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Abstract

The life distribution of a device subject to shocks governed by a homogeneous Poisson
process is shown to have a bathtub failure rate average (BFRA) when the probabili-
ties P̄k of surviving k shocks possess the corresponding discrete property. We prove
closure under the formation of weak limits for BFRA distributions and explore related
moment convergence issues within the BFRA family. Similar results for increasing and
decreasing failure rate average distributions are obtained either independently or as
consequences of our results. We also establish some results outlining the positions of
various non-monotonic ageing classes such as bathtub failure rate, increasing initially
then decreasing mean residual life, new worse then better than used in expectation, and
increasing initially then decreasing mean time to failure in the hierarchy. Finally, an open
problem is posed and a partial solution provided.
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1. Introduction

Usually, ageing is the process of ‘growing up’ and ‘growing old’ for mechanical devices or
biological systems. It begins at birth and ends with death. In reliability theory, the term ageing
of a system with a lifetime distribution implies that the residual life of the system is affected
by its age in some probabilistic sense. This interpretation allows cases in which a system may
typically face positive ageing, negative ageing, or no ageing.

In ‘positive ageing’, the age of the system has an adverse effect on the residual lifetime,
i.e. the residual lifetime of the system decreases in some probabilistic sense with increase in
age. This type of ageing pattern is the most common, since the majority of systems experience
gradual wear and tear under usual operating conditions. ‘Negative ageing’ describes the oppo-
site beneficial effect on the life of the unit as age progresses. In fact, negative ageing is the dual
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of positive ageing. ‘No ageing’ is equivalent to saying that the age of the system has no effect
on the distribution of its residual lifetime.

Monotonic ageing is the phenomenon where the pattern of ageing remains the same during
the entire lifespan of a system. Interestingly enough, in many practical situations the ageing
pattern happens to be non-monotonic, typically characterized by a ‘burn-in phase’ (negative
ageing), a useful life phase (no ageing), and finally a ‘wear-out phase’ (positive ageing). A
well-known example is that of human beings, where ageing is beneficial during infancy and
young adulthood, i.e. a person becomes stronger with increase in age, and subsequently the
reverse phenomenon of gradual degeneration is observed. This is also the case with mechanical
systems that may have a high initial failure probability due to design or manufacturing errors,
but after some point of time the system improves its performance due to work hardening (see
[1, 58]). Moreover, in this context, [25] gave two real-life examples: (i) [42] found in a study
of curability of breast cancer that the peak of mortality occurred after about three years and
then declines slowly; (ii) [11] analyzed lung cancer data from the Veterans Administration,
presented in [54], and showed that the empirical failure rates for both low and high potassium
sulfide groups are non-monotonic. So the modelling of these types of phenomena necessitates
the use of various non-monotonic ageing families of life distributions. The specific time point
where the ageing profile changes trend is called a change point or turning point of that family.
Attempts to model such scenarios have led to several non-parametric classes of distributions
such as bathtub failure rate (BFR) [23], increasing initially then decreasing mean residual
life (IDMRL) [24], new worse then better than used in expectation (NWBUE) [47], increasing
initially then decreasing mean time to failure (IDMTTF) [27] etc. [46] observed a trend change
in the failure rate average which results in the family of bathtub failure rate average (BFRA)
distributions, subsequently developed and studied in detail in [12].

At this juncture, we recall some basic notation and definitions in the context of BFRA
distributions. Suppose that the lifetime of a system (or a component thereof) is represented by
a random variable X with cumulative distribution function F(x) and survival function F̄(x) :=
1 − F(x).

Definition 1.1. The failure rate average function of a life distribution F is defined by r(x) =
−(ln F̄(x))/x, x > 0.

If F is absolutely continuous with respect to the Lebesgue measure on the real line, then
r(x) = (1/x)

∫ x
0 h(u) du, where h(u) = f (u)/F̄(u) is called the hazard rate of F and f denotes the

probability density function of F.

Definition 1.2. A life distribution F is said to be a BFRA distribution if there exists a point
x0 ≥ 0 such that the failure rate average function r(x) is non-increasing on (0, x0) and non-
decreasing on [x0, ∞). The point x0 is referred to as a turning point (or change point) of F in
the BFRA sense.

In this case, we write F is BFRA(x0). For x0 = 0, the BFRA class reduces to increasing
failure rate average (IFRA). We also include all decreasing failure rate average (DFRA) distri-
butions in the BFRA class by adopting the notion that a BFRA distribution having ‘a change
point at infinity’ is in fact DFRA. The upside-down bathtub failure rate average (UBFRA)
class, which is the dual of the BFRA class, can be obtained in an obvious way by reversing
the monotonicity in the above definition. Note that r(x) = R(x)/x, where R(x) = − log F̄(x) is
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the hazard function of F. Singpurwalla [56] referred to this hazard function as ‘hazard poten-
tial’ and provided an innovative interpretation of it. Moreover, another equivalent condition for
BFRA distributions can be written as ‘F̄(x)1/x is non-decreasing on (0, x0) and non-increasing
on [x0, ∞)’.

Failure rate average (FRA) is a very important fundamental concept in reliability and sur-
vival analysis (see [8, 41]). The IFRA class of distributions, first introduced in [16], generalizes
the increasing failure rate (IFR) family and is equivalent to the class of distribution functions
where R(x) is star-shaped. The class of IFRA distributions is the smallest ageing class that is
closed under the formation of coherent structures and contains the limiting case of no wear
(see [16]). Further, this class arises from the cumulative damage shock model when a device is
subjected to shocks driven by a Poisson process (see [21, 22]). Tests of exponentiality against
nonexponential IFRA distributions have been proposed by several authors [5, 37, 39, 43, 57,
59]. [46] and [12] both showed that if a twice-differentiable life distribution function F is
BFR(t0), then F is BFRA(x0) where x0 ≥ t0. The relationship between the discrete versions of
BFR and BFRA was also given in [45]. [12] proposed a non-parametric test of exponential-
ity against BFRA alternatives by assuming that the proportion of early failures is known, and
investigated the closure of BFRA property under some reliability operations.

Throughout the paper, we follow the convention that ‘increasing’ (‘decreasing’) means
‘non-decreasing’ (‘non-increasing’).

The rest of the paper is organized as follows. Section 2 extends the results of [22], specif-
ically in the context of the BFRA class of life distributions. Shock model theory is developed
when the shock survival probabilities P̄k are discrete BFRA and the shock arrivals follow
a homogeneous Poisson process. The BFRA property of the discrete failure distribution Pk

is shown to be reflected as the BFRA property of H̄(t). Section 3 deals with closure under
weak convergence within the BFRA family and, as a consequence, we obtain closure under
the formation of weak limits within the IFRA (DFRA) family. Moreover, the relation between
convergence of moment sequences and weak convergence within BFRA and IFRA classes
is explored. Further, we show that these connections are not meaningful in the context of
UBFRA and DFRA distributions. In Section 4, we prove that the BFRA class of distribu-
tions contains all BFR distributions. Further, we establish some results to investigate the
interrelationships among well-known non-monotonic ageing families. Finally, we conclude
by suggesting possible avenues of future work, and also pose an interesting open problem in
this area.

2. Shock model theory

We focus on a system where failure is caused by a sequence of shocks occurring ran-
domly in time according to a counting process {N(t) : t ≥ 0}. Let the system have a probability
P̄k of surviving the first k shocks, k = 0, 1, 2, . . . , where the P̄k satisfy the inheritance con-
dition 1 = P̄0 ≥ P̄1 ≥ P̄2 ≥ · · · , and

∑∞
i=0 P̄i = γ < ∞, i.e. the expected number of shocks

required to cause failure of the system is finite. Assume that only the shocks are responsi-
ble for failure, and constant wear and tear is completely absent. Then, using a conditioning
argument, the probability H̄(t) that the system will survive beyond time t may be written as
H̄(t) = ∑∞

k=0 P[N(t) = k]P̄k. Now, this can be written as

H̄(t) =
∞∑

k=0

e−λt (λt)k

k! P̄k (2.1)
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when the shock arrivals follow a homogeneous Poisson process with intensity λ > 0. A shock
model of this kind was considered in [22] for the first time in the context of ageing scenarios.
‘Shocks’ can be interpreted as claims, the technical reasons for failure in a running machine,
or the cause of deterioration of a biological organ. Thus, the Poisson shock model has various
applications in several fields, including risk, survival, and reliability analysis (see [51] and the
references therein). In the vast literature concerning shock model theory, [3, 17, 19, 20, 40, 53,
55] and others are important. Thus, it is relevant to investigate the origin of the ageing class
under consideration via discrete survival probabilities.

In reliability shock models, for the discrete distribution Pk, k = 0, 1, 2, . . . , most research
tries to establish that properties of Pk are reflected in corresponding properties of the continu-
ous life distribution H(t). This is shown in [22] for ILR, IFR, IFRA, DMRL, NBU, and NBUE
classes, [35, 38] for HNBUE and L classes, [18] for strong increasing failure rate and SNBU,
and [2] for NBUFR and NBAFR. For non-monotonic ageing scenarios, [49] first proved such
results in the context of NWBUE and BFR classes. Analogous results have been established
in [4, 32] in the context of the IDMRL and IDMTTF distribution families. For a more detailed
overview, see [50] and the references therein.

In this section we establish the corresponding results for BFRA classes of life distribu-
tions, which remains unexplored. The following definition introduces the notion of the discrete
version of the BFRA property.

Definition 2.1. The sequence {P̄k, k = 0, 1, . . . } is said to have the discrete BFRA (D-BFRA)
property if there exists k0 ≥ 0 such that P̄k

1/k is increasing in k for k < k0 and decreasing in k
for k ≥ k0.

At the outset, we recapitulate some results of total positivity theory and establish two
lemmas before going on to prove the main result in this section.

Lemma 2.1. Consider a function φ : [a, b) → (0, 1] where a, b ∈ [0, ∞). Then φ(s)1/s is
increasing (decreasing) in s if, for every c ≥ 0, φ(s) − e−cs has at most one change of sign,
and if one change occurs, it occurs in the order −, + (+, −).

Proof. Let s1, s2 ∈ [a, b), s1 < s2. We want to show that φ(s1)1/s1 ≤ φ(s2)1/s2 , i.e.
(1/s1) log (φ(s1)) ≤ (1/s2) log (φ(s2)), i.e. g(s1)/s1 ≥ g(s2)/s2 where g(s) = − log (φ(s)). Let
c1 = g(s1)/s1 and c2 = g(s2)/s2. Suppose that, for every c ≥ 0, φ(s) − e−cs has at most one
change of sign, from − to + if one occurs. So, in particular, this happens for c1 and c2. Thus,
log (φ(s)) + cis has at most one change of sign from − to + for i = 1, 2, i.e. cis − g(s) has at
most one change of sign − to + if one occurs for i = 1, 2. Now, by choice of c1 and c2, we
have g(s) ≤ cis for s ≤ si and g(s) ≥ cis for s > si. If possible, let c1 = g(s1)/s1 < g(s2)/s2 = c2.
Then, for s1 < s < s2, g(s) ≤ c1s as s > s1, g(s) < c2s as c1 < c2, and g(s) ≤ g(s) as s < s2,
which is a contradiction. So φ(s)1/s is increasing in s. The proof for the ‘decreasing’ case
is analogous. �

Lemma 2.1 shows the characterization of monotonicity of φ(s)1/s in terms of the sign
changes. Before proceeding further, we recall the definition of a totally positive function and
an important theorem of Karlin ([29, p. 21]).

Definition 2.2. Let X, Y ⊆R. A function L : X × Y →R is called a totally positive function of
order n (TPn) if, for every i = 1, 2, . . . , n,
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∣∣∣∣∣∣∣∣∣∣∣

L(s1, t1)L(s1, t2). . .L(s1, ti)

L(s2, t1)L(s2, t2). . .L(s2, ti)

...
...

. . .
...

L(si, t1) L(si, t2) . . .L(si, ti)

∣∣∣∣∣∣∣∣∣∣∣
≥ 0,

where s1 < s2 < · · · < si (sj ∈ X, j = 1, 2, . . . , i) and t1 < t2 < · · · < ti (tj ∈ Y , j = 1, 2, . . . , i).

Definition 2.3. A function L is called totally positive (TP) when L is TPn for every n ≥ 1.

Consider a subset {xi | 1 ≤ i ≤ m} of R and let S−(x1, x2, . . . xm) be the number of sign
changes in x1, x2, . . . xm ignoring zero terms. Let Q be an ordered subset of R and g : Q →R

be a function. Define S−(g) := supy1<y2<···<ym∈Q S−(g(y1), g(y2), . . . , g(ym)).
Let L(x, y) defined on X × Y be Borel measurable, and assume for simplicity that the integral∫

Y L(x, y) dμ(y) exists for every x in X. Here, μ represents a fixed sigma-finite regular measure
defined on Y such that μ(U) > 0 for each open set U for which U ∩ Y is non-empty.

Theorem 2.1. Let L(x, y) be TPr on X × Y. Let g be a bounded Borel-measurable function on
Y. Let the transformation f (x) = ∫

Y L(x, y)g(y) dμ(y) be finite for each x on X. Then S−(f ) ≤
S−(g) provided S−(g) ≤ r − 1. Moreover, if S−(f ) = S−(g) ≤ r − 1, then g and f exhibit the
same sequence of signs when their respective arguments traverse the domain of definition from
left to right.

Theorem 2.1 is called the variation diminishing property (VDP) of TP functions; see [29,
Chapter 5] for a proof. The following main theorem demonstrates that H̄(t) inherits the BFRA
property if the sequence {P̄k, k ≥ 0} possesses the discrete BFRA property.

Theorem 2.2. Let the sequence {P̄k, k ≥ 0} possess the D-BFRA property. Then H̄(t) defined
in (2.1) is BFRA.

Proof. Let η ∈ [0, 1]. Now, from Definition 2.1, as P̄1/k
k is increasing in k for k < k0 and

P̄1/k
k is decreasing in k for k ≥ k0 for some k0 ∈N, P̄k − ηk has at most two sign changes in the

direction −, +, −. Now,

H̄(t) − e−(1−η)λt =
∞∑

k=0

e−λt (λt)k

k! P̄k −
∞∑

k=0

e−λt (ληt)k

k! =
∞∑

k=0

(P̄k − ηk)e−λt (λt)k

k! .

In the first case, suppose P̄k − ηk has two sign changes in the direction −, +, −. Note that
e−λt(λt)k/k! is a TP3 function for s > 0 and k ∈N∪ {0}, since e−λt(λt)k/k! is a TP function for
any λ > 0. Then, by the VDP, S−(H̄(t) − e−(1−η)λt) = 0, 1, or 2. If S−(H̄(t) − e−(1−η)λt) = 2,
then, by the VDP, H̄(t) − e−(1−η)λt has the same sign change property in t. Note that H̄(t) ≥
e−λt since the hazard rate h(t) ≤ λ for all t > 0 (see [22, p. 629]). Hence, for any c ≤ λ, H̄(t) −
e−ct has the same sign change property in t, and the choice for η is 1 − c/λ. Moreover, for any
c > λ, H̄(t) − e−ct is always positive for t > 0. Thus, there exists d ∈ [0, ∞) such that, for any
c ≥ 0, H̄(t) − e−ct has at most one change of sign from − to + for t ≤ d, and H̄(t) − e−ct has
at most one change of sign from + to − for t > d. Applying Lemma 2.1 on [0, d) and [d, ∞),
we get the result that H̄(t) is BFRA. If H̄(t) − e−(1−η)λt has at most one change of sign, then
the sign of H̄(t) − e−(1−η)λt can change from + to − or − to +. Again, an application of
Lemma 2.1 together with the fact that H̄(t) ≥ e−λt yields the result.
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In the second case, suppose P̄k − ηk has one sign change from +, − or −, +. Then, by
the VDP, H̄(t) − e−(1−η)λt has the same sign change property in t, if sign change occurs in
P̄k − ηk. Again, using the fact that H̄(t) ≥ e−λt and arguing as in [22], we can conclude that,
for any c ≥ 0, H̄(t) − e−ct has at most one sign change in t, if one occurs. Again, Lemma 2.1
yields the result that H̄(t) is IFRA or DFRA. �

Corollary 2.1. H̄(t) belongs to the IFRA (DFRA) class if {P̄k, k ≥ 0} satisfies the discrete IFRA
(DFRA) property.

Remark 2.1. It is important to note that [22, (3.4) of Theorem 3.1] is identical to
Corollary 2.1.

3. Weak convergence issues within BFRA class

During the last few decades, the topic of weak convergence in various ageing classes has
generated substantial interest among reliability experts. Weak convergence issues within a class
of distributions has been addressed in [10] for IFR, [9] for HNBUE, [33] for IMIT, [47, 48] for
NWBUE and BFR, [4] for IDMRL, [32] for IDMTTF distributions. Let Fn, n = 1, 2, . . . be
a sequence of BFRA distributions with Fn converging to F in distribution. In this section, we
first try to establish that F belongs to the BFRA class, i.e. closure under the formation of weak
limits within the BFRA family.

Theorem 3.1. Suppose {Fn, n ≥ 1} is a sequence of BFRA distributions. Let x0n be a change
point of Fn, and suppose that Fn converges to F in distribution, where F is assumed to be
continuous. Then F is BFRA.

Proof. Let r(x) = �Fn (x) = RFn (x)/x be the corresponding FRA function. By the BFRA
property, �Fn is decreasing on (0, x0n) and increasing on [x0n, ∞), where RFn (x) = − ln F̄n(x).

Now, Fn
L→ F implies RFn (x) → RF(x), and consequently �Fn → �F pointwise, where

L→
denotes convergence in distribution. For any BFRA distribution H, we define CH = {x0 : �H(x)
is decreasing on (0, x0) and increasing on [x0, ∞)}. Now, x0n ∈ CFn , n = 1, 2, . . . . Two cases
may arise: (i) {x0n} is bounded; (ii) {x0n} is unbounded.

For case (i), {x0n}∞n=1 is bounded, an application of the Bolzano–Weierstrass theorem yields
a subsequence {x0nk} of {x0n} such that x0nk → l (finite) as k → ∞. Thus, for any ε > 0,
there exists k0 ∈N such that l − ε < {x0nk} < l + ε for all k ≥ k0. Now, for any x1, x2 > 0 such
that x1 < x2 < l − ε, we have �Fnk

(x1) ≥ �Fnk
(x2) since �Fnk

(x) is decreasing on (0, x0nk ).
Consequently, using the fact that �Fn → �F , we get �F(x1) ≥ �F(x2) as k → ∞. Thus, �F(x)
is decreasing on (0, l − ε). Similarly, we can show that �F(x) is increasing on (l + ε, ∞). Since
ε > 0 is arbitrary, F is BFRA with l as a change point.

For case (ii), {x0n}∞n=1 is unbounded, there exists a subsequence {x0nk} such that x0nk → ∞ as
k → ∞. Now, for any 0 < x1 < x2 < ∞ there exists k0 ∈N sufficiently large that x1 < x2 < x0nk

for all k ≥ k0. Thus, �Fnk
(x1) ≥ �Fnk

(x2), as �Fnk
(x) is decreasing on (0, x0nk ). Consequently,

using the fact that �Fnk
→ �F pointwise as k → ∞, we get �F(x1) ≥ �F(x2). Hence, �F(x)

is DFRA, i.e. BFRA with a change point at ∞. �

The weak limit of a sequence of IFRA and DFRA distributions is not known so far.
However, as a consequence of Theorem 3.1, we obtain the following corollary which
shows closure under the formation of weak limits within the IFRA (DFRA) family of
distributions.
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Corollary 3.1. Let {Fn, n ≥ 1} be a sequence of IFRA (DFRA) distributions. Let F be a
continuous distribution function, and Fn converge to F in distribution. Then F is IFRA (DFRA).

The next theorem deals with convergence of the sequence of change points of Fn.

Theorem 3.2. Suppose {Fn, n ≥ 1} is a sequence of BFRA distributions having unique change
points x0n. Let F be a continuous distribution function with unique change point x0 in the BFRA
sense, Fn converging to F in distribution. Then limn→∞ x0n = x0 (≤ ∞).

Proof. Note that the unique change point means the FRA function is not constant in any
neighborhood of its change. We again prove this theorem by considering two cases: (i) {x0n} is
bounded; (ii) {x0n} is unbounded.

For case (i), {x0n}∞n=1 is bounded, following case (i) of the proof of Theorem 3.1, it can be
easily shown that there exists a convergent subsequence of {x0n} whose limit is a change point
of F. Then, by the uniqueness of the change point of F, it follows that limn→∞ x0n = x0 (< ∞).

For case (ii), {x0n}∞n=1 is unbounded, case (ii) of the proof of Theorem 3.1 implies that F is
necessarily a DFRA distribution, i.e. a BFRA distribution with unique change point x0 = ∞.
Now suppose that {x0n}�∞ as n → ∞. Then there exists M > 0 such that x0n ≤ M infinitely
often, so that it should be possible to find a subsequence {x0nk} converging to a finite limit α,
say. But then, by case (i) in the proof of Theorem 3.1, along with the uniqueness of the change
point of F, we have the contradiction that ∞ = α < ∞. Thus, x0n → x0 = ∞ as n → ∞. �

In the next theorem we explore the convergence of the corresponding moment sequences of
all orders.

Theorem 3.3. Let {Fn, n ≥ 1} be a sequence of absolutely continuous BFRA distributions hav-
ing a unique change point x0n. Assume that {x0n}∞n=1 is bounded. If Fn converges to F in
distribution where F is continuous, then, for every r > 0, EFn (Xr) →EF(Xr) as n → ∞.

Proof. Using [12, Theorem 3.2] we get finiteness of moments of Fn. Now, following
Theorem 3.1 we conclude that F is BFRA. If F is BFRA with a finite change point then again
an application of [12, Theorem 3.2] yields finiteness of moments of F. Now we consider the
case when F is BFRA with a change point at infinity, i.e. DFRA. Note that there exists B such
that x0n ≤ B for all n since {x0n}∞n=1 is bounded. Take B < x < y. Then �Fn (x) ≤ �Fn (y), since
the FRA function of Fn is increasing on [x0n, ∞). Consequently, taking limits of both sides
as n → ∞, we get �F(x) ≤ �F(y). Now, the DFRA property of F leads to �F(x) ≥ �F(y).
Thus, �F(x) is constant for all x > B. Suppose �F(x) = c for all x > B. Thus F̄(x) ≤ 1 for x ≤ B
and F̄(x) = e−cx for x > B, and hence

∫ ∞
0 xr−1F̄(x) dx < ∞. Consequently, it suffices to show

that, for all r > 0, limn→∞
∫ ∞

0 xr−1F̄n(x) dx = ∫ ∞
0 xr−1F̄(x) dx. Suppose ε > 0 is such that

ε + F̄(M) = e−θ for some θ > 0, where M ∈R
+ such that M > B. Now, Fn converges to F in

distribution implies that there exists N ∈N depending on ε such that F̄n(M) < e−θ for all n ≥ N.
Note that the FRA function of Fn increasing on [x0n, ∞) implies that {F̄n(x)}1/x is decreasing
on [x0n, ∞). Consequently, F̄n(x) ≤ V(x), where V(x) = 1 for x ≤ M, and V(x) = e−θx/M for
x > M. Thus, xr−1F̄n(x) is bounded by the integrable function xr−1V(x) on (0, ∞). Hence,
the theorem follows in view of the dominated convergence theorem, since Fn(x) → F(x)
pointwise. �

In the next theorem we explore the convergence of moment sequences for the IFRA family.
Here we even relax the condition of absolute continuity.
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Theorem 3.4. Let {Fn, n ≥ 1} be a sequence of continuous distributions which are IFRA with
finite means. If Fn converges to F in distribution where F is continuous with finite mean, then,
for every r ≥ 1, EFn(Xr) →EF(Xr) as n → ∞.

Proof. For an IFRA distribution G with mean μ, from [8] we get that

EG(Xr) ≤ 
(r + 1)μr if r ≥ 1, (3.1)

and there exists ζp such that F(ζp) = p, 0 < p < 1, for which

Ḡ(x) ≤
⎧⎨
⎩

1 for x ≤ ζp,

e−αx for x > ζp,
(3.2)

where α = −(1/ζp) ln (1 − p). Corollary 3.1 ensures that F is IFRA, and (3.1) implies that
EF(Xr) < ∞ for all r > 1. Now, using (3.1) and (3.2), and following the argument of the proof
of Theorem 3.3, we get the result. �

Theorem 3.5. Suppose F is an absolutely continuous BFRA distribution with a finite change
point at x0. Then F is uniquely determined by its moment sequence.

Proof. [12, Theorem 3.2] shows that, for all r ≥ 1,

EF(Xr) :=
∫ ∞

0
xr dF(x) ≤ 
(r + 1)(

minu∈[0,t0] λ(u)
)r ,

from which it can be shown that the power series
∑∞

r=0 (ur/r!)EF(Xr) has a non-null radius of
convergence. The theorem now follows easily using [44, p. 217]. �

Using (3.1) together with [44, p. 217], the following theorem holds.

Theorem 3.6. Suppose F is a continuous IFRA distribution with finite mean. Then F is
uniquely determined by its moment sequence.

The following theorem is related to the converse of Theorem 3.3.

Theorem 3.7. Let {Fn, n ≥ 1} be a sequence of absolutely continuous BFRA distributions with
a unique change point x0n < ∞ for all n ≥ 1, and suppose that F is an absolutely continuous
BFRA with unique finite change point x0 such that, for all integers r > 0,

lim
n→∞

∫ ∞

0
xr dFn(x) =

∫ ∞

0
xr dF(x). (3.3)

Then Fn converges to F in distribution.

Proof. As a consequence of Theorem 3.5 and (3.3), every weakly convergent subsequence
of {Fn, n ≥ 1} necessarily converges to the distribution F. This concludes the proof. �

The converse of Theorem 3.4 also holds for IFRA family following an argument analogous
to the proof of Theorem 3.7, using Theorem 3.6 instead of Theorem 3.5.

Theorem 3.8. Let Fn, n = 1, 2, . . . , be a sequence of continuous IFRA distributions. Suppose
that F is continuous and IFRA such that, for all integers r ≥ 1, EFn(Xr) →EF(Xr) as n → ∞.
Then Fn converges to F in distribution.
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Example 3.1. Consider a survival function F̄1(x) = (x2 + 1)−1, x ≥ 0, of a life distribution.
It is easily seen that F1 is a UBFR distribution with a change point at 1. Then, from [46,
Theorem 1] or [12, Theorem 2.1], it can be concluded that F1 is a UBFRA distribution since
F1 is a twice-differentiable function. Further, it can also be shown that the change point of
F1 in UBFRA sense is finite. Note that EF(X) = π/2 < ∞ and EF(Xr) = ∞ for all r > 1.
Consequently, the versions of Theorems 3.3, 3.5, and 3.7 are not meaningful in the context
of UBFRA distributions.

Remark 3.1. The versions of Theorems 3.4, 3.6, and 3.8 are not meaningful in the context of
DFRA distributions.

4. Interrelationships among non-monotonic ageing classes

Interrelationships among ageing classes have received widespread attention in the literature
from the very beginning [7, 28, 36, 41]. In this section, we study the interrelationships between
the BFR family of [23], the IDMRL family of [24], the NWBUE family of [47], and the
IDMTTF family of [27]. In the context of the abovementioned non-monotonic ageing classes,
see the recent works [13, 14, 15, 26, 30, 31, 34]. Exploiting ‘total time on test’ (TTT) transform
characterizations, [47] established that the NWBUE family of life distributions contains both
IDMRL and BFR classes. [46] proved that BFR implies both BFRA and IDMRL for a twice-
differentiable distribution function. [27] established that {BFR} ⊂ {IDMTTF} ⊂ {NWBUE}.
[32] proved that a BFR life distribution F with change point t0 implies F is IDMRL with a
change point τ where τ ≤ t0, and that the {IDMRL} and {IDMTTF} families intersect each
other. Moreover, [32] summarized the following interrelationships among the abovementioned
classes of life distributions:

Here, x′, τ , t0, and t′0 denote the change points of F in BFRA, IDMRL, IDMTTF, and NWBUE
senses respectively. If each of the classes in the preceding chain is replaced by its dual, the
corresponding structure also holds. [46] and [12] both proved that a BFR family of twice-
differentiable distributions is necessarily BFRA. Here we establish a general result that a
BFRA family of distributions contains a BFR class of distributions, where we do not consider
any assumptions like ‘twice differentiability of distribution F’. The following lemma plays a
key role in establishing the main result.

Lemma 4.1. Suppose y∗, y∗∗ ∈ [0, ∞) and g : [y∗, y∗∗] →R
+ is a convex function. Let Ag =

{α | g(y) = αy has at least one solution in [y∗, y∗∗]}. Now define

ỹ1 = min{y | y is a solution of g(y) = α̃y in [y∗, y∗∗]},
ỹ2 = max{y | y is a solution of g(y) = α̃y in [y∗, y∗∗]},

where ã = min Ag. Then:

(i) g(y)/y is decreasing in y for all y ∈ [y∗, y∗∗] if ỹ2 = y∗∗.

(ii) g(y)/y is increasing in y for all y ∈ [y∗, y∗∗] if ỹ1 = y∗.
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(iii) f (y)/y is decreasing in y for all y ∈ [y∗, ỹ] and increasing in y for all y ∈ [ỹ, y∗∗], where
ỹ ∈ [ỹ1, ỹ2] if y∗ < ỹ1 ≤ ỹ2 < y∗∗.

Proof. The proof is similar to the proof of [27, Lemma 1]. �

The following theorem is the main result of this section.

Theorem 4.1. If a life distribution F is BFR(x′) then F is BFRA(x0), where x′ ≤ x0.

Proof. There are three separate cases to consider.
Case (i): x′ = 0. In this case, F is IFR. [6] showed that IFR implies IFRA. Thus, F is BFRA

with change point x0 = 0.
Case (ii): 0 < x′ < ∞. If F is BFR(x′), then R(x) = − ln F̄(x) is a positive concave function

on (0, x′]. Hence, for all x ∈ (0, x′] and for 0 < β < 1, ln F̄(βx) = ln F̄(βx + β̄0), where β̄ =
1 − β, i.e. ln F̄(βx) ≤ β ln F̄(x), i.e. {F̄(βx)}1/βx ≤ {F̄(x)}1/x. Thus, {F̄(x)}1/x is increasing in
x ∈ (0, x′], i.e. the FRA of F is decreasing on (0, x′]. Again, note that R(x) = − ln F̄(x) is a
positive convex function on [x′, ∞), since F is a BFR distribution with a change point at x′. By
using Lemma 4.1, the result follows immediately.

Case (iii): x′ is a change point at ∞. In this case, F is DFR. [6] showed that DFR implies
DFRA. Thus, F is BFRA with a change point at infinity. �

Note that [12, Example 2.1] indicates that the BFR class of life distributions is strictly
smaller than the BFRA class. We now investigate the relationships between BFRA, IDMRL,
IDMTTF, and NWBUE, since IDMRL, NWBUE and IDMTTF are larger classes of distribu-
tions than the BFR class.

In the next example we try to find the connection between the BFRA and IDMRL
distribution classes.

Example 4.1. Consider the distribution function given by

F2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − e−x, 0 ≤ x < 1,

1 − (ex)−1, 1 ≤ x < 2,

1 − 1
2 e−2 exp

[− 1
2 x(x − 3)

]
, 2 ≤ x < 3,

1 − 1
2 e

19
4 exp

[− 1
4 x(12 − x)

]
, 3 ≤ x < 3.5,

1 − 1
2 e− 1

2 exp
[− 5

28 x2
]
, x ≥ 3.5.

It was shown in [12] that F2 is a BFRA distribution. The change point x0 in the BFRA sense
turns out to be 2.320 84. Note that the values eF2 (2.7) = 0.715 849, eF2 (2.84) = 0.701 676, and
eF2 (3.1) = 0.704 291 clearly indicate that F2 does not have the IDMRL property. A plot of the
mean residual life (MRL) function eF2 (x) of F2 is given in Figure 1.

Example 4.2. [4] considered an IDMRL distribution with change point 2 given by

F3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (1 + x)−2, 0 < x ≤ 1,

1 − 4x−2e(1−x)/2x, 1 ≤ x < 2,

1 − (18 − x)/(28e1/4), 2 ≤ x < 10,

1 − (
6 − x

5

)4
/(213e1/4), 10 ≤ x < 25,

1 − 2−13e3/4 exp [x − 25 − ex−25], x ≥ 25.
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FIGURE 1. Mean residual life function of F2.

FIGURE 2. Failure rate average function of F3.

Let rF3 (t) be the FRA function of F3. The fact that F3 is not BFRA is clear from the values
rF3 (0.5) = 1.621 86, rF3 (1) = 1.386 29, rF3 (1.5) = 1.575 93, and rF3 (3) = 1.029 04. Figure 2
displays the FRA function of F3.

Examples 4.1 and 4.2 show that neither of the BFRA and IDMRL classes is contained in
the other. Next, we investigate the connection between BFRA and NWBUE distributions.

Example 4.3. Consider the distribution function given by

F4(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 − (1 + 2x)−2, 0 ≤ x < 2,

24
25 , 2 ≤ x < 3,

1 − 9
25 (2x − 3)−2, 3 ≤ x < 4,

1 − 9
2500 x exp [(16 − x2)/20], x ≥ 4.
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FIGURE 3. Failure rate average function of F4.

The MRL function of F4, given by

eF4 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 (1 + 2x), 0 ≤ x < 2,

1
2 (9 − 2x), 2 ≤ x < 3,

1
2 (x − 3), 3 ≤ x < 4,

10x−1, x ≥ 4,

shows that F4 is NWBUE with change point t′0 = 20 in the NWBUE sense. The values rF4 (3) =
1.072 96, rF4 (3.4) = 1.085 78, and rF4 (4) = 1.060 13 illustrate that F4 does not possess the
BFRA property. A plot of the FRA function rF4 of F4 is given in Figure 3.

Remark 4.1. Examples 4.1 and 4.2 show that neither of the BFRA and IDMRL classes is
contained in the other. Moreover, Theorem 4.1 and [32, Theorem 16] show that BFRA and
IDMRL classes of distributions contain all BFR distributions.

Remark 4.2. Theorem 4.1 and [47, Proposition 2.1] show that BFRA and NWBUE classes of
distributions contain the BFR family of distributions. Now, from Example 4.3 we can conclude
that either {BFRA} ⊂ {NWBUE} or neither of the classes is contained in the other.

Remark 4.3. Theorem 4.1 and [27, Theorem 4] show that both BFRA and IDMTTF classes of
distributions contain the BFR family.

From the remarks above it can be easily seen that the BFRA, IDMRL, NWBUE, and
IDMTTF classes of distributions contain BFR distributions. Moreover, we are unable to estab-
lish any clear connection between IDMTTF and BFRA distributions. But at this juncture we
would like to pose an open problem:

If a life distribution F is BFRA(x0) then F is IDMTTF(t0), where t0 ≥ x0. (4.1)

In the next theorem we have tried to provide a partial answer to (4.1) by following an
argument similar to [52] that attempts to show that if F is IFRA then τ (u)/u is decreasing in u,
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where

τ (u) =
∫ F−1(u)

0
F̄(x) dx, u ∈ [0, 1], (4.2)

is the total-time-on-test (TTT) transform of F, and F−1(u) = inf{x : F(x) ≥ u}.
Theorem 4.2. Suppose an absolutely continuous lifetime distribution F is BFRA(x0). Then the
mean time to failure (MTTF) function is increasing on (0, x0].

Proof. In order to prove this theorem we first assume that F is absolutely continuous with
respect to Lebesgue measure, and later we extend the argument to the ‘continuous’ case. Note
that the MTTF function MF(t) of F can be written as

MF(t) =
∫ t

0 F̄(x) dx∫ t
0 λ(x)F̄(x) dx

,

since F is absolutely continuous with respect to Lebesgue measure. Now the numerator of
d
dt MF(t) is given by

Q(t) = F̄(t)
∫ t

0
λ(x)F̄(x) dx − λ(t)F̄(t)

∫ t

0
F̄(x) dx = F̄(t)

∫ t

0
[λ(x) − λ(t)]F̄(x) dx.

Thus, to prove this theorem it is enough to show that S(t) = ∫ t
0 [λ(x) − λ(t)]F̄(x) dx ≥ 0 for

t ≤ x0. Using integration by parts, S(t) can be written as

S(t) =
[− ln F̄(t)

t
− λ(t)

]
tF̄(t) +

∫ t

0

[− ln F̄(x)

x
− λ(t)

]
x dF̄(x).

Note that, for all t ≤ x0,

S(t) ≥
[− ln F̄(t)

t
− λ(t)

][
tF̄(t) +

∫ t

0
x dF̄(x)

]
≥ 0,

since (−ln F̄(t))/t is decreasing on (0, x0]. Thus, MF(t) is increasing on (0, x0]. �

At this stage, the following hierarchy represents the updated interrelationships among the
non-monotonic ageing classes.
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FIGURE 4. Mean time to failure function of F2.

5. Discussion

The main contributions of this paper center around the homogeneous Poisson shock model
in the framework of BFRA distributions, weak convergence issues within the BFRA class, and
interrelationships among non-monotonic ageing classes. However, there is substantial scope
for future work, for example, non-homogeneous Poisson shock models and pure birth shock
models for the BFRA class remain to be explored. Further, in this scenario we can also consider
shock models in a more general setup where failure occurs due to shocks in the presence of
continuous wear and tear.

In Section 3 we posed the open problem (4.1). The TTT transform, defined in (4.2), plays an
important role in characterizing ageing classes of life distributions (see [36]). Thus, (4.1) has
the following equivalent formulation in terms of the TTT transform: ‘If F is BFRA then there
exists ũ ∈ [0, 1] such that τ (x)/x is increasing on [0, ũ] and decreasing on (ũ, 1].’ In this regard,
the following comments would be in order. We believe that the result contained in (4.1) is true.
In fact, the distribution in Example 4.1 (due to [12]) is BFRA with change point 2.320 84 and
IDMTTF with change point 2.404 25 (>2.320 84), as can be seen from Figure 4.

If, indeed, that result does hold, then the hierarchy would turn out as follows:
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