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HERMITE INTERPOLATION VISITS ORDINARY TWO-POINT
BOUNDARY VALUE PROBLEMS
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Abstract

This paper is concerned with constructing polynomial solutions to ordinary boundary value
problems. A semi-analytic technique using two-point Hermite interpolation is compared
with conventional methods via a series of examples and is shown to be generally superior,
particularly for problems involving nonlinear equations and/or boundary conditions.
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1. Introduction

In this paper we introduce a semi-analytic method for constructing polynomial so-
lutions of ordinary boundary value problems using two-point Hermite interpolation.
The method has recently been applied to partial differential equations (Grundy [4—6]),
however in the present paper we concentrate on the development of the application to
ordinary differential equations. With the advent of modern symbolic computational
facilities it has become possible to implement many techniques which were hitherto
computationally and algebraically inaccessible. Thus an important feature of the
paper is the use of the symbolic computational package MAPLE in the process of
implementation together with its BVP and IVP library codes as a checking device.
The main purpose is to demonstrate the general superiority of our preferred method
vis-a-vis conventional methods, particularly for nonlinear and/or singular boundary
value problems. This even extends to purely numerical methods which are often diffi-
cult to implement for singular problems and also for nonlinear problems with multiple
solutions. The structure of the paper is as follows. In Sections 2 and 3 we introduce
the idea of two-point Hermite interpolation and its application to ordinary boundary
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534 R. E. Grundy [2]

value problems. In Section 4 we include a series of examples to illustrate various
advantageous aspects of the method for regular boundary and eigenvalue problems
while in Section 5 we show how the method can offer a simple and neat treatment of
singular boundary value problems. The results are compared where possible with the
BVP software available in the MAPLE library.

2. Two-point Hermite interpolation

We first say something about two-point Hermite interpolation [7]. Essentially this is
a generalization of interpolation using Taylor polynomials and for that reason Hermite
interpolation is sometimes referred to as two-point Taylor interpolation. The idea is
to approximate a function y(x) by a polynomial p{x) in which values of y(x) and
any number of its derivatives at given points are fitted by the corresponding function
values and derivatives of p(x). In this paper we are particularly concerned with fitting
function values and derivatives at the two end points of a finite interval, say [0, 1],
wherein a useful and succinct way of writing a Hermite interpolant pn(x) of degree
2n + 1 was given for example by Phillips [10] as

£> + ( - U W l t o U -x)} (2.1)

where

x ^ ^ z ( n + s y = q7r (22)

so that (2.1) with (2.2) satisfies

>-(r)(0) = p<r)(0), y(r)(l) = pW(l), r = 0 , l ,2 . . . / i ,

implying that pn(x) agrees with the appropriately truncated Taylor series for y(x)
about x = 0 and x = 1.

The error on [0, 1] is given by

( - l
- Pn(x) =

where 0 < £ < 1 and yV"+2) is assumed to be continuous.
The Hermite interpolant for pn(x) may converge to y(x) in [0, 1] irrespective of

whether the intervals of convergence of the constituent series intersect or are disjoint.
The important consideration here is whether Rn -> 0 as n ->• oo for all x in [0, 1]. In
the application to the boundary value problems in this paper such convergence with n
is always confirmed numerically.
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[3] Hermite interpolation visits ordinary two-point boundary value problems 535

We observe that (2.1) fits an equal number of derivatives at each end point but
it is possible and indeed sometimes desirable to use polynomials which fit different
numbers of derivatives at the end points of an interval. There are algorithms for
constructing such polynomials and the reader is referred to Davis [2] or Stoer and
Bulirsch [12] for further details and references, including error estimates. As an
example of a two-point Hermite interpolant we may take n = 2 so that (2.1) with (2.2)
becomes the quintic

P2(x) = (1 - *)3(1 + 3x + 6x2)y(0)'+ *3(10 - 15* + 6x2)y(l)
+ x(l - x)3(l + 3x)/(0) - x\\ - x)(4 - 3x)y'(l)

+ l-x2{\ -Jt)3/(O) + ^t3(l - J O 2 / ( 1 )

satisfying

P2(0) = y(0), p'2(0) = / (0 ) , p'2'(0) = / ' (0),

= y(l), P'2(D = / ( I ) , p'2'{\) = / ( I ) .

Finally we observe that (2.1) can be written directly in terms of the Taylor coefficients
a, and b{ about x = 0 and x = 1 respectively, as

;=o

3. Solution of second-order boundary value problems

We consider the boundary value problem

',x) = o (3.1)

8t(y(0), y ( l ) , / ( 0 ) , y'(l)) = 0, i = 1,2, (3.2)

where / , gi, g2 are in general nonlinear functions of their arguments.
The simple idea behind the use of two-point polynomials is to replace y(x) in

problem (3.1)—(3.2), or an alternative formulation of it, by a pn which enables any
unknown boundary values or derivatives of y(x) to be computed.

The first step therefore is to construct the pn. To do this we need the Taylor
coefficients of y(x) at x = 0 and x = 1. Using MAPLE throughout we simply insert
the series forms

y = ba +bx(x - \)+ ^bi(x - \)' (3.3)
i=2 1=2

https://doi.org/10.1017/S1446181100003205 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100003205


536 R. E. Grundy [4]

into (3.1) and equate coefficients of powers of x and (x — 1) respectively. The resulting
system of equations can be solved to obtain ai(a0, ax) and bi(bQ, b\) for all i > 2.
The notation implies that the coefficients depend only on the indicated unknowns ao,
a\, b0, b\. The algebraic manipulations needed for this process for Example 4.1 are
included in the MAPLE code in the Appendix.

We are now in a position to construct a pn(x) from (3.3) of the form (2.1) and use
it as a replacement in the problem (3.1M3.2). Since we have only the four unknowns
to compute for any n we only need to generate two equations from this procedure as
two equations are already supplied by the boundary conditions (3.2).An obvious way
to do this would be to satisfy the equation (3.1) itself at two selected points x = c\,
x = c2 in [0, 1] so that the two required equations become

Kicd + /{pn(c,), p'n(c,), c,) = 0, i = 1, 2. (3.4)

An alternative approach is to recast the problem in an integral form before doing the
replacement. Extensive computations have shown that this generally provides a more
accurate polynomial representation for a given n. We therefore use this alternative
formulation throughout this paper although we should keep in mind that the procedure
based on (3.4) is a viable option and shares many common features with the approach
outlined below. Of the many ways we could provide an integral formulation we adopt
the following. We first integrate (3.1) to obtain

/(*) - a, + [ f(y(s), y'(s), s)ds = 0 (3.5)
Jo

and again to find

y{x) -ao-xax+ [ (x - s)f(y(s), y'(s), s)ds = 0 (3.6)
Jo

where a0 = y(0) and ax — y'(0). Putting x = 1 in (3.5) and (3.6) then gives

bx - a, + I f(y(s), y'(s), s)ds = 0 (3.7)
./o

and

b0 - a0 - a, + f (1 - s)f(y(s), y(s), s)ds = 0 (3.8)

where b0 = v(l) and b\ = / ( I ) .
The precise way we make the replacement of y{x) with a pn(x) in (3.7) and (3.8)

depends on the nature of / ( y , / , x) and will be explained in the examples which
follow. In any event the important point to note is that once this replacement has been
made, the equations (3.2), (3.7) and (3.8) constitute the four equations we require
to determine the set {a0, b0, ax, bi}. As we shall see the fact that the number of
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unknowns is independent of the number of derivatives fitted represents perhaps the
most important feature of the method.

We make the following points at this stage.

(i) In the majority of cases where the boundary conditions are simple enough the
system of algebraic equations may be reduced a priori to a system in two unknowns,
since the boundary condition can be substituted directly into the integral formulations
(3.7) and (3.8), which MAPLE can be utilized to solve. Once the unknown pair
[a,\, b\) is known the required polynomial can be constructed. For the benefit of the
reader the entire procedure for Example 4.1 in Section 4 is given as a MAPLE code
in the Appendix.

(ii) For higher order equations or a system of first-order equations the number
of unknowns will of course increase. For an equation of order m there will be 2w
unknowns in the equations corresponding to (3.7) and (3.8) or their equivalent. The
boundary conditions will supply m equations so we will need a further m equations
to determine the 2m unknowns. As in (i) the boundary conditions may enable us to
immediately reduce the number of equations, invariably to m.

(iii) As we will see with such a low number of unknowns it is a relatively simple
matter to solve the equations even for nonlinear problems. This is particularly true if n
is a small integer. Since, as we shall see, the method provides a convergent sequence
for the unknowns as n increases, for higher values of n we may use the values provided
at a previous iterate as initial guesses for a simple application of Newton's method -
usually for two equations in two unknowns.

(iv) The method offers a certain amount of flexibility. For example we could
choose to satisfy (3.5) and (3.6) at two internal points or we could use alternative
integral formulations. The fact remains that whatever strategy we adopt produces a
quickly convergent sequence of values of the set {a0, au b0, bi] as n increases.

(v) Throughout we assess the accuracy of the procedure by examining the conver-
gence with n. Using a symbolic computational facility such as MAPLE, computing
the required convergents is not an issue. Where possible we can also run checks on
our solutions using shooting with MAPLE IVP codes.

(vi) We compare our method with the method of collocation using Chebyshev
polynomials. This is the method used in the NAG library for regular linear problems.
The first use of Chebyshev polynomials in the context was apparently in 'the method
of selected points' due to Lanczos [8], see also Lanczos [9], Fox and Parker [3] and
Picken [11]. To be brief we first construct the finite Chebyshev series

*=o
where the ck are unknown constants and the T(k, x) are the Chebyshev polynomials
of order k rescaled to the interval [0,1]. We now use collocation which can be used
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in conjunction with the equation itself or with an integrated form. Fox and Parker [3]
recommend an integrated form as generally the most accurate and this is what we use
here. The twice indefinitely integrated form of (3.1) can be written as

y(x)+ [ f f(y(r),y'(r),r)drds + Ax + B = O, (3.10)

where A and B are arbitrary constants. We now replace y(x) in (3.10) by (3.9) and
collocate at the N + 1 zeros of T(N + 1, x) on [0, 1] giving N + 1 equations. A
further two equations are provided by requiring that (3.9) satisfies the two boundary
conditions (3.2). Thus in total we have N + 3 equations for the N + 3 unknowns
{co, c\,... ,cN, A, B). For linear equations with linear boundary conditions solving
these poses no problems. However any nonlinearities in either the equation or the
boundary conditions will pose often insuperable difficulties which are not resolved
even if we resort to performing collocation on the equation itself thereby reducing the
number of equations and unknowns. In any event the fact that the two-point method
only involves at most four unknowns whatever the value ofn will in combination with
Newton's method, always obviate the difficulty in using (3.9) with (3.10).
Finally in assessing the two methods we observe that we should compare yn with
K^+i since they are both of degree 2/i + 1. Although we should remember that in
computing l^+i we have to solve a system of 2n + 4 equations, in general nonlinear,
for the 2/i + 4 unknowns.

We now consider a number of examples designed to illustrate the convergence,
accuracy, implementation and utility of the method. In what follows the use of bold
digits in the tables is intended to give a rough visual indication of the convergence.

4. Examples

4.1. A linear problem We first consider the linear problem

y" + ysin(x) = ex, y(0) = 1, y(l) = 0. (4.1)

Here (3.7) and (3.8) become

1 + bi - a, - e + I y(s) sin(s) ds = 0, (4.2)
Jo

1 - a, - e + [ (1 - s)y(s) sin(s) ds = 0 (4.3)

and the coefficients in (3.3) are a0 = 1, a2 = 1/2, a3 = 0, a4 = (1 - 2at)/24
b0 = 0,b2 = e/2, b3 = (e- fc, sin(l))/6, i4 = {e - 26, cos(l) - e sin(l))/24
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TABLE 1. Comparison of the Hermite and Chebyshev methods with the numerical solution for Exam-
ple 4.1.

ax = /(0)

h = /(I)
x =0.2
x =0.5
A: =0.8

Pi
-1.662609
-0.039280
0.687732
0.304453
0.058573

Pi
-1.662598
-0.039293
0.687764
0.304559
0.058598

-1.662598
-0.039293
0.687766
0.304566
0.058599

N = 4
-1.664480
-0.035565
0.687805
0.304558
0.058543

N = 5
-1.662905
-0.039094
0.687765
0.304559
0.058598

Numerical
-1.662598
-0.039293
0.687766
0.304566
0.058599

TABLE 2. Convergence of the Chebyshev coefficients for N = 2 to 6 using collocation at the zeros of
T(N + \,x) and satisfaction of the boundary conditions.

N
2
3
4
5
6

CO

0.403388
0.402299
0.401333
0.401337
0.401341

-0.5
-0.509591
-0.509525
-0.509454
-0.509455

Cl

0.096612
0.097701
0.097721
0.097721
0.097721

-
0.009591
0.009525
0.009525
0.009525

-
-

0.000946
0.000942
0.000942

C5

-

-

-

-0.000071
-0.000071

C(,

-

-

-

-

-0.000004

Ab initio inclusion of the boundary conditions in (4.2)-(4.3) has reduced the number
of unknowns to two, namely [a\, b\}, which are computed by solving (4.2) and (4.3)
with y(s) replaced by a pn(s). A MAPLE code for this example is presented in the
Appendix.

The results for n = 2, 3,4 and N = 4, 5 are displayed in Table 1. We can see
that there is clear convergence with n to the 'exact' values which are obtained using
MAPLE boundary value software. There appears to be little to choose in accuracy
between the two methods although the Chebyshev method is more labour intensive as
N increases.

4.2. A problem with nonlinear boundary conditions We next consider the same
equation as (4.1), namely y"+ysin(x) = ex, but this time with the nonlinear boundary
conditions

yW = b-(O)}2 and / ( I ) = {y'(0)}2.

The integral formulation incorporating the boundary conditions now becomes

1 + a] — ax - e + I y(s) sin(s) ds = 0,
./o

2 + al~ao-ai-e+ / (1 - s)y(s) sin(j) ds = 0
Jo
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TABLE 3. Results for Example 2 using Hermite interpolating polynomials and the comparison with
Chebyshev polynomials with N = 5.

Si

s2

S3

S4

a0 = y(0)
ax s /(0)

ao
a\
ao
a\

ao
a\

Pi

0.247485
-0.906862
0.762827
-0.815394
1.862214
1.301425

-1.179826
1.841360

P3

0.247486
-0.906861
0.762827
-0.815394
1.862228
1.301448
-1.179841
1.841384

Pi
0.247486
-0.906861
0.762827
-0.815393
1.862229
1.301448

-1.179841
1.841384

N = 5
0.247309
-0.906910
0.762938
-0.815378
1.861893
1.301011
-1.179521
1.840909

Numerical
-
-
-
-

1.862229
1.301448

-
-

TABLE 4. A check on the accuracy of the solution by shooting from x = 0 with a0 = y(0), a\ = / (0 )
obtained from p4 rounded to six decimal places, for each of the 4 solutions. Here Ai = \y{\) — {y(0)}2|

Si

s2
S3

s4

A i

1.848 x 10"'
5.063 x 10"'
8.484 x 10"'
7.853 x 10"'

A2

1.267 x 10-'
1.375 x 10-"
2.103 x IO-6

1.965 x IO-6

and the coefficients in (3.3) are a2 = 1/2, a3 = (1 - ao)/6, a4 = (1 - 2ai)/24,
. . . , b0 = a*, h = a], b2 = [e - alsin{\)}/2, b3 = [e - a^cos(l) - a\sin(l)}/6,
b4 = [alsin2(l) - la\cos(l) + a\sin(l) + e-esin(l)}/24

Again inclusion of the boundary conditions has reduced the number of unknowns to
two, namely {a0, ^i}- The four solutions to this problem are identified by our method
and presented in Table 3. The penultimate column gives the results using Chebyshev
polynomials with N = 5. Clearly the results using two-point approximants are
superior. We can also use the MAPLE boundary value code to solve the problem
numerically which uses the mid-point method with Richardson extrapolation and is
employed throughout the paper; see for example Ascher, Mattheif and Russell [1].
Table 4 presents a check on our results by shooting from x — 0 with the values of y(0)
and / (0 ) obtained from p4. The results are consistent after rounding to 6 decimal
places.

4.3. A nonlinear equation Next we consider the nonlinear equation

y" + Xy2 = ex

with boundary conditions

= 2.
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TABLE 5. Results for / ' + Ay2 = e1, y(0) = 1, y(l) = 2 with A. = 1. Collocation with Chebyshev
polynomials and the MAPLE numerical code fail to locate 52 due to root-finding problems. The numerical
solution for 52 in the table is found by iterative shooting from x = 0 with the initial guess for y'(fl) = p'6(0).
For 52 the values for the pair [alt bi} at each value of n > 6 are found using Newton's method with the
initial guesses provided by the previous value of n.

5,

fll = /(0)
bx s /(I)
x = 0.2
* = 0.5
x = 0.8

52

a, = /(0)
bi s /(0)

x = 0.2
x = 0.5
* = 0.8

1.301093
0.452402
1.257966
1.612581
1.883145

Pt
23.930284
-23.555406
5.645258
9.578566
6.482310

Pi
1.301064
0.452410
1.257933
1.612553
1.883159

Pi
23.707665
-23.321257
5.604082
9.545708
6.439980

Pi
1.301052
0.452522
1.257929
1.612536
1.883155
Pa

23.695173
-23.308087
5.604268
9.545783
6.440172

Pi
1.301052
0.452422
1.257928
1.612536
1.883155
P\a

23.694518
-23.307395
5.604145
9.545721
6.440044

Pe
1.301052
0.452422
1.257928
1.612536
1.883155
Pn

23.694486
-23.307361
5.604139
9.545718
6.440038

N = 5
1.301472
0.452654
1.257930
1.612540
1.883155

-
-
-
-
-

Numerical
1.301052
0.452422
1.257928
1.612536
1.883155

23.694465
-23.307340
5.604135
9.5457 L3
6.440038

Here (3.7) and (3.8) become

F(aubi,k) = e + k I y2(s)ds = 0,
Jo

. f (l-s)y2(s)ds = 0
Jo

(4.4)

(4.5)

and the coefficients in (3.3) are a0 — 1, a2 = (1 — k)/2, a3 = (1 — 2Aai)/6,
a* = (1 - 1~ka\ -2X + 2k2)/24, ..., b0 = 2, b2 = (e - 4k)/2, b3 = (e - 4Xb{)/6,
b* = (e+ 16k2 - 4ek - 2kb\)/24

Taking X = 1 we obtain the results presented in Table 5. Only two real solutions
are identified for each value of n represented by the two solutions to the problem for
this value of k. The MAPLE boundary value code only gives the lower solution. The
'exact' solution for the upper root is obtained by iterative-shooting with the initial
estimate for / (0 ) given by p& which illustrates the utility of the two-point method
in combination with shooting techniques. As a further refinement we could use the
resulting computed values of [ax, b\} to compute a final two-point polynomial for the
upper solution.

The results using the Chebyshev series for N = 5 are also displayed in Table 5. The
method is less successful than the two-point option especially for the upper solution
where the method fails for Af = 4 and N = 5 due to root-finding problems. Remember
that to obtain a degree 13 polynomial equivalent to pt, using Chebyshev polynomials
would require us to solve a nonlinear system in 16 unknowns.

It is appropriate at this point to say something about root-finding. We have used
the MAPLE solve to locate roots. Where this fails for the two-point method we can if
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TABLE 6. Computation of the threshold value X = X*.

[10]

a\ = y'(0)
b\ = y'(i)

x = x*

Pi
5.5009
-4.6993
1.8503

P3
5.1909
-4.3336
1.8170

Pi,
5.1373
-4.2712
1.8125

PS
5.1279
-4.2603
1.8119

Pe
5.1264
-4.2586
1.8119

necessary use a simple user-provided two-variable Newton's method code using the
n — 1 estimate as a starting value. The problem is less tractable if solve fails for the
Chebyshev method since in that event we have to use fsolve which by default only
gives one root. To locate the second root we would have to give bounds for each of
the N + 3 unknowns or alternatively give initial estimates for a user-provided code
for Newton's method in N + 3 unknowns. Either option would require the use of the
two-point method to provide the starting values making the Chebyshev method itself
somewhat redundant.

We continue to analyze this problem using Hermite interpolation. If we repeat the
calculations for k = 2 we find that there are no real roots for a\ and b\. This suggests
that there exists a A. = A.* such that for k > k* there are no solutions of the boundary
value problem while for k < k* there are two. This of course is a well-known feature
of the problem. What we do now is to compute the threshold value k* using our
two-point method. Essentially this involves finding a double root of (4.4) and (4.5)
for (ai, fci). Thus we have to solve (4.4) and (4.5) together with

dF dG dG dF
~d[ ~db~~ H[ ~db~ ~

for the unknowns ax ,b\ and A.. The results for n = 2 to 6 are shown in Table 6 rounding
to 4 decimal places.

We thus conclude that k* = 1.8119 to 4 decimal places. We note that there is no
difficulty in taking higher values of n if we wished to refine this value. By comparison
an equivalent calculation with TV = 13 using Chebyshev polynomials would require
us to solve 17 nonlinear equations in 17 unknowns.

4.4. Variations on a theme This last nonlinear example illustrates another feature
of the two-point method which has general application to equations of the following
type. Consider the problem

/ + sin(;y) = ex,

y(0) = 1 and v(l) = 2.

The difficulty with this example is that it is not in general possible to perform the
integrations involving sin(pn(x)) when using (3.7) and (3.8). We could of course
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TABLE 7. Results for Example 4.4 together with the comparison with Chebyshev polynomials and the
numerical solution.

a, = y'(0)
bi = /(D
* =0.2
* =0.5
x =0.8

(P2, qi)

0.749240
1.515489
1.153953
1.411016
1.729016

(P3. 93)
0.749329
1.515410
1.153925
1.410858
1.728977

(.P*, qi)

0.749359
1.515379
1.153932
1.410871
1.728984

(Ps.qs)
0.749355
1.515382
1.153931
1.410870
1.728983

yv = 4
0.7550700
1.517778
1.154223
1.410713
1.728449

N = 5
0.749303
1.515515
1.153932
1.410936
1.728972

Numerical
0.749355
1.515382
1.153931
1.410870
1.728983

consider using alternative strategies along the lines of (3.4). However we choose to
continue with the integral form and replace sin(pn (x)) itself by a two-point polynomial
qn(x) in (3.7) and (3.8). Thus using (3.3) we can write

M

and

sin(y(x)) = 2 ^ Aj(ao> ai)xJ

M

sin(y(x)) =
j=o

from which we can construct the qn{x). Hence (3.7) and (3.8) become

qn(s)ds =

and

3-a,-e+ I (1 - s)qn(s) ds = 0.
Jo

The results are presented in Table 7 where the numerical check is provided by the
MAPLE boundary value code.

The only practical way to use Chebyshev polynomials here is to use collocation on
the equation directly. From (3.7) we then have

d2[(YN(x))}
dx2 - ex = 0 (4.6)

and collocate at the N — 1 zeros of T(N - 1, x) as well as satisfying the 2 boundary
conditions giving the required number of equations for the /V + 1 unknowns. The
equations arising from (4.6) are transcendental which in general may introduce com-
plications in root-finding where there are multiple solutions although not in this case
since the solution is unique. The results are displayed in Table 7.

To summarize thus far we have shown how we can use two-point Hermite inter-
polation to construct polynomial solutions to two-point boundary value problems. In
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general the method appears to be superior to other methods in terms of accuracy and
the ability to consistently identify multiple solutions of nonlinear problems where even
numerical methods are problematical. Where feasible we have checked our results
with those obtained from MAPLE boundary value or initial value codes. In the next
section we consider a type of problem where numerical integration may not always
be available to us and the Hermite method becomes a preferred option.

5. Singular boundary value problems

An important problem in many applications is to find regular solutions to singular
boundary value problems - an obvious example is the solution of problems with
cylindrical or spherical symmetry in r > 0. We shall show in this section that
two-point interpolation is particularly adept at analyzing such problems since it deals
directly with derivatives. We illustrate the simplicity and effectiveness of the technique
by three examples which serve to demonstrate that the method succeeds when even
numerical integration poses difficulties. In what follows although we deal with linear
differential equations, this is no restriction on the method. Singularities at one or both
end points of the interval [0, 1] may be involved and we proceed in all cases via an
integral formulation of the problems.

5.1. A singular boundary value problem with nonlinear boundary conditions
We use this first example to show not only how we can treat singular problems but
also to illustrate how much progress can sometimes be made analytically using the
method. We consider the family of linear boundary value problems

xy" + ay' + (bx2 + ex + d)y = 0, a > 1, (5.1)

where we require y(x) to be regular at x = 0 and

2 + k2. (5.2)

Here a, b, c, d, kit k2 are given constants.
We observe that (5.1) has a regular singularity at x = 0, with indices 0 and I — a,

and is regular at x = 1. We first construct the series for the required solution about
x = 0 and x = 1. Using (5.1) the solution which satisfies regularity at x = 0 can be
written as

a,x' (5.3)
;=o

where a\ = —a^dja, a2 = (d2 — ac)ao/2a(a + 1), . . . .
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TABLE 8. Convergence check for a(n),fi(n) and k*(n) with a = 3/2, b = 2, d = -\,c

*2 = 1/2.

a(n)
P(n)
k*(n)

Pi
1.284328
-0.421049
0.412375

P3
1.284241
-0.420963
0.412319

P4
1.284238
-0.420960
0.412317

P5
1.284238
-0.420960
0.412317

The solution can be expanded about x = 1 as

y(x)=bo - I ) 1 , (5.4)

whereb2 = —{abi + (b+c+d)bo}/2,... . Thus using (5.3) and (5.4) we can construct
any pn which eliminates the singularity at the origin. Assuming regularity, integral
formulations can be obtained by integrating (5.1) once and applying the boundary
conditions to obtain

bt + (a - \)(b0 -ao)+ I (bs2 + cs + d)y(s) ds = 0
Jo

and integrating (5.1) twice and applying the boundary conditions to give

b0 - (a - \)a0 + / { ( ! - s)(bs2 + cs + d) + (a - 2)}y(s) ds = 0.

We now replace y(s) with a pn(s) and perform the integrations. By eliminating b0

via the boundary condition (5.2), namely b0 = ^I«Q + k2,for each n we can obtain
two equations for the unknown pair [a0, b\} of the form

• —

k\ a0 + — = 0 and b\ = fi(n)a0.k

Thus we have two solutions, one solution or no solutions to the problem according
to whether £,k2 < k*(n), kxk2 = k*(n) or kxk2 > k*(n), where k*(n) = a(n)2/4. The
values of a(n),f}(n) and k*(n) rounded to 6 decimal places are displayed in Table 8.

The MAPLE boundary value code appears to fail for this problem but we can check
our solution by shooting from x = 0 with y(0) = ao(p6), y'(0) = —ao{p6)d/a where

{a (6) ±

For example with the values of A:, and k2 in Table 8 we have ao(p6) = -1.59727178
or 0.31303377 and the boundary condition for each solution becomes

y(\)-kdy(0)}2-k2=9.44x \0'9 and 6.44 x 10~9,

respectively, which completes the check.
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TABLE 9. Convergence of the first three eigenvalues for Example 5.2.

[14]

bi = / ( D
A.,
bx

b,

Pi
4.368604
-0.844876
33.355773
1.511148

131.007817
-1.164285

Pi
4.367012
-0.845054
30.811887
1.181181
78.745514
-1.346719

P6
4.367011
-0.845054
30.790315
1.177941
77.282047
-1.369007

Pi
4.367011
-0.845054
30.790273
1.177934
77.261002
-1.369479

Pio
4.367011
-0.845054
30.790273
1.177934
77.260899
-1.369481

Pn
4.367011
-0.845054
30.790273
1.177934
77.260899
-1.369481

5.2. A singular eigenvalue problem We now include a singular eigenvalue problem
related to (5.1). We are required to solve

xy" + ay' + (bx2 + Xx + d)y = 0, a > 1

and compute A. subject to y(0) = 1, y(l) = 0 and regularity at x = 0 with a, b and d
given. Here the solution regular at x = 0 has the form y(x) = X^o a'x'< w n e r e

d (d2-Xa)
ao-l, a,—-, "2--

while the solution satisfying the boundary condition at x = 1 has the form

where

b2 = -abi/2, b3 = bx{a(a + 1) - (d + b) - k}/6

Here the integral forms of choice are given by

and

, + l - a + f
Jo

- a + f [ a -
Jo

(bs2 d)y(s) ds = 0

2 + (bs2 + ks + d)(\ - s))y(s) ds = 0.

Replacing y(s) by a pn(s) and solving for b\ and A. yields the results in Table 9
where we have taken a = 3/2, b = 1 and d = 1. The equation for n = m gives
estimates for the m + 1 pairs [b\, A.} corresponding to the first m + 1 eigenvalues and
eigenfunctions and we check on convergence by taking values for the first three such
pairs.

We can provide a check for these values by shooting from x = 0 with y(0) = 1
and / (0 ) = — d/a to simulate regularity. Taking the values of X from the last column
of Table 9 the results of this exercise are displayed in Table 10 for the first three
eigenfunctions.
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TABLE 10. Check on the first three eigenvalues by shooting from x = 0 with the values obtained from
the last column in Table 9 with a = 3/2, b = 1 and d = 1.

X
4.367011
30.790273
77.260899

yd)
-7.17 x lO"8

1.96 x 10"'
-1.83 x 10-'

/(I)
-0.845054
1.177934
-1.369482

5.3. A singular eigenvalue problem arising in the large-time solution of the
inviscid Proudman-Johnson equation As a final example we consider the singular
eigenvalue problem

(5.5)

sin(Px)y" + P{1 - 2cos(Px))y' - p2 sin(Px)y - K(P,X)
, P\\ - x) sin(Px) p2cos(Px)

/ ( I ) = A.

which has to be solved subject to

and regularity at x = 0. Here 0 < /3 < n is given,

, X) = 2p2sin(P) + p2cot(P) -2cos(P)}

and X is to be found. This example arises in constructing large-time solutions of the
inviscid Proudman-Johnson equation (Grundy [6]).

The difficulty here is the logarithmic singularity at x = 0 in the complementary
function so that its behaviour there is

r >-2 I 1 fl'*v.2 i

I 12

{ln(*) [p*x2 - ±psx4 + • • • j+ C2 {ln(*) + 2 - | / JV + (5.6)

and we are required to find a global solution for y(x) for which the logarithmic
behaviour is absent. It is of course virtually impossible to obtain such a precise
representation of the solution by purely numerical means and with this in mind we
present this example to show in general how problems involving logarithms can be
dealt with using our two-point method.

We first eliminate the offending behaviour by putting C2 = 0 in (5.3). In that event
the series for the regular solution of (5.5) about x = 0 can be written as

i = 0
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where

p {X sin j3(2cosQ3) - 1) + 0(2cosQ8) + l)(cosQ8) - 1)}
a a

in(/J)' 12 '
^4{2A.sin(y3)(2cos(/3) - 1) + jg(4cos2Q?) - 2cos(/3) + 15)}

36Osin()8) '

6 " 360 '

and a2 is an unknown constant. At x = 1 we have, from (5.5) and the boundary
conditions, the series

i=0

where

h n h i H a* h
t>0 = 0, Ol = A, O2 = P . »3 = 7 .

6
)32{A sin()3) + p-^cos^p") + cos(^) - 4}

4 ~ 24(1 - cosOS))
We now follow the general procedure and construct two-point Hermite interpolants

pn which together with appropriate integral forms can be used to obtain and solve the
two linear equations for the unknown pair {A, a2] for each pn. The results are set out
in Table 11.

We have been unable to solve the problem numerically for /32 > 6 so a full
comparison is not possible but the check for other values of p7 is convincing. We
observe however that if we examine ai(X) using (5.6) and the numerical entries in
Table 11 for A we may spot the formula a.\ = —fi/ sin()6) and hence, from the
expression for au the formula A. = —/3 cot(0) as the reader can readily check.

If we wanted a purely numerical solution to the problem one could conceivably try
shooting from x = 1 with y(\) = 0 and / ( I ) = A. and iterate on A to hit

y(0) = p7sin0S) and

/ (0 ) = {Asin(/3)[2cos(y3) - 1] + p"[2cos(p-) + I][cos(j8) -

Even with an a priori estimate of A. provided by Table 11 this is not an easy task and
the procedure becomes increasingly unreliable as ft f n; in fact for ft = \/9J5 the
value for y(0) is in error by about 40%. We note that shooting from x = 0 is not an
option due to the singularity there.
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6. Summary

In this paper we have presented a semi-analytic technique using two-point Hermite
interpolation to construct global polynomial solutions to ordinary boundary value
problems with particular emphasis on the use of a symbolic computational facility
such as MAPLE. This particular language has been used for the author's convenience
but the algorithms could be easily adapted to other symbolic algebraic languages.
The advent of such resources has made it possible to access procedures which were
formerly considered unprofitable—we believe the use of Hermite interpolation is one
such procedure. We have used examples to explain the method and also to highlight the
advantages the method has over others such as the classic and still current collocation
methods and in some cases numerical integration itself. A prescribed accuracy of the
method is attained by examining the convergence with n. The main feature is that the
number of unknowns we need to find is independent of n. This is in contrast to more
orthodox collocation where the number of unknown coefficients increases with n.
This makes root finding for the coefficients an easier task particularly for nonlinear
problems with multiple solutions, as well as providing an analytic approximation in
the form of a polynomial. The technique may also be used to specify accurate initial
estimates for unknown parameters in FVP methods such as shooting. For singular
problems any spurious behaviour can be eliminated directly so that use of the method
is a practical option even when numerical integration fails or is awkward to apply.

Appendix

># Solution to example 4.1
restart: Digits:=20:

# Given boundary conditions
a[0]:=1 :b[0]:=0

># Series for y(x) about x=0 and x=l
readlib(coeftayl): n:=4

yO:=sum (a[k]*x"k, k=0. .n+2):
yO:=sum(b[l]*(x-in, 1=0..n+2):

># The given equation
EqsO:=diff(yO,x,x) +sin(x)*yO-exp(x) :
Eqsl:=diff(yl,x,x)+sin (x) *yl-exp(x):

># Obtains coefficients of powers of x and (x-1)
# after substituting series for y(x) into the equation

X0:=0:Xl:=l:
for j from 0 to n-2 do
C0[j]:=coeftayl(EqsO,x=XO,j) ;
Cl[j]:=coeftayl(Eqsl,x=Xl,j) ;

end do:
># Solves for the series coefficients up to a(n) and b(n)
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# in terms of the two unknowns a(l) and b(l)
for i from 0 to n-2 do
S0:=solve({C0[i]},
Sl:=solve({Cl[i]},
a[i+2]:=rhs(S0[l]); b[i+2]:=rhs(Sl[l]);

># Printout of series coefficients as as(n) and bs(n)
for i2 from 0 to n do
as[i2]:=a[i2];
bs[i2]:=b[i2];

end do;

aso := 1, asi :=a\,

bs0 : = 0 , bs\ : = 1,

bs4:= - — c o s ( l ) f c i - Y 2 4 ^

># Constructs the Q polynomials
for j from 0 to n do

Q :=(s~j*(l-s)~(n+l)*sum((factorial (n+r)/
(factorial (r)*factorial(n))*s~r, r=0..n-j)):

QO[j]:=Q:
Ql[j]:=simplify(subs(s=l-s,QO[j])):

end do:
># Constructs the Hermite interpolant in terms of
# the unknowns a(1) and b(1)

p:=evalf(sum(a[il]*QO[il]+(-l)-il*b[il]*Ql[il],il=O..n)
># Solves integral forms for a(l) and b(l)

Eql:=evalf (l+b[l]-a[1]-exp(l)+int (p*sin(s),s=0..1)):
Eq2:=evalf(1-a[1]-exp(1)+int ((1-s)*p*sin(s) , s = 0 . . 1) ) :
SS:=evalf(solve({Eql,Eq2},{a[l], b[l]}), 10);

SS := a, = -1.662597558, bx = -0.03929345928

># The solution polynomial ps
ps:=simplify(subs({a[l]=rhs(SS[l]),b[l]=rhs(SS[2])},p

># plot of solution polynomial
plot(ps,s=0..1)
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