of the event {|SNn − S
nθ�| ≥ ε

√
nθ�} with |Nn − 
nθ�| < ε3
nθ� implies
that

max
|k−
nθ�|≤ε3
nθ�

|Sk − S
nθ�| ≥ ε
√
nθ�.

Thus, we have

Pr{|SNn − S
nθ�| ≥ ε
√
nθ�}

≤ Pr{|Nn − 
nθ�| ≥ ε3
nθ�} + Pr
{

max
|k−
nθ�|≤ε3
nθ�

|Sk − S
nθ�| ≥ ε
√
nθ�

}
. (11)

The first term on the right-hand side of (11) tends to 0 as n → ∞, because of the almost-sure
convergence of Nn/n to θ . The main task here is to control the second term using a maximal
inequality. This scheme for proving the central limit theorem of a random number of summands
is outlined in an exercise in [2, p. 369]. We also need two results due to Billingsley to accomplish
the main task.

Lemma 2. ([1, pp. 87–88], [3, pp. 105–106].) Suppose that Yn is a sequence of random
variables. Let S0 = 0 and let Sk = Y1 + · · · + Yk, k ≥ 1. Also let Mn = max(|S1|, . . . , |Sn|),
mijk = min(|Sj − Si |, |Sk − Sj |), and Ln = max0≤i≤j≤k≤n mijk . Then Mn ≤ 3Ln +
maxk≤n |Yk|. Hence, for λ > 0,

Pr{Mn ≥ 4λ} ≤ Pr{Ln ≥ λ} + Pr
{

max
k≤n

|Yk| ≥ λ
}
.

The above lemma states that a bound for Pr{Mn ≥ 4λ} can be obtained through bounds on
both Pr{Ln ≥ λ} and Pr{maxk≤n |Yk| ≥ λ}. The next result gives a bound on Pr{Ln ≥ λ}.
Lemma 3. ([3, p. 106].) Let mijk and Ln be as given in Lemma 2. Suppose that α > 1

2 and
β ≥ 0 and that u1, . . . , un are nonnegative numbers such that

Pr{mijk ≥ λ} ≤ 1

λ4β

( ∑
i<l≤k

ul

)2α

, 0 ≤ i ≤ j ≤ k ≤ n,

for λ > 0. Then

Pr{Ln ≥ λ} ≤ K

λ4β

( ∑
0<l≤n

ul

)2α

for λ > 0, where the constant K ≡ Kα,β depends only on α and β.
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Now we return to the process Sn = ∑n
k=1 HkGk , defined in Section 3. We want to verify that

the sequence Yn = HnGn satisfies the conditions imposed on mijk in Lemma 3, in particular
for α = 1 and β = 1. For 0 < i < j < k < n and λ > 0, we have

Pr{mijk ≥ λ} = Pr{|Sj − Si | ≥ λ, |Sk − Sj | ≥ λ}
= Pr{|Sj − Si | ≥ λ, |Sk − Sj | ≥ λ, Hj = 1}

+ Pr{|Sj − Si | ≥ λ, |Sk − Sj | ≥ λ, Hj = −1}
= 2 Pr{|Sj − Si | ≥ λ, |Sk − Sj | ≥ λ, Hj = 1}
= 2 Pr{|Sj − Si | ≥ λ, |Sk − Sj | ≥ λ | Hj = 1} Pr{Hj = 1}
= Pr{|Sj−1 − Si + Gj | ≥ λ, |Sk − Sj | ≥ λ | Hj = 1}
= Pr{|Sj−1 − Si + Gj | ≥ λ | Hj = 1} Pr{|Sk − Sj | ≥ λ | Hj = 1} (12)

= Pr{|Sj−1 − Si + Gj | ≥ λ, Hj = 1}
Pr{Hj = 1}

Pr{|Sk − Sj | ≥ λ, Hj = 1}
Pr{Hj = 1}

≤ 4 Pr{|Sj−1 − Si + Gj | ≥ λ} Pr{|Sk − Sj | ≥ λ}

≤ 4
E(|Sj−1 − Si + Gj |2)

λ2

E(|Sk − Sj |2)
λ2 . (13)

Note that the equality in (12) follows from the Markovian property of Hn, which implies that
the past and the future, conditional on the present, are independent. Also, we have also used
Chebyshev’s inequality to obtain (13), which trivially holds if i = j or j = k, because mijk = 0
in either case. For the numerators on the right-hand side of (13), we have already computed
E(S2

n) = var(Sn) = var(
∑n

l=1 HlGl), in (9). A further simplification yields

var

( n∑
l=1

HlGl

)
= nA(φ, w, v)2 + 2v2

(2w − v)2

(2φ − 1)[(2φ − 1)n − 1]
(2φ − 2)2

≤ nA(φ, w, v)2, (14)

where the inequality is due to the fact that 0 ≤ 2φ − 1 < 1, and the quantity A(φ, w, v)2

is given in (10). Note that A(φ, w, v)2 is composed of E(G2
1) and the nonnegative quantity

v2(2φ − 1)/(2w − v)2(1 − φ); thus, E(G2
1) ≤ A(φ, w, v)2. Theorem 1 further implies that

E(|Sj−1 − Si + Gj |2) = E((Sj−1 − Si)
2) + 2 E((Sj−1 − Si)Gj ) + E(G2

j )

≤ (j − i − 1)A(φ, w, v)2 + E(G2
j )

≤ (j − i)A(φ, w, v)2. (15)

Thus, continuing from (13) using the inequalities in (14) and (15), for 0 ≤ i ≤ j ≤ k ≤ n

and λ > 0 we have

Pr{mijk ≥ λ} ≤ 4
(j − i)A(φ, w, v)2

λ2

(k − j)A(φ, w, v)2

λ2

≤ 4
(k − i)2A(φ, w, v)4

λ4

= 1

λ4

[ ∑
i<l≤k

2A(φ, w, v)2
]2

. (16)
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The second inequality in (16) shows that Yn = HnGn satisfies the assumptions imposed on
mijk in Lemma 3, with α = 1, β = 1, and ul = 2A(φ, w, v)2. Therefore, it follows from that
lemma that

Pr{Ln ≥ λ} ≤ K

λ4

[ ∑
0<l≤n

2A(φ, w, v)2
]2

= 4KA(φ, w, v)4

λ4 n2 (17)

for λ > 0 and some fixed constant, K .
To obtain an upper bound on Pr{maxk≤n |HkGk| ≥ λ}, we use the strict stationarity of HnGn

to obtain

Pr
{

max
k≤n

|HkGk| ≥ λ
}

≤ n Pr{|H1G1| ≥ λ} = n Pr{|G1| ≥ λ} ≤ E(G2
1)

λ2 n. (18)

Applying Lemma 2 together with (17) and (18) yields

Pr
{

max
|k−
nθ�|≤ε3
nθ�

|Sk − S
nθ�| ≥ ε
√
nθ�

}

≤ Pr

{
L2ε3
nθ� ≥ ε

4

√
nθ�
}

+ Pr

{
max

k≤2ε3
nθ�
|HkGk| ≥ ε

4

√
nθ�
}

≤ 4KA(φ, w, v)4 (2ε3
nθ�)2

((ε/4)/
√
nθ�)4

+ E(G2
1)

2ε3
nθ�
((ε/4)/

√
nθ�)2

= 4096KA(φ, w, v)4ε2 + 32 E(G2
1)ε.

Because ε is arbitrary, (11) implies that

SNn − S
nθ�√
nθ� → 0 in probability as n → ∞.

This completes the demonstration of the central limit property for SNn ; we state this main
result below.

Theorem 4. Under the MEUD, the net difference process �n, defined in (8), has the central
limit property that

L

(
�n

A
√

nθ

)
→ N(0, 1),

where A = A(φ, w, v) is as given in Theorem 2 and θ is given in Theorem 3.

6. Concluding remarks

Under the modified Ehrenfest urn design that prescribes there to be a specific integer
minimum number of balls in each urn, the process, �n, recording the treatment assignment
differences has a dramatically different asymptotic balance property than that under the ordinary
Ehrenfest urn design. In this sense of weak convergence, the balance property of MEUD(w, v) is
not very different from the repeated simple random sampling design, except that the normalized
difference process �n/

√
n has a smaller asymptotic variance under the former than it does

under the latter. For example, with w = 5 and v = 1 the asymptotic variance of �n/
√

n

under MEUD(w, v) is about 0.046 7652. We have used a central limit theorem for dependent
random variables, renewal theory, and two Kolmogorov-type maximal inequalities to establish
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the central limit property of �n under MEUD(w, v). A project for future research is to apply
the results obtained here to compare the balance and randomness properties of the MEUD with
other sampling schemes.

We would also like to raise a question about the limiting process. As pointed out in [14,
pp. 170–173], the EUD will yield the Ornstein–Uhlenbeck process when the time between ball
transitions becomes small and the number of balls becomes large (also see [13] and [17]). An
avenue of future research is to look at the resulting process when MEUD(w, v) undergoes the
same limit operation.

Finally, we would like to remark on how the modification discussed here changes the
underlying probabilistic structure of the EUD. It is well known that we can represent the EUD
by a simple random walk on a finite Abelian group [7, pp. 19–20]. This group representation
provides an elegant way of diagonalizing the transition matrix and finding the high-order
transition probabilities in closed form for the Ehrenfest chain. Some variants of the EUD
preserve this group structure [19], [10, pp. 52–53]. However, this group structure does not hold
under MEUD(w, v). Another possibility for future research is to diagonalize the transition
matrix of the Markov chain (either Wn,1 or Wn,2) under MEUD(w, v).
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