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Abstract

A well-known theorem of Philip Hall states that if a group G has a nilpotent normal subgroup N such that
G/N′ is nilpotent, then G itself is nilpotent. We say that a group class X is a Hall class if it contains every
group G admitting a nilpotent normal subgroup N such that G/N′ belongs to X. Hall classes have been
considered by several authors, such as Plotkin [‘Some properties of automorphisms of nilpotent groups’,
Soviet Math. Dokl. 2 (1961), 471–474] and Robinson [‘A property of the lower central series of a group’,
Math. Z. 107 (1968), 225–231]. A further detailed study of Hall classes is performed by us in another
paper [‘Hall classes of groups’, to appear] and we also investigate the behaviour of the class of finite-by-Y
groups for a given Hall class Y [‘Hall classes in linear groups’, to appear]. The aim of this paper is to
prove that for most natural choices of the Hall class Y, also the classes (LF)Y and BY are Hall classes,
where LF is the class of locally finite groups and B is the class of locally finite groups of finite exponent.

2020 Mathematics subject classification: primary 20F18; secondary 20F19, 20F50.
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1. Introduction

If N is a nilpotent normal subgroup of a group G, the structure of the factor group
G/N′ has a strong influence on the whole group G. The first evidence of this
phenomenon can be traced back to a classical theorem of Hall [11] which states that
if G/N′ is nilpotent, then G itself is nilpotent. A few years later, Plotkin [15] gave
a different proof of Hall’s nilpotency criterion and proved that if G/N′ is locally
nilpotent, then G is locally nilpotent too, a fact that is not a direct consequence
of the previous theorem. In 1968, Robinson [16] showed that this kind of result is
strictly connected to the behaviour of certain tensor products of G-modules; this
approach makes it possible to obtain similar statements for many other relevant group
properties.
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[2] Hall classes of groups with a locally finite obstruction 17

Along these lines, we say that a group class X is a Hall class if it contains every
group G admitting a nilpotent normal subgroup N such that G/N′ belongs to X. Clearly,
finite groups and locally cyclic groups form Hall classes, and it is also easy to see that
any class consisting only of groups with a locally cyclic Fitting subgroup is a Hall
class.

In our terminology, the theorems of Hall and Plotkin just say that the class N
of nilpotent groups and the class LN of locally nilpotent groups are Hall classes.
Moreover, it follows from the result of Robinson that hypercentral groups, hyper-
cyclic groups, (locally) supersoluble groups and (locally) polycyclic groups form
Hall classes; also, it turns out that a group class X that is closed with respect to
forming normal subgroups and extensions is a Hall class, provided that it contains
all homomorphic images of the tensor product of any pair of abelian X-groups. More
recently, it was proved that the class of paranilpotent groups is a Hall class (see [10]),
and also that FC-nilpotent, FC-hypercentral and locally FC-nilpotent groups form Hall
classes (see [1]).

Since any Hall class containing all abelian groups must contain N, it is clear that
for every positive integer c, the class of nilpotent groups of class at most c is not a Hall
class, so in particular abelian groups do not form a Hall class. We remark also that
the class of torsion-free groups is not a Hall class, although the class of locally finite
groups and the class of groups of finite exponent are Hall classes.

It is obvious that unions and intersections of collections of Hall classes are likewise
Hall classes. However, if X and Y are Hall classes, the class XY, consisting of all
groups G containing a normal X-subgroup N such that G/N is in Y, need not be a
Hall class. For instance, the class FN of all finite-by-nilpotent groups is not a Hall
class; actually, for many natural choices of the Hall class Y, groups that are finite-by-Y
do not form a Hall class (see [7], where many examples of this circumstance can be
found).

The aim of this paper is to prove that the situation is completely different if the finite
obstruction at the bottom is replaced by a locally finite one. The following summarizes
very briefly most of our main conclusions.

THEOREM. The class of all (locally finite)-by-Y groups and the class of all (locally
finite of finite exponent)-by-Y groups are Hall classes for the following 18 choices
for Y: nilpotent, Fitting, hypercentral, Engel, Baer, Gruenberg, locally nilpotent,
paranilpotent, hypercyclic, locally supersoluble, FC-nilpotent, FC-hypercentral,
locally (nilpotent-by-finite), soluble, hyperabelian, locally soluble, finite (Prüfer)
rank, finite abelian section rank.

Note that (locally finite)-by-nilpotent groups and (locally finite of finite
exponent)-by-nilpotent groups were already proved to form Hall classes in [9, 18],
respectively, although with different proofs.

Our notation, which is mostly standard, can be found in [17]; we refer to [20] for
results and terminology concerning linear groups.
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18 F. de Giovanni, M. Trombetti and B. A. F. Wehrfritz [3]

2. Nilpotency conditions

As mentioned in the introduction, nilpotent groups, locally nilpotent groups and
hypercentral groups form Hall classes; in addition, it is known that Baer groups,
Gruenberg groups, Fitting groups and Engel groups have the same behaviour (see [7]).
The goal of this section is to prove that if Y is any of these seven group classes, then
(LF)Y is likewise a Hall class, where LF denotes the class of all locally finite groups.

Let G be a group. If A and B are G-modules, the tensor product A ⊗ZB can be made
into a G-module via (a ⊗ b)g = (ag) ⊗ (bg) for all a ∈ A, b ∈ B, g ∈ G. Recall that a
class M of G-modules is tensorial if, for all A and B in M, every G-homomorphic
image of A ⊗ZB (and in particular A ⊗ZB itself) belongs toM. It is well known that if
N is a normal subgroup of G, for each positive integer i, there exists a G-epimorphism

(N/N′) ⊗Z (γi(N)/γi+1(N)) −→ γi+1(N)/γi+2(N),

where the factors of the lower central series of N are regarded as G-modules by
conjugation. This is the reason for which tensorial classes play a relevant role in the
context of Hall classes. For instance, Hall’s nilpotency criterion rests upon the fact
that the class of polytrivial G-modules (that is, G-modules admitting a finite series of
G-submodules whose factors are trivial G-modules) is tensorial (see for instance [21,
page 10]).

If G is a group and if M, N are classes of G-modules, we say that a G-module
A is M-by-N if it has a G-submodule B ∈ M such that A/B is in N . Moreover, in
the following, we denote by TG the class of all G-modules whose underlying abelian
groups are periodic.

LEMMA 2.1. Let G be a group and let M be a tensorial class of G-modules that is
quotient-closed. Then the class of all G-modules that are TG-by-M is tensorial.

PROOF. Clearly, the class TG-by-M is quotient-closed. Let A and B be two arbitrary
G-modules that are TG-by-M, and let TA and TB be the periodic parts of A and B (as
abelian groups), respectively. The natural sequence

(TA ⊗ZB) ⊕ (A ⊗ZTB) −→ A ⊗ZB −→ (A/TA) ⊗Z (B/TB) −→ {0}

is exact, where the G-submodule

(TA ⊗ZB) ⊕ (A ⊗ZTB)

is easily seen to be in TG and

(A/TA) ⊗Z (B/TB)

is in M since A/TA and B/TB are. Therefore, the G-module A ⊗ZB is TG-by-M and
the statement is proved. �

COROLLARY 2.2. If G is a group, the class of all G-modules that are TG-by-
polytrivial is tensorial.
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[4] Hall classes of groups with a locally finite obstruction 19

A classical theorem of Issai Schur states that if a group G is (locally) finite over
its centre ζ1(G), then G′ is (locally) finite (see [17, Part 1, Theorem 4.12 and its
Corollary]). For our purposes, we need the following application of Schur’s theorem.

LEMMA 2.3. Let G be a group and let N be a normal subgroup of G. If N has a
finite G-invariant series whose factors are either locally finite or central in G, then the
subgroup [N,k G] is locally finite, where k is the number of factors of this series that
are not locally finite.

PROOF. Let

{1} = N0 < N1 < · · · < Nt = N

be a finite G-invariant series of minimal length t such that each Ni+1/Ni is either locally
finite or central in G and at most k factors are not locally finite. Of course, we may
suppose that G has no nontrivial locally finite normal subgroups and k > 0, so that in
particular N1 ≤ ζ1(G). By induction, we have that

M/N1 = [N,k−1 G]N1/N1

is locally finite. Then M/ζ1(M) is locally finite, so M′ is locally finite by Schur’s
theorem and hence M is torsion-free abelian. Since N1 ≤ ζ1(G) and M/N1 is locally
finite, it follows that M is central in G and hence [N,k G] ≤ [M, G] = {1}. �

The choice N = G in the above statement gives the following characterization of
(locally finite)-by-nilpotent groups.

COROLLARY 2.4. A group G is (locally finite)-by-nilpotent if and only it has a normal
series of finite length whose factors are either locally finite or central in G.

We are now in a position to prove the first main theorem of this section.

THEOREM 2.5. The class (LF)N of all (locally finite)-by-nilpotent groups is a Hall
class.

PROOF. Let N be a nilpotent normal subgroup of a group G such that G/N′ is in
(LF)N. If T/N′ is the periodic part of N/N′, then N/T has a finite G-invariant series
whose factors are central in G and hence N/N′ is TG-by-polytrivial as a G-module (by
conjugation). Application of Corollary 2.2 yields that N has a finite G-invariant series
whose nonperiodic factors are central in G. It follows that G has a normal series of
finite length whose factors are either locally finite or central, and hence it is (locally
finite)-by-nilpotent by Corollary 2.4. �

Philip Hall proved that if N is a nilpotent normal subgroup of a group G and G/N′

is nilpotent, then the nilpotency class of G can be bounded in terms of the nilpotency
classes of N and G/N′. Note here that the above proof allows us to give a quantitative
version of Theorem 2.5 too.
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20 F. de Giovanni, M. Trombetti and B. A. F. Wehrfritz [5]

THEOREM 2.6. There exists an integer-valued function f = f (c, d) such that, if G is
any group containing a nilpotent normal subgroup N of class c such that γd+1(G/N′)
is locally finite, then γ f (c,d)(G) is locally finite.

Recall that a group G is a Fitting group if it is generated by its nilpotent normal
subgroups. Of course, Fitting groups are locally nilpotent and it follows easily from
Hall’s theorem that they form a Hall class (see [7] for details).

COROLLARY 2.7. The class of all (locally finite)-by-Fitting groups is a Hall class.

PROOF. Let G be a group containing a nilpotent normal subgroup N such that
G/N′ is (locally finite)-by-Fitting and let T be the unique maximal locally finite
normal subgroup of G. If L/N′ is the subgroup of all elements of finite order of
G/N′ and K/L is any nilpotent normal subgroup of G/L, we have that KN/N′ is
(locally finite)-by-nilpotent and hence also the normal subgroup KN of G is (locally
finite)-by-nilpotent by Theorem 2.5. Thus, KN/T is nilpotent, so that G/T is a Fitting
group and G is (locally finite)-by-Fitting. �

The main ingredients of the proof of Theorem 2.5 are essentially the tensoriality of
TG-by-polytrivial G-modules (Corollary 2.2) and the sufficient part of the characteri-
zation of (locally finite)-by-nilpotent groups given in Corollary 2.4. Actually, many of
the most relevant classes of groups with a locally finite obstruction at the bottom can
be proved to be Hall classes, provided that results corresponding to Corollaries 2.2 and
2.4 are obtained (it is then enough to repeat the argument of the above proof).

If G is a group and τ is an ordinal number, a G-module A is called hypertrivial (of
height τ) if it has an ascending series of G-submodules

{0} = A0 < A1 < · · · Aα < Aα+1 < · · · Aτ = A

such that Aα+1/Aα is a trivial G-module for each ordinal α < τ. Since the class of
hypertrivial G-modules is tensorial (see [16, Lemma 1]), Lemma 2.1 has the following
consequence, which corresponds to Corollary 2.2.

COROLLARY 2.8. If G is a group, the class of all G-modules that are TG-by-
hypertrivial is tensorial.

In the following, if G is a group, ζ(G) denotes the hypercentre of G, and we say that
a normal section X/Y of G is hypercentrally embedded in G if X/Y ≤ ζ(G/Y).

LEMMA 2.9. Let G be a group and let N be a torsion-free normal subgroup of G such
that Nζ(G)/ζ(G) is locally finite. Then N is contained in ζ(G).

PROOF. Since N/ζ(N) is obviously locally finite, N contains a locally finite normal
subgroup M such that N/M is hypercentral (see [3, Lemma 2]). However, N is
torsion-free and hence it is hypercentral. Assume for a contradiction that the statement
is false and let μ be the least ordinal number such that ζμ(N) is not contained in
ζ(G). Then μ > 0 is not a limit and ζμ−1(N) ≤ ζ(G). Since N/ζμ−1(N) is torsion-free

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788723000071
Downloaded from https://www.cambridge.org/core. IP address: 3.147.193.211, on 01 Oct 2024 at 19:19:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446788723000071
https://www.cambridge.org/core


[6] Hall classes of groups with a locally finite obstruction 21

(see [17, Part 1, Theorem 2.25]), we may replace G by G/ζμ−1(N) and N by
ζμ(N)/ζμ−1(N), and so assume without loss of generality that N is abelian.

Since N/(N ∩ ζ(G)) is locally finite, we may consider the least ordinal number
σ such that N/(N ∩ ζσ(G)) is not torsion-free. Clearly, σ > 0 is not a limit and
N/(N ∩ ζσ−1(G)) is torsion-free. Thus, a further replacement of G by the factor group
G/ζσ−1(G) allows us to assume that N/(N ∩ ζ1(G)) is not torsion-free. Then there is
an element x of N \ ζ1(G) such that xk ∈ ζ1(G) for some positive integer k. If g is any
element of G,

[x, g]k = [xk, g] = 1,

so [x, g] = 1 because N is torsion-free and hence x ∈ ζ1(G). This contradiction
completes the proof of the statement. �

LEMMA 2.10. Let G be a group and let N be a normal subgroup of G. If N has
a G-invariant series of finite length each of whose factors is either locally finite or
hypercentrally embedded in G, then N contains a locally finite G-invariant subgroup
T such that N/T is hypercentrally embedded in G.

PROOF. Let

{1} = N0 < N1 < · · · < Nt = N

be a G-invariant series of finite length whose factors are either locally finite or
hypercentrally embedded in G. Without loss of generality, we may assume that N has
no nontrivial locally finite normal subgroups, so in particular N1 ≤ ζ(G), and also that
N2/N1 is locally finite. Then N2/ζ(N2) is locally finite and hence it follows from [3,
Lemma 2] that N2 is hypercentral, and so also torsion-free. Application of Lemma 2.9
yields now that N2 ≤ ζ(G). It follows that N has a G-invariant series of the above
type whose length is strictly smaller than t and hence the statement is proved by
induction. �

The above result allows us to characterize (locally finite)-by-hypercentral groups
in a way similar to that in which (locally finite)-by-nilpotent groups are described in
Corollary 2.4.

COROLLARY 2.11. A group G is (locally finite)-by-hypercentral if and only if it has a
normal series of finite length whose factors are either locally finite or hypercentrally
embedded in G.

It is now possible to state the following result, whose proof runs along the same
lines of that of Theorem 2.5.

THEOREM 2.12. The class of all (locally finite)-by-hypercentral groups is a Hall class.

We turn now to the case in which Y is the class of Engel groups. Recall here that
an element x of a group G is right Engel if for each g ∈ G, there is a positive integer
m = m(x, g) such that [x,m g] = 1, and G is called an Engel group if all its elements are
right Engel.
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22 F. de Giovanni, M. Trombetti and B. A. F. Wehrfritz [7]

Let G be a group and let A be a G-module. We say that A is an Engel G-module
if for all elements a of A and g of G, there exists a positive integer m = m(a, g) such
that a(g − 1)m = 0. Clearly, if A is an abelian normal subgroup of a group G that is an
Engel G-module by conjugation, then all elements of A are right Engel in G.

The class of all Engel G-modules is closed with respect to forming submodules,
quotient modules and extensions, and it is easy to show that this class of modules is
tensorial (see [7]). Thus, Lemma 2.1 above has the following further consequence.
COROLLARY 2.13. If G is a group, the class of all G-modules which are TG-by-Engel
is tensorial.
LEMMA 2.14. Let G be a group and let A be a G-module that is torsion-free as an
abelian group. If A contains an Engel G-submodule B such that A/B ∈ TG, then A is
an Engel G-module.

PROOF. Let a and g be arbitrary elements of A and G, respectively, and let k = k(a)
be a positive integer such that ka ∈ B. Then there exists a positive integer m=m(a, g)
such that (ka)(g − 1)m = 0, so k(a(g − 1)m) = 0 and hence a(g − 1)m = 0. Therefore, A
is an Engel G-module. �

LEMMA 2.15. Let G be a group and let N be a normal subgroup of G. If N has a
G-invariant series of finite length each of whose factors is either locally finite or
an Engel G-module (by conjugation), then N contains a locally finite G-invariant
subgroup T such that N/T consists of right Engel elements of G/T.

PROOF. Let

{1} = N0 < N1 < · · · < Nt = N

be a G-invariant series of finite length whose factors are either locally finite or Engel
G-modules. Without loss of generality, it can be assumed that N has no locally
finite nontrivial normal subgroups, so in particular N1 is an Engel G-module that is
torsion-free as an abelian group. Moreover, by induction on t, we may also suppose
that N/N1 contains a locally finite G-invariant subgroup M/N1 such that N/M consists
of right Engel elements of G/M. Let E be an arbitrary finitely generated subgroup of
M and put A = E ∩ N1. Then E/A is finite and hence A is finitely generated. Since N1 is
an Engel G-module, for each element x of E, there exists a positive integer k such that
[A,k x] = {1}. It follows that the subgroup 〈x, A〉 is nilpotent and so even abelian (see
for instance [17, Part 2, Lemma 6.37] or [2, Proposition 2.1.3]). Therefore, A ≤ ζ1(E)
and so N1 ≤ ζ1(M). In particular, M/ζ1(M) is locally finite and hence M is torsion-free
abelian by Schur’s theorem. Application of Lemma 2.14 yields now that M is an Engel
G-module. However, each element of N/M is right Engel in G/M and so all elements
of N are right Engel in G. The statement is proved. �

COROLLARY 2.16. Let G be a group admitting a normal series of finite length each
of whose factors is either locally finite or an Engel G-module. Then G is (locally
finite)-by-Engel.

THEOREM 2.17. The class of all (locally finite)-by-Engel groups is a Hall class.
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[8] Hall classes of groups with a locally finite obstruction 23

PROOF. Let G be a group and let N be a nilpotent normal subgroup of G such that
G/N′ is (locally finite)-by-Engel. Then N/N′ is TG-by-Engel as a G-module and so
by Corollary 2.13, we have that N has a finite G-invariant series whose nonperiodic
subgroups are Engel G-modules. If L/N′ is the unique maximal locally finite normal
subgroup of G/N′, it follows that L has a G-invariant series of finite length each of
whose factors is either locally finite or an Engel G-module. Application of Lemma
2.15 yields that L contains a locally finite G-invariant subgroup T such that L/T
consists of right Engel elements of G/T . Therefore, G is (locally finite)-by-Engel and
the statement is proved. �

A closer look at the above arguments allows us to state the following result
concerning bounded Engel groups; recall here that a group G is bounded Engel if
there exists a positive integer m such that [x,m y] = 1 for all x, y in G.

THEOREM 2.18. The class of all (locally finite)-by-(bounded Engel) groups is a Hall
class.

Let G be a group. Recall that G is a Baer group if all its cyclic subgroups are
subnormal, while G is a Gruenberg group if every cyclic subgroup of G is ascendant.
It is known that G is a Baer group (respectively a Gruenberg group) if it is generated
by abelian subnormal (respectively abelian ascendant) subgroups. Of course, Baer
groups are Gruenberg and every Gruenberg group is locally nilpotent. Notice also
that a soluble group is Baer (respectively Gruenberg) if and only if it is bounded
Engel (respectively Engel); for these results, see [17, Part 2, Theorems 7.34 and 7.35].
Thus it follows from Theorems 2.18 and 2.17 that soluble groups that are (locally
finite)-by-Baer and soluble groups that are (locally finite)-by-Gruenberg form Hall
classes. Actually, we can prove that the solubility assumption can be dropped.

Let X be a group class. As usual, we denote by SnX (respectively, QX) the class of
all groups that are isomorphic to subnormal subgroups (respectively to factor groups)
of X-groups. Of course, SnX = X if and only if X is closed with respect to forming
normal subgroups and QX = X if and only if all homomorphic images of X-groups
belong to X.

LEMMA 2.19. Let X and Y be group classes such that SnX = X, QY = Y and XN is a
Hall class. If G is a group containing a nilpotent normal subgroup N with G/N′ ∈ XY,
then N is contained in a normal subgroup M of G such that G/M ∈ Y and γk(M) ∈ X
for some positive integer k.

PROOF. Let X/N′ be a normal X-subgroup of G/N′ such that G/X ∈ Y. Clearly, the
group XN/N′ is X-by-abelian, so the normal subgroup M = XN is X-by-nilpotent
since XN is a Hall class. Thus, there is a positive integer k such that the subgroup
γk(M) belongs to SnX = X. Moreover, G/M belongs to QY = Y and the statement is
proved. �

THEOREM 2.20. The class of all (locally finite)-by-Baer groups and the class of all
(locally finite)-by-Gruenberg groups are Hall classes.
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24 F. de Giovanni, M. Trombetti and B. A. F. Wehrfritz [9]

PROOF. Let G be a group and let N be a nilpotent normal subgroup of G such that
G/N′ is (locally finite)-by-Baer. To prove that G itself is (locally finite)-by-Baer,
we may suppose that G has no nontrivial locally finite normal subgroups. Thus, a
combination of Theorem 2.5 and Lemma 2.19 with X = LF shows that there exists
a nilpotent normal subgroup M of G such that G/M′ is (locally finite)-by-Baer and
G/M is a Baer group. If g is an arbitrary element of G, the subgroup 〈g, M〉 is
subnormal in G and 〈g, M〉/M′ is (locally finite)-by-nilpotent. Thus, 〈g, M〉 is (locally
finite)-by-nilpotent by Theorem 2.5, and so even nilpotent because G has no nontrivial
locally finite normal subgroups. It follows that 〈g〉 is subnormal in G and hence G is a
Baer group.

To prove that (locally finite)-by-Gruenberg groups form a Hall class, we can use a
similar argument, replacing subnormality by ascendancy and Theorem 2.5 by Theorem
2.12. �

To accomplish what we promised at the beginning of this section, it only remains
to show that (LF)(LN) is a Hall class.

If G is a group andM is a class of G-modules, we denote by LM the class of all
G-modules A such that for each finite subset X of A, there is an M-submodule of A
containing X. The G-modules in the class LM are called locallyM.

LEMMA 2.21. Let G be a group and letM be a tensorial class of G-modules. IfM is
closed with respect to forming G-sections, then the class LM is tensorial.

PROOF. Suppose that A and B are G-modules in the class LM, and let E be a finitely
generated G-submodule of A ⊗Z B. Clearly, there exist finitely generated submodules
A0 of A and B0 of B such that E is G-isomorphic to a G-section of A0 ⊗Z B0. Since A0
and B0 belong to the tensorial classM, also E is inM. Therefore, A ⊗Z B belongs to
LM and hence LM is tensorial. �

Since the class of polytrivial G-modules is tensorial, it follows from Lemma 2.21
that also locally polytrivial G-modules form a tensorial class and therefore Lemma 2.1
has the following consequence.

COROLLARY 2.22. If G is a group, the class of all G-modules that are TG-by-(locally
polytrivial) is tensorial.

The following statement and the subsequent remark describe the relation between
locally polytrivial and hypertrivial modules; this is employed in the proof of our next
main result.

LEMMA 2.23. Let G be a group and let A be a G-module. Then A is locally polytrivial
if and only if A is hypertrivial of height at most ω.

PROOF. Assume first that A is locally polytrivial and let E be the collection of
all finitely generated G-submodules of A. Each E ∈ E admits a finite series of
G-submodules
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[10] Hall classes of groups with a locally finite obstruction 25

{0} = E0 < E1 < · · · < Ek(E) = E

whose factors are trivial G-modules. For each nonnegative integer n, let An be the
G-submodule of A generated by all Fn, where F ∈ E and k(F) ≥ n. Then,

{0} = A0 ≤ A1 ≤ · · · ≤ An ≤ An+1 ≤ · · ·
⋃
n∈N

An = A

is an ascending series of G-submodules of A whose factors are trivial G-modules.
Therefore, A is hypertrivial of height at most ω.

Conversely, let

{0} = A0 ≤ A1 ≤ · · · ≤ An ≤ An+1 ≤ · · · Aω = A

be an ascending series of G-submodules of A such that every An+1/An is a trivial
G-module. If E is any finitely generated G-submodule of A, there is a nonnegative
integer n such that An contains E. Then E is a polytrivial G-module and the statement
is proved. �

Lemma 2.23 shows that the class of locally polytrivial G-modules is contained in
that of hypertrivial G-modules, and this inclusion is strict, a property which is in
contrast to the well-known fact that hypercentral groups form a proper subclass of
LN. This can be seen from the following example. Let p be a prime and let

A = 〈a〉 × 〈b1〉 × 〈b2〉 × · · · × 〈bn〉 × · · ·

be the direct product of infinitely many groups of order p; consider the automorphisms
x and yk (for each k > 1) of A defined by the positions

ax = a, bx
1 = b1, bx

n = bnbn−1 for all n > 1

and

ayk = abk, byk
n = bn for all n ≥ 1.

If G = 〈x, yk | k ≥ 1〉, we have that A = 〈a〉G is a cyclic G-module, which is hypertrivial
of height ω + 1 but not polytrivial.

THEOREM 2.24. The class (LF)(LN) of all (locally finite)-by-(locally nilpotent)
groups is a Hall class.

PROOF. Let N be a nilpotent normal subgroup of the group G such that G/N′ belongs
to (LF)(LN). To prove that G ∈ (LF)(LN), we may assume that G has no nontrivial
locally finite normal subgroups, so in particular N is torsion-free. Consider any finitely
generated subgroup E of G and let T/N be the subgroup of all elements of finite order
of EN/N, so that EN/T is nilpotent. Since N/N′ is TG-by-(locally polytrivial) as an
E-module, it follows from Corollary 2.22 that N (and so also T) has an E-invariant
series of finite length whose factors are either locally finite or locally polytrivial
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E-modules. However, locally polytrivial E-modules are hypertrivial by Lemma 2.23
and hence an application of Lemma 2.10 yields that T is hypercentrally embedded in
EN. Thus, EN is hypercentral and so G is locally nilpotent. �

If X is any group class, LX denotes the class of all locally X-groups, that is, groups
each of whose finite subsets lies in an X-subgroup; of course, if X is subgroup-closed,
a group G is locally X if and only if all its finitely generated subgroups belong to X.

It is known that L(NF) is a Hall class (see for instance [1, Proposition 3.1]) and it
has been recently proved that also L(FN) is a Hall class (see [7]). Since the intersection
of Hall classes is likewise a Hall class, a combination of Theorem 2.24 and our next
lemma provides a different proof of this latter fact.

LEMMA 2.25. (LF)(LN) = L((LF)N) and L(FN) = ((LF)(LN)) ∩ L(NF).

PROOF. It is obvious that (LF)(LN) ≤ L((LF)N). Conversely, if G is any group in
L((LF)N), the elements of finite order of G form a locally finite subgroup T and G/T
is locally nilpotent. Thus, L((LF)N) ≤ (LF)(LN) and the first equality is proved.

To prove the second equality, note that

L(FN) ≤ L((LF)N) = (LF)(LN)

by the first part of the proof. Since every finite-by-nilpotent group is obviously
nilpotent-by-finite, we have also L(FN) ≤ L(NF) and hence

L(FN) ≤ ((LF)(LN)) ∩ L(NF).

Suppose now that G is a group in ((LF)(LN)) ∩ L(NF) and let E be any finitely
generated subgroup of G. Since E is nilpotent-by-finite, it satisfies the maximal
condition; then E is finite-by-nilpotent because it belongs to (LF)(LN). The proof
is complete. �

We give now an example which shows in particular that (locally finite)-by-(finitely
generated nilpotent) groups do not form a Hall class.

THEOREM 2.26. There exists a torsion-free nilpotent linear group G over a field
of characteristic 0 that is not finitely generated, but G/G′ is periodic-by-(finitely
generated abelian).

PROOF. Let Tr1(3,Q) be the group of all unitriangular matrices of order 3 over the
rationals, and let G ≤ Tr1(3,Q) be the group generated by the matrices

x =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
1 1 0
0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ , y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
0 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ and z(a) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1 0 0
0 1 0
a 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ ,

where a ranges over all rational numbers. Clearly [y, x] = z(1), so

G′ = 〈z(1)〉 and G/G′ � Z × Z × Q/Z
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[12] Hall classes of groups with a locally finite obstruction 27

is periodic-by-(finitely generated abelian). However, G is a torsion-free nilpotent group
that is not finitely generated. �

Although the above example is linear, it turns out that the situation is completely
different in the case of a positive characteristic; this is essentially due to an intrinsic
property of linear groups of positive characteristic. If G is a linear group, we denote by
u(G) the unipotent radical of G, that is, its unique maximal unipotent normal subgroup.

LEMMA 2.27. Let G be a linear group over a field of positive characteristic and let N
be a nilpotent normal subgroup of G. Then N′ is locally finite.

PROOF. Put U = u(G). Since G has positive characteristic, U is locally finite and G/U
is isomorphic to a completely reducible linear group (see for instance [6, Lemma
2.13]). Then also NU/U is completely reducible (see [20, Corollary 1.8]) and hence,
being nilpotent, it is central-by-finite (see [20]). It follows from Schur’s theorem that
N′U/U is finite and hence N′ is locally finite. �

The above lemma suggests that certain classes of groups with a locally finite
obstruction at the bottom can behave as Hall classes in suitable universes, even if
they are not Hall classes. This idea can be formalized as follows.

If U is a fixed class of groups, we say that a group class X is a U-Hall class (or
also a Hall class within the universe U) if it contains every U-group G admitting a
nilpotent normal subgroup N such that G/N′ ∈ X. Of course, if U is the class of all
groups, U-Hall classes are just the usual Hall classes.

THEOREM 2.28. Let X be any class of groups. Then (LF)X is a Hall class within the
universe of linear groups of positive characteristic.

Notice that the concept of a U-Hall class is further generalized in Section 5, by
imposing a restriction also to the nilpotent normal subgroup N in the above definition.

3. Supersolubility conditions

The aim of this section is to prove that (LF)Y is a Hall class, when Y is one of
the most natural generalizations of the class of supersoluble groups, like those of
paranilpotent groups, of hypercyclic groups and of locally supersoluble groups.

Note preliminarily that (locally finite)-by-supersoluble groups do not form a
Hall class (see Theorem 2.26). This is essentially due to the fact that (locally
finite)-by-supersoluble groups cannot be characterized in a way similar to that of
Corollary 2.4, replacing centrality by the property of being cyclic, an obvious example
being the additive group of rational numbers.

We first deal with the class of (locally finite)-by-paranilpotent groups. Recall that a
normal subgroup N of a group G is said to be paranilpotently embedded in G if there
exists a finite series

{1} = N0 ≤ N1 ≤ · · · ≤ Nt = N
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of normal subgroups of G such that, for i = 0, . . . , t − 1, the factor group Ni+1/Ni is
paracentral in G, that is, it is abelian and all its subgroups are normal in G/Ni. A group
G is paranilpotent if it is paranilpotently embedded in itself. Paranilpotent groups were
introduced in [19] under the name of parasoluble groups, while the term paranilpotent
group has recently been employed (see for instance [4, 5]). Of course, every nilpotent
group is paranilpotent, while paranilpotent groups are locally supersoluble.

As in the previous section, we obtain results corresponding to Corollaries 2.2 and
2.4 for the class of (locally finite)-by-paranilpotent groups.

If G is any group, a G-module A is called paranilpotent if it has a finite series of
G-submodules

{0} = A0 < A1 < · · · < At = A

such that every subgroup of Ai+1/Ai is a G-submodule for all i = 0, 1, . . . , t − 1. Of
course, any abelian normal subgroup of a paranilpotent group G is a paranilpotent
G-module by conjugation.

The class of all paranilpotent G-modules is easily seen to be tensorial and
quotient-closed (see for instance [10]), so that Lemma 2.1 has the following conse-
quence.

COROLLARY 3.1. If G is a group, the class of all G-modules that are TG-by-
paranilpotent is tensorial.

The following result corresponds to Lemma 2.14, bearing in mind that the only
nontrivial automorphism fixing all subgroups of a nonperiodic abelian group is the
inversion.

LEMMA 3.2. Let G be a group, A a G-module that is torsion-free as an abelian group
and B a G-submodule of A such that A/B ∈ TG. If g is an element of G centralizing B
(respectively inverting B), then g centralizes A (respectively inverts A).

PROOF. Let a be any element of A and let k be a positive integer such that ka ∈ B. Then,
(ka)g = ε(ka), where ε ∈ {1,−1}, so that k(ag − εa) = 0 and hence ag = εa since A is
torsion-free as an abelian group. �

LEMMA 3.3. Let G be a group and let N be a normal subgroup of G. If N has a
G-invariant series of finite length whose factors are either locally finite or paracentral
in G, then N contains a locally finite G-invariant subgroup T such that N/T is
paranilpotently embedded in G.

PROOF. Let

{1} = N0 < N1 < · · · < Nt = N

be a G-invariant series of finite length whose factors are either locally finite or
paracentral in G. Without loss of generality, we may assume that N has no locally
finite nontrivial normal subgroups, so in particular N1 is torsion-free and paracentral
in G. Moreover, we may suppose by induction on t that N/N1 contains a locally finite
G-invariant subgrup M/N1 such that N/M is paranilpotently embedded in G. Put
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[14] Hall classes of groups with a locally finite obstruction 29

C = CM(N1), so that M/C has order at most 2 and N/C is paranilpotently embedded in
G. Clearly, N1 ≤ ζ1(C), so C/ζ1(C) is locally finite and hence C is abelian by Schur’s
theorem. An application of Lemma 3.2 yields that C is paracentral in G and hence G
is paranilpotent. �

COROLLARY 3.4. A group G is (locally finite)-by-paranilpotent if and only if it has a
normal series of finite length whose factors are either locally finite or paranilpotently
embedded in G.

The first main result of this section is a consequence of Corollaries 3.1 and 3.4.

THEOREM 3.5. The class of all (locally finite)-by-paranilpotent groups is a Hall class.

We move now from paranilpotent groups to hypercyclic groups, that is, groups
having an ascending normal series with cyclic factors. In general, a normal section
X/Y of a group G is hypercyclically embedded in G if it has an ascending G-invariant
series with cyclic factors. Notice that if N is a hypercyclically embedded normal
subgroup of G, then N ∩ G′ is contained in the hypercentre of G′; in particular, the
commutator subgroup of any hypercyclic group is hypercentral. Moreover, it is easy to
see that paranilpotent groups are hypercyclic and that hypercyclic groups are locally
supersoluble.

Let G be a group. We say that a G-module A is hypercyclic if it has an ascending
series of G-submodules

{0} = A0 < A1 < · · · Aα < Aα+1 < · · · Aτ = A

each of whose factors is cyclic as an abelian group; the least ordinal τ for which such
a series exists is called the height of A. It is known that the class of all hypercyclic
G-modules is tensorial (see [16]), so that Lemma 2.1 has the following consequence.

COROLLARY 3.6. If G is a group, the class of all G-modules that are TG-by-
hypercyclic is tensorial.

LEMMA 3.7. Let G be a group and let N be a normal subgroup of G. If N has a
G-invariant series of finite length each of whose factors is either locally finite or
hypercyclically embedded in G, then N contains a locally finite G-invariant subgroup
T such that N/T is hypercyclically embedded in G.

PROOF. As in the proofs of Lemmas 2.10 and 3.3, we may suppose that N has
no nontrivial locally finite normal subgroups and contains a G-invariant subgroup
M such that M is hypercyclically embedded in G and N/M is locally finite. Then
M ∩ G′ ≤ ζ(N ∩ G′), so that (N ∩ G′)/ζ(N ∩ G′) is locally finite and hence N ∩ G′ is
hypercentral and torsion-free by Lemma 2.10. Put Z = ζ1(N ∩ G′). By hypothesis, Z
contains a nontrivial cyclic G-invariant subgroup and we may consider a subgroup A
of Z that is maximal with respect to the condition that all its subgroups are normal in G;
obviously A is hypercyclically embedded in G. If B/A is the subgroup of all elements of
finite order of Z/A, it follows from Lemma 3.2 that all subgroups of B are normal in G.
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Thus, A = B, so Z/A is torsion-free and hence either Z = A or Z/A contains a nontrivial
cyclic G-invariant subgroup. This procedure shows that Z is hypercyclically embedded
in G. Since all factors of the upper central series of N ∩ G′ are torsion-free, we may
employ the same argument to prove that all such factors are hypercyclically embedded
in G. Therefore, N ∩ G′ is hypercyclically embedded in G. Since [N, G] ≤ N ∩ G′, it
follows that also N is hypercyclically embedded in G. �

COROLLARY 3.8. A group G is (locally finite)-by-hypercyclic if and only if it has a
normal series of finite length whose factors are either locally finite or hypercyclically
embedded in G.

As in the previous cases, the following can be deduced.

THEOREM 3.9. The class of all (locally finite)-by-hypercyclic groups is a Hall class.

Finally, we consider the class of (locally finite)-by-(locally supersoluble) groups;
we need the following easy lemma.

LEMMA 3.10. Let G be a group whose finitely generated subgroups are (locally
finite)-by-supersoluble. Then G is (locally finite)-by-(locally supersoluble).

PROOF. We may obviously assume that G has no nontrivial locally finite normal
subgroups. Since the commutator subgroup of any finitely generated subgroup of G
is (locally finite)-by-nilpotent, G′ belongs to (LF)(LN) by Lemma 2.25 and hence G′

is torsion-free and locally nilpotent. Let E be any finitely generated subgroup of G
and let T be the unique maximal locally finite normal subgroup of E. Then E/T is
supersoluble and T ≤ ζ1(E), because T ∩ E′ = {1}. Therefore, E is supersoluble and G
is locally supersoluble. �

In the proof of Theorem 2.24, a major role is played by locally polytrivial modules
and hypertrivial modules. Here, this role is taken by locally paranilpotent modules and
their relations with hypercyclic modules.

The example just before Theorem 2.24 shows that hypercyclic modules need
not be locally paranilpotent, and in contrast to Lemma 2.23, we prove that locally
paranilpotent modules are not in general hypercyclic of height at most ω. To see this,
consider an uncountable free abelian group

A =
⊕

i∈I
〈ai〉

and let

G = Dr
i∈I
〈gi〉

be an elementary abelian 2-group acting on A according to the rules

aigi = −ai and aigj = ai if i � j.

Then A is a locally paranilpotent G-module which is hypercyclic of height
strictly larger than ω. However, it is straightforward to show that any locally
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paranilpotent module is at least hypercyclic, and this is enough to prove that (locally
finite)-by-(locally supersoluble) groups form a Hall class.

THEOREM 3.11. The class of all (locally finite)-by-(locally supersoluble) groups is a
Hall class.

PROOF. Let G be a group and let N be a nilpotent normal subgroup of G such
that G/N′ is (locally finite)-by-(locally supersoluble). Consider any finitely generated
subgroup E of G, so in particular EN/N is (locally finite)-by-supersoluble. Since
N/N′ is TG-by-(locally paranilpotent) as an E-module, it is also TG-by-hypercyclic.
The nilpotency of N and Corollary 3.6 yield that N (and so also EN) has an
EN-invariant series of finite length whose factors are either locally finite, or abelian
and hypercyclic as EN-modules. It follows now from Lemma 3.7 that EN is (locally
finite)-by-hypercyclic and so E is (locally finite)-by-supersoluble. Therefore, G is
(locally finite)-by-(locally supersoluble) by Lemma 3.10. �

A similar proof to that of Lemma 2.25 shows that the class of locally (finite-
by-supersoluble) groups is the intersection of the class of (locally finite)-by-(locally
supersoluble) groups with the class of locally (nilpotent-by-finite) groups. Thus,
locally (finite-by-supersoluble) groups form a Hall class by Theorem 3.11; a different
proof of this result is given in [7].

4. FC-nilpotency conditions

Let G be a group. The FC-centre of G is the characteristic subgroup FC1(G)
consisting of all elements of G with only finitely many conjugates, or equivalently
of those elements g ∈ G for which the centralizer CG(g) has finite index in G.
The upper FC-central series of G is the ascending characteristic series {FCα(G)}α
recursively defined by setting FC0(G) = {1},

FCα+1(G)/FCα(G) = FC1(G/FCα(G))

for each ordinal α and

FCλ(G) =
⋃
β<λ

FCβ(G)

if λ is a limit ordinal. The last term of the upper FC-central series of G is called
the FC-hypercentre of G, and G is said to be FC-hypercentral if it coincides with
its FC-hypercentre. Moreover, G is called FC-nilpotent if FCk(G) = G for some
nonnegative integer k. Of course, nilpotent-by-finite groups are FC-nilpotent and it is
known that any finitely generated FC-nilpotent group is nilpotent-by-finite (see [13]).
It follows that every FC-hypercentral group is locally FC-nilpotent and that the class of
locally FC-nilpotent groups coincides with that of locally (nilpotent-by-finite) groups.

In this section, we prove that (LF)Y is a Hall class, when Y is chosen to be one of
the classes of FC-nilpotent, FC-hypercentral or locally FC-nilpotent groups.
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Let G be a group. If A is a G-module and a is any element of A, we denote by Ga

the stabilizer of a in G, that is, the subgroup formed by all elements g ∈ G such that
ag = a. It is easy to see that the set FCG

1 (A), consisting of all elements a of A such that
the index |G : Ga| is finite, is a G-submodule of A. We can now define recursively the
upper FC-series {FCG

α (A)} of A by

FCG
0 (A) = {0}, FCG

α+1(A)/FCG
α (A) = FCG

1 (A/FCG
α (A))

for each ordinal α and

FCG
λ (A) =

⋃
β<λ

FCG
β (A)

if λ is a limit ordinal. The last term of this series is called the FCG-hypercentre of
A, and A is called hyper-FC if coincides with its FCG-hypercentre. Moreover, the
G-module A is said to be poly-FC if A = FCG

k (A) for some nonnegative integer k.
Since G-modules that are poly-FC and G-modules that are hyper-FC form tensorial

classes (see for instance [1]), an application of Lemma 2.1 yields the following result.

COROLLARY 4.1. If G is a group, the class of all G-modules that are TG-by-(poly-FC)
and the class of all G-modules that are TG-by-(hyper-FC) are tensorial.

To prove that (locally finite)-by-(FC-nilpotent) groups form a Hall class, it is
not possible to emulate the proof of Theorem 2.5 since there is no analogue of
Corollary 2.4 in this case. In fact, we now construct a group that is not (locally
finite)-by-(FC-hypercentral), although it is locally finite over its FC-centre.

Let H and K be groups and let N be a normal subgroup of K. Then H N K denotes
the split extension of the direct product B of copies HNk of H, where Nk runs over
K/N, and K permutes the copies HNk in the obvious way. In particular, N centralizes
the base group of H N K, which is B.

Let C1, C2, . . . , Cn, . . . be a countably infinite sequence of groups of order 2, and
set by induction Wn+1 = Cn+1 Wn for each nonnegative integer n, where W0 = {1};
moreover, let W be the direct limit of the groups Wn with the obvious inclusions.
Consider now an infinite dihedral group X = 〈x, y〉, where x has infinite order and
y2 = 1, and set G1 = X and A1 = 〈x〉. Suppose that we have constructed, for some
n ≥ 1, a group Gn containing a free abelian normal subgroup An of finite rank such
that Gn/An � Wn. Put Gn+1 = X AnGn and let An+1 = An × Bn+1, where Bn+1 denotes
the normal closure of 〈x〉 in Gn+1. Then An+1 is a free abelian normal subgroup of
finite rank of Gn+1 and Gn+1/An+1 � Wn+1.

Let G =
⋃

n Gn be the direct limit of the Gn, so A =
⋃

n An is a free abelian normal
subgroup of G and G/A � W is locally finite. For each positive integer k, the subgroup
Ak centralizes the base group of Gh for all h > k, and so every element of Ak has at
most |Wk | conjugates in Gh. It follows that A is contained in the FC-centre of G. If g
is any element of G \ A, there is a positive integer m such that g ∈ Gm \ Am and hence
there exists a in Am+1 with [a, g] � 1. Thus, CG(A) = A and so G has no nontrivial
periodic normal subgroups. Since G/A � W has no nontrivial finite normal subgroups
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(see for instance [17, Part 2, Theorem 6.23]), A coincides with the FC-hypercentre
of G. Consequently, G is locally finite over the FC-centre, but it is not (locally
finite)-by-(FC-hypercentral).

In contrast to the above example, we can at least prove that a result corresponding to
Corollary 2.4 holds in the case of modules. To this aim, we need the following result
that should be seen in relation with a well-known theorem of Mal’cev on the upper
central series of torsion-free groups (see for instance [17, Part 1, Theorem 2.25]).

LEMMA 4.2. Let G be a group and let A be a G-module that is torsion-free as an
abelian group. Then A/FCG

α (A) is torsion-free as an abelian group for each ordinal α.

PROOF. It is clearly enough to prove the statement when α = 1. Let a be any element
of A such that b = ka ∈ FCG

1 (A) for some positive integer k. If g belongs to the
stabilizer Gb, we have k(a(g − 1)) = b(g − 1) = 0 and hence a(g − 1) = 0 because A is
torsion-free as an abelian group. Thus, Ga = Gb has finite index in G, so a ∈ FCG

1 (A)
and hence A/FCG

1 (A) is torsion-free as an abelian group. �

COROLLARY 4.3. Let G be a group and let A be a G-module that is torsion-free as an
abelian group.

(a) If A has a finite series of G-submodules each of whose factors either belongs to
TG or is poly-FC, then A is poly-FC.

(b) If A has a finite series of G-submodules each of whose factors either belongs to
TG or is hyper-FC, then A is hyper-FC.

PROOF. We only prove part (a) because the same argument works also for part (b). Let

{0} = A0 < A1 < · · · < At = A

be a finite series of G-submodules of A such that, for each i = 0, 1, . . . , t − 1, the
G-module Ai+1/Ai either belongs to TG or is poly-FC. Clearly, A1 is poly-FC and
if T/A1 is the subgroup consisting of all elements of finite order of A/A1, it follows
from Lemma 4.2 that T is also poly-FC. Moreover, the G-module A/T is torsion-free
as an abelian group and so it is poly-FC by induction on t. Therefore, A is poly-FC
and the statement is proved. �

THEOREM 4.4. The class of all (locally finite)-by-(FC-nilpotent) groups is a Hall
class.

PROOF. Let G be a group and let N be a nilpotent normal subgroup of G such
that G/N′ is (locally finite)-by-(FC-nilpotent). To prove that G itself is (locally
finite)-by-(FC-nilpotent), we may suppose that G has no nontrivial locally finite
normal subgroups. Then it follows from Theorem 2.5 and Lemma 2.19 that G contains
a nilpotent normal subgroup M such that G/M′ is (locally finite)-by-(FC-nilpotent)
and G/M is FC-nilpotent, and of course M is torsion-free.

We claim that M is contained in FCk(G) for some nonnegative integer k. Consider
A = ζ1(M) as a G-module by conjugation. Since M/A is torsion-free (see for instance
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[17, Part 1, Theorem 2.25]), induction on the nilpotency class of M yields that M/A is
contained in some term with finite ordinal type of the upper FC-central series of G/A.
Moreover, M/M′ is TG-by-(poly-FC) as a G-module, and so it follows from Corollary
4.1 that A has a finite series of G-submodules each of whose factors is either in TG

or poly-FC. Thus, A is poly-FC by Corollary 4.3(a), so that A ≤ FCh(G) for some
integer h > 0 and hence the claim is proved.

Since M ≤ FCk(G) and G/M is FC-nilpotent, it follows that G is FC-nilpotent and
the proof is complete. �

The same argument, essentially replacing poly-FC by hyper-FC and part (a) of
Corollary 4.3 by part (b), allows us to prove the following.

THEOREM 4.5. The class of all (locally finite)-by-(FC-hypercentral) groups is a Hall
class.

The final result of this section shows that (LF)(L(NF)) is a Hall class. Notice that
obviously, if G is a group and A is a G-module that is locally poly-FC, then A is also
hyper-FC (although, as in the case of locally paranilpotent modules, it is not difficult
to see that hyper-FC modules are not in general locally poly-FC).

THEOREM 4.6. The class of all (locally finite)-by-(locally FC-nilpotent) groups is a
Hall class.

PROOF. Let G be a group and let N be a nilpotent normal subgroup of G such that
G/N′ is (locally finite)-by-(locally FC-nilpotent). To prove that G itself is (locally
finite)-by-(locally FC-nilpotent), we may obviously suppose that G has no nontrivial
locally finite normal subgroups. Thus, Theorem 2.5 and Lemma 2.19 yield that G
contains a nilpotent normal subgroup M such that G/M′ is (locally finite)-by-(locally
FC-nilpotent) and G/M is locally FC-nilpotent; of course, M is torsion-free.

Consider now any finitely generated subgroup E of G, so in particular the group
EM/M is FC-nilpotent. Since M/M′ is TE-by-(locally poly-FC) as an E-module,
it is also TE-by-(hyper-FC). The nilpotency of M and Corollary 4.1 yield that M
has an EM-invariant series of finite length whose factors are either locally finite, or
torsion-free abelian and hyper-FC as EM-modules.

It follows now from Corollary 4.3 that each factor of the upper central series of M is
hyper-FC as an EM-module. Thus, M is contained in the FC-hypercentre of EM and
so EM is FC-hypercentral. In particular, E is nilpotent-by-finite and hence G is locally
FC-nilpotent. �

5. Solubility and rank conditions

In this short section, we deal with group classes of the form (LF)Y, where Y is
either a class of generalized soluble groups or a class of groups satisfying suitable
rank conditions. To avoid the repetition of the same argument, we prove the following
general lemma, which is of independent interest.
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LEMMA 5.1. Let X and Y be group classes such that X = SnX and NY = Y. If XN is a
Hall class, then XY is also a Hall class.

PROOF. Let G be a group and let N be a nilpotent normal subgroup of G such that
G/N′ belongs to XY, so G has a normal subgroup M with N′ ≤ M, M/N′ ∈ X and
G/M ∈ Y. Thus, MN/N′ ∈ XA and hence MN belongs to the Hall class XN. Let L be a
normal X-subgroup of MN such that MN/L is nilpotent and let c be a positive integer
with γc(MN) ≤ L. Then X = γc(MN) ∩M is a normal subgroup of G that belongs to
X = SnX. Moreover, G/X belongs to NY = Y and hence G is in XY. Therefore, XY is
a Hall class. �

By Theorem 2.5, the above lemma applies in particular to X = LF when either
Y = S or Y = LS, but also if Y is the class ṔnA consisting of all hyperabelian groups.

THEOREM 5.2. The group classes (LF)S, (LF)(ṔnA) and (LF)(LS) are Hall classes.

The fact that (LF)S is a Hall class can be stated in a quantitative way, by using
Theorem 2.6 in the proof of Lemma 5.1.

As a further consequence of Theorem 2.5, we have the following easy result
concerning the class Nk of soluble groups admitting a finite normal series with
nilpotent factors of length at most k.

THEOREM 5.3. The class (LF)Nk is a Hall class for each positive integer k.

PROOF. By Theorem 2.5, the statement is true if k = 1. Suppose k > 1 and let G be a
group containing a nilpotent normal subgroup N such that G/N′ ∈ (LF)Nk. Then G/N′

has a normal subgroup M/N′ ∈ (LF)Nk−1 such that G/M is nilpotent. Since k > 1, the
group MN/N′ belongs to the class (LF)Nk−1 by Fitting’s theorem; whence MN lies in
(LF)Nk−1 by induction on k. Therefore, G ∈ (LF)Nk and the statement is proved. �

In the second half of this section, we deal with group classes defined by the
imposition of a rank condition. We start by recalling the necessary definitions.

Recall that a group G is said to have finite (Prüfer) rank if there is a positive integer
r such that every finitely generated subgroup of G can be generated by r elements. Of
course, the tensor product of two abelian groups of finite rank has finite rank (see for
instance [22, Lemma 10]) and hence the class of groups of finite rank is easily seen to
be a Hall class.

Let A be an abelian group. The 0-rank r0(A) of A is defined as the rank of the
torsion-free group A/T , where T is the periodic part of A; moreover, for each prime p,
the p-rank rp(A) of A is the rank of the p-component of A. Of course, A has finite rank
if and only if

sup{r0(A), rp(A) | p a prime} < ∞.

We say that A has finite total rank if

r0(A) +
∑

p

rp(A) < ∞.
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A group G is said to have finite abelian section rank if every abelian section of G has
finite 0-rank and finite p-rank for all primes p. Moreover, G has finite abelian total rank
if it admits a series of finite length each of whose infinite factors is an abelian group of
finite total rank; of course, every group of finite abelian total rank is soluble-by-finite
and has finite rank, while any torsion-free nilpotent group of finite rank has finite
abelian total rank, because all factors of its upper central series are torsion-free. Notice
that the class of groups with finite abelian total rank is not quotient-closed, since Q/Z
is the direct product of infinitely many Prüfer groups; however, if G is a group with
finite abelian total rank and N is a periodic normal subgroup of G, it is easy to see that
G/N also has finite abelian total rank.

If G is a group, in the following, we denote by RG the class of all G-modules that
have finite rank as abelian groups. Our next result is an application of Lemma 2.1.

COROLLARY 5.4. If G is a group, the class of all G-modules that are TG-by-RG is
tensorial.

The following result is well known (and even trivial in the abelian case), so for
completeness, we only sketch its proof.

LEMMA 5.5. Let G be a group admitting a normal series of finite length whose factors
are either locally finite or abelian of finite rank. Then G contains a locally finite normal
subgroup T such that G/T has finite rank.

PROOF. By induction, it is enough to prove the statement when G contains a
torsion-free abelian normal subgroup A of finite rank such that G/A is locally finite.
Then C = CG(A) has finite index in G because periodic linear groups over the field
of rational numbers are finite (see for instance [20, Theorem 9.33]). Moreover, C′ is
locally finite by Schur’s theorem and the abelian group C/C′ is periodic-by-(finite
rank), which completes the proof. �

THEOREM 5.6. The class of all (locally finite)-by-(finite rank) groups is a Hall class.

PROOF. The proof runs along the same lines as that of Theorem 2.17, just replacing
Engel modules by modules whose underlying group has finite rank, and using
Corollary 5.4 and Lemma 5.5. �

We point out that since periodic subgroups of GL(n,Q) are finite and their order
is bounded in terms of n, a slight modification of Lemma 5.5 allows us to obtain a
quantitative version of Theorem 5.6.

THEOREM 5.7. The class of all (locally finite)-by-(finite abelian total rank) groups is
a Hall class.

PROOF. Let G be a group and let N be a nilpotent normal subgroup of G such that
G/N′ contains a locally finite normal subgroup L/N′ with G/L of finite abelian total
rank. We may obviously assume that G has no nontrivial locally finite normal sub-
groups, so in particular G has finite rank by Theorem 5.6. Let c be the nilpotency class
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of the torsion-free nilpotent group N′. For each nonnegative integer i < c, we have that
ζi+1(N′)/ζi(N′) is torsion-free abelian of finite rank and hence L/CL(ζi+1(N′)/ζi(N′)) is
finite (see [20, Theorem 9.33]). Thus, the normal subgroup

C =
c−1⋂
i=0

CL(ζi+1(N′)/ζi(N′))

has finite index in L, so G/C has finite abelian total rank. Since N′ ≤ ζc(C), the group
C/ζc(C) is locally finite and hence C is torsion-free nilpotent (see [17, Part 1, Corollary
2 to Theorem 4.21]). It follows that C has finite abelian total rank and hence G also has
finite abelian total rank. The statement is proved. �

THEOREM 5.8. The class of all (locally finite)-by-(finite abelian section rank) groups
is a Hall class.

PROOF. Let G be a group containing a nilpotent normal subgroup N such that G/N′

is (locally finite)-by-(finite abelian section rank). We may suppose by Lemma 2.19
that G/N has finite abelian section rank. Of course, it can also be assumed that N is
torsion-free. Since N/N′ is (locally finite)-by-(finite abelian total rank), it follows from
Theorem 5.7 that N has finite abelian total rank. Therefore, G has finite abelian section
rank and the statement is proved. �

6. Obstructions of finite exponent

In the previous sections, we proved that (LF)X is a Hall class for several natural
choices of the group class X. It is therefore natural to ask what happens when LF is
replaced by its subclass B consisting of all locally finite groups of finite exponent. In
dealing with this problem, the role played by Schur’s theorem in the case of locally
finite obstructions is taken by the following result of Mann [12].

LEMMA 6.1. Let G be a group such that G/ζ1(G) is locally finite of finite exponent e.
Then G′ has finite exponent bounded by a function of e.

If k is any positive integer and A is an abelian group of exponent k, the tensor
product A ⊗Z B has exponent dividing k for every abelian group B. Thus, the proof of
Lemma 2.1 can be used to prove the following result, where B(k)

G denotes the class of
all G-modules whose underlying group has finite exponent dividing k.

LEMMA 6.2. Let G be a group and let M be a quotient-closed, tensorial class of
G-modules. Then for each positive integer k, the class of all G-modules that are
B(k)

G -by-M is tensorial.

If G is a group andM is a class of G-modules, we denote by PM the class of all
G-modules A admitting a finite series of G-submodules

{0} = A0 < A1 < · · · < At = A
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such that Ai+1/Ai belongs toM for each i = 0, 1, . . . , t − 1. The G-modules in the class
PM are called poly-M.

LEMMA 6.3. Let G be a group and let M be a class of G-modules that is closed
with respect to forming G-submodules. If A is a G-module and B is a G-submodule
of A such that B ∈ M and A/B ∈ B(k)

G for some positive integer k, then there exists a
G-submodule C of A with C ∈ B(k)

G and A/C ∈ M.

PROOF. Clearly, kA ≤ B and so kA ∈ M. Since the map ϕ : a �→ ka is a G- homomor-
phism of A onto kA, it follows that the kernel C of ϕ is a G-submodule of A whose
exponent as an abelian group divides k and the G-module A/C is inM. �

The above lemma and a simple induction argument prove the following result.

COROLLARY 6.4. Let G be a group and letM be a class of G-modules that is closed
with respect to forming G-submodules. If k is a positive integer and A is a G-module
admitting a series of G-submodules of finite length t each of whose factors belongs
to B(k)

G ∪M, then there exists a G-submodule C of A such that C ∈ B(kt)
G and A/C is

poly-M.

A crucial point in our considerations is to prove that BN is a Hall class.

LEMMA 6.5. Let G be a group and let N be a normal subgroup of G. If N has a finite
G-invariant series each of whose factors is either in B or central in G, then there is a
positive integer k such that [N,k G] belongs to B.

PROOF. Let

{1} = N0 < N1 < · · · < Nt = N

be a finite G-invariant series of minimal length t such that for each nonnegative
integer i < t, Ni+1/Ni either belongs to B or is central in G. By induction, there is a
positive integer h such that M/N1 = [N,h G]N1/N1 ∈ B, and without loss of generality
we may suppose that N1 ≤ ζ1(G). Then the group M/ζ1(M) is locally finite of finite
exponent and so by Lemma 6.1, M′ also lies in B. Application of Lemma 6.3 to the
G-module M/M′ whenM is the class of all trivial G-modules yields that M contains
a G-invariant subgroup L ≥ M′ of finite exponent such that M/L ≤ ζ1(G/L). Thus,
[N,h+1 G] ≤ [M, G] ≤ L has finite exponent and the statement is proved. �

COROLLARY 6.6. A group G is B-by-nilpotent if and only if it has a normal series of
finite length each of whose factors either belongs to B or is central in G.

THEOREM 6.7. The class BN is a Hall class.

PROOF. It is enough to reproduce the proof of Theorem 2.5, replacing Lemma 2.1 by
Lemma 6.2 and Corollary 2.4 by Corollary 6.6. �

COROLLARY 6.8. The group classes BS, B(ṔnA) and B(LS) are Hall classes.
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PROOF. Since BN is a Hall class by Theorem 6.7, the statement follows directly from
Lemma 5.1 by choosing X = B and Y as one of the classes S, ṔnA, LS. �

COROLLARY 6.9. The class BNk is a Hall class for each positive integer k.

PROOF. The case k = 1 is just Theorem 6.7. Suppose k > 1 and let G be a group
containing a nilpotent normal subgroup N such that G/N′ ∈ BNk. Then there is a
normal subgroup M/N′ of G/N′ such that G/M ∈ N and M/N′ ∈ BNk−1. Since k > 1,
Fitting’s theorem yields that MN/N′ belongs to BNk−1, so MN lies in BNk−1 by
induction. It follows that G ∈ BNk and so the statement is proved. �

Our next theorem shows that the class B behaves better that F and LF, at least in
our context. If e is any positive integer, we denote byBe the class of all groups of finite
exponent dividing e, so B =

⋃
eBe.

THEOREM 6.10. The class BY is a Hall class, where Y is any of the following classes
of groups:

(a) the class of finitely generated nilpotent groups;
(b) the class of hypercentral groups;
(c) the class of locally nilpotent groups;
(d) the class of Engel groups;
(e) the class of supersoluble groups;
(f) the class of paranilpotent groups;
(g) the class of hypercyclic groups;
(h) the class of locally supersoluble groups;
(i) the class of FC-nilpotent groups;
(j) the class of FC-hypercentral groups;
(k) the class of locally FC-nilpotent groups.

PROOF. LetY be any of the classes considered in the statement and let N be a nilpotent
normal subgroup of a group G such that G/N′ belongs toBY. It follows from Theorem
6.7 and Lemma 2.19 that G contains a normal subgroup M such that G/M′ is in BY,
G/M is in Y and γk(M) has finite exponent for some positive integer k. To prove that
G itself is in BY, we may factor out γk(M) and so assume that M is nilpotent.

Put A = ζ1(M), so G/A ∈ BY by induction on the nilpotency class of M. If K/A is
a normal B-subgroup of G/A such that G/K ∈ Y, we have that G/B is also a Y-group,
where B = M ∩ K. Since A ≤ ζ1(B), it follows from Lemma 6.1 that B′ belongs to B,
so the replacement of G by G/B′ allows us to assume that B is abelian.

We complete the proof only for parts (b), (c) and (h) since all other statements can
be proved in similar ways.

Let Y be the class of hypercentral groups. Since M/M′ is BG-by-hypertrivial as a
G-module, it follows from Lemma 6.2 that M has a finite G-invariant series each of
whose factors is either in B or hypercentrally embedded in G. Thus, the G-module
B has a finite series of G-submodules each of whose factors either belongs to BG or
is hypertrivial and hence it contains a G-submodule C such that C ∈ BG and B/C is
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hypertrivial by Corollary 6.4. Of course, C is a normal subgroup of finite exponent of
G and G/C is hypercentral. This completes the proof of part (b).

Suppose now that Y = LN and let e be a positive integer such that G/M′

belongs to Be(LN). Consider any finitely generated subgroup E of G. Since M/M′

is B(e)
E -by-(locally polytrivial) as an E-module, it follows from Lemma 6.2 that the

lower central factor γi(M)/γi+1(M) likewise is a B(e)
E -by-(locally polytrivial) E-module

for each positive integer i ≤ c, where c is the nilpotency class of M. Thus, the
E-module B has a series of E-submodules of length at most c each of whose factors
is B(e)

E -by-(locally polytrivial). Since locally polytrivial E-modules are hypertrivial by
Lemma 2.23, an application of Corollary 6.4 yields that B contains an E-invariant
subgroup C such that B/C is hypercentrally embedded in EB/C and C has finite
exponent dividing h = e2c. Of course, EB/C is locally nilpotent and we also have
C ≤ B[h] = {b ∈ B | bh = 1}, so that EB[h]/B[h] is nilpotent and G/B[h] is locally
nilpotent. Therefore, G ∈ B(LN).

Finally, if Y is the class of locally supersoluble groups, the proof runs along
the same lines as part (c), just replacing locally polytrivial G-modules and hyper-
trivial G-modules by locally paranilpotent G-modules and hypercyclic G-modules,
respectively; note that a group is locally supersoluble if and only if it is locally
hypercyclic. �

To complete our analysis of classes of the form BY, where Y is a class of
generalized nilpotent groups, we need some additional definitions.

Let G be a group and let A be a G-module. We say that A is a Baer G-module if A
is a polytrivial 〈g〉-module for each element g of G. Similarly, A is called a Gruenberg
G-module if it is hypertrivial as a 〈g〉-module for every g ∈ G. Finally, A is said to be
a Fitting G-module if it is polytrivial as a 〈g〉G-module for each g ∈ G. Of course, the
classes of Fitting, Baer and Gruenberg G-modules are closed with respect to forming
submodules, quotient modules and extensions; our next lemma shows that these classes
are also tensorial.

LEMMA 6.11. If G is any group, the class of Fitting G-modules, the class of Baer
G-modules and the class of Gruenberg G-modules are tensorial.

PROOF. Let A and B be Fitting (respectively Baer or Gruenberg) G-modules, and
consider an arbitrary element g of G. Since A and B are polytrivial 〈g〉G-modules
(respectively polytrivial 〈g〉-modules or hypertrivial 〈g〉-modules), also the tensor
product A ⊗Z B is a polytrivial 〈g〉G-module (respectively polytrivial 〈g〉-module
or hypertrivial 〈g〉-module). Therefore, A ⊗Z B is a Fitting (respectively Baer or
Gruenberg) G-module and the statement is proved. �

The following results add some further Hall classes to the list given in Theorem
6.10.

THEOREM 6.12. The class BY is a Hall class, where Y is one of the following classes
of groups:
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(l) the class of Fitting groups;
(m) the class of Baer groups;
(n) the class of Gruenberg groups.

PROOF. We only prove the statement for Fitting groups, since the other cases can be
proved in a similar fashion. Let G be a group containing a nilpotent normal subgroup
N such that G/N′ is B-by-Fitting. As in the first part of the proof of Theorem 6.10, we
may reduce to the case in which N contains an abelian G-invariant subgroup B such
that G/B is a Fitting group. Since N/N′ isBG-by-Fitting as a G-module, it follows from
Lemma 6.2 that N has a finite G-invariant series each of whose factors either is in B
or is an abelian group that is a Fitting G-module by conjugation. Thus, the G-module
B has a finite series of G-submodules each of whose factors either belongs to BG or
is a Fitting G-module. It follows from Corollary 6.4 that B contains a G-submodule C
such that C ∈ BG and B/C is a Fitting G-module.

If g is any element of G, we have that B/C is a polytrivial 〈g〉G-module, while
〈g〉GB/B is nilpotent because G/B is a Fitting group; thus, 〈g〉GC/C is nilpotent. It
follows that G/C is a Fitting group and hence G is B-by-Fitting. �

THEOREM 6.13. The class BY is a Hall class, where Y is one of the following classes
of groups:

(o) the class of groups of finite rank;
(p) the class of groups with finite abelian section rank.

PROOF. The proof is similar to that of part (b) of Theorem 6.10. �

Our results seem to show that obstructions of finite exponent can be treated more
easily than locally finite ones. However, this is not always true, as proved by the class of
groups with finite abelian total rank. In fact, let T = Tr(2,Q) be the group of all lower
triangular matrices of degree 2 over the rationals and consider its central subgroup Z
generated by the matrix (

1 0
1 1

)
.

Then G = T/Z is a nilpotent group such that G/G′ � Q × Q and G′ is the direct product
of infinitely many Prüfer groups. It follows that B-by-(finite abelian total rank) groups
do not form a Hall class. This anomaly depends essentially on the fact that the class of
groups with finite abelian total rank is not quotient-closed.

The results of this section fail to be true if the class B is replaced by the class
B consisting of all groups of finite exponent. Actually, it was proved by Endimioni
and Traustason [9] that there exists a group G having a nilpotent normal subgroup N
such that G/N′ ∈ BA, but G is not even in B(LS); in particular, BN is not a Hall
class. Moreover, the replacement in their example of the Adjan group by the group
constructed in [14, Theorem 31.4] shows that in Theorem 6.13, the class B cannot be
replaced by the class B .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1446788723000071
Downloaded from https://www.cambridge.org/core. IP address: 3.147.193.211, on 01 Oct 2024 at 19:19:12, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1446788723000071
https://www.cambridge.org/core


42 F. de Giovanni, M. Trombetti and B. A. F. Wehrfritz [27]

As we did in the case of a locally finite obstruction at the bottom, one can
slightly modify the proofs to obtain quantitative versions of Theorems 6.7, 6.13(o)
and Corollary 6.8 (for the class BS). For instance, we have the following result.

THEOREM 6.14. Let G be a group and let N be a normal subgroup of G. If N is
nilpotent of class c and G/N′ is (of finite exponent e)-by-(nilpotent of class d), then
there exist positive integers h and k, depending only on c, d and e, such that G is (of
exponent at most h)-by-(nilpotent of class at most k).

It is reasonable to ask whether analogues of Corollary 6.6 can be proved for other
group classes of the form BY, since results of this type would provide alternative
proofs for some of the theorems in this section. Our final result shows that, for instance,
this is the case when Y is the class of paranilpotent groups.

LEMMA 6.15. Let G be a group and let M be a class of G-modules that is closed
with respect to forming G-submodules and G-homomorphic images, contains all trivial
G-modules and satisfies the condition M(g − 1) = {0} for each M ∈ M and g ∈ G′. If
N is a normal subgroup of G admitting a finite G-invariant series whose factors are
either inB or G-modules inM, then there exists a G-invariant subgroup B of N of finite
exponent such that N/B has a finite G-invariant series whose factors are G-modules
inM.

PROOF. Let

{1} = N0 < N1 < · · · < Nt = N

be a finite G-invariant series of minimal length t such that each Ni+1/Ni is either in
B or a G-module in M. By induction, there exists a G-invariant subgroup M ≥ N1
of N such that M/N1 is in B and N/M has a finite G-invariant series whose factors
are G-modules in M. Thus, we may suppose that N1 is a G-module in M, and in
particular that G′ centralizes N1. Consider the normal subgroup X = (M ∩ G′)N1 of G.
Clearly, N1 ≤ ζ1(X), so X/ζ1(X) ∈ B and hence also X′ belongs to B by Lemma 6.1.
Application of Lemma 6.3 to the G-module X/X′ and to the classM yields that X/X′

contains a B-subgroup B/X′ that is normal in G and such that X/B belongs to M.
Since M/X is a central factor of G, it follows that N/B has a finite G-invariant series
whose factors are either in B or G-modules inM. Of course, B ∈ B and so the proof
is complete. �

COROLLARY 6.16. A group G is B-by-paranilpotent if and only if it has a normal
series of finite length whose factors are either in B or paracentral in G.
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