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ELEMENTS OF ORDER COXETER NUMBER +1
IN CHEVALLEY GROUPS

BOMSHIK CHANG

1. Introduction. Following the notation and the definitions in [1], let
L(K) be the Chevalley group of type L over a field K, W the Weyl
group of L and & the Coxeter number, i.e., the order of Coxeter elements
of . In a letter to the author, John McKay asked the following question:
If » + 1 is a prime, is there an element of order & 4+ 1 in L(C)? In this
note we give an affirmative answer to this question by constructing an
element of order 2 + 1 (prime or otherwise) in the subgroup Lz =
(x,(1)|r € ®) of L(K), for any K.

Our problem has an immediate solution when L = 4,. In this case
h=mn-+1and the (n + 1) X (n + 1) matrix

1 11 . . . 1 1

-1 oo . . . 00

M = o -1 0 . . . 00
0 oo . . . =10

has order 2(k + 1) in SL,,:1(K). This seemingly trivial solution turns
out to be a prototype of general solutions in the following sense. Using
the usual identification (see, for example, [1], p. 185), one may write

NG N N

where ay, as, . . . , @, are the fundamental roots of 4,, (in the usual order).

We shall see that if the a;'s in (1) are replaced by fundamental roots of

any L (of rank n) then we again have M2"+D = [ in L(K). A rather

amazing fact is that our proof is valid for all types but 4, (n even).
Let us state our theorem.

THEOREM. Let I = {ay, ay, . . ., a,} be a fundamental system of roots of
L and let

o el el Y n(d )

Then M?®+D = 1, where h is the Coxeter member of L.

The proof will be given in Section 4.
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2. Orderings of the «,’s. We first note that the order of the a;'s ap-
pearing in (1) is inessential because of

LEMMA 2.1. If M’ is obtained from M by permuting oy, as, . . . , oy in (2),
then M and M’ are conjugate in Ly.

Proof. We recall the well known argument used in the proof (for
example, [1], p. 157) of the conjugacy of the Coxeter elements. A virtually
identical argument will yield the lemma.

We find it convenient (and essential in the proof when L = 4,, D,,
n odd or Es) to choose a particular order of the a;'s in (2).

Let IT = 4 U B be the partition of II into two subsets each of which
contains mutually orthogonal roots. Then, for any .S, Tand 7, s € 4 or B,
r # s, we have

The right element to deal with will be

(5) M=HI€IA¢a<_i é)g%(—i é)

3. Coxeter elements and the involution w,. Let &+ (or &) be the
set of positive (or negative) roots of L. Let w, be the element of W such

that wo(®*) = &, or equivalently, I(w,) = |®*|, where [ is the minimal
length function. We recall that
3.1. (1) If L = B,, C,, D, (n even), F,, E;, Es or Gy, then wy = —1,
ie.,
wU(az) = oy

for all o; € TI.
2) If L = A4,, D, (n odd) or Eg, then
wo(a;) = —plai)
where p is the symmetry of the Dynkin diagram ([1], p. 200).

Let w be a Coxeter element of W. The order & of w is even except for
the case when L = A,, n even. We put 2 = 2k. Then simple computa-
tions show that

3.2 (1) If wy = —1I then #w* = w, for any Coxeter element w.

2) f L = A4, (n odd), D, (n odd) or E¢ then (w* = w, is no longer
true for an arbitrary Coxeter element w and)

(wawp)* = we
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where

WaWp = H Wq H Wy

acA bEB

with I = 4 \J B as in Section 2.
We need the following lemma on the orbits of Coxeter elements w.
LeEMMA 3.3. Suppose that h is even (i.e., L # A,, n even) and
W = WeWay . . - Way

is a Coxeter element enjoying the property w* = w,. Let

B1 = ay,

B = WayWay - - - Waj_,(@;), 2 = 7 = n.
Then

w'(8;) > 0

foral0 =i =k—1landl =j =< n.

Proof. Since w* = wy and I(wo) = |®F] = kl(w) ([1], p. 165), I(w?) =
il(w) for all 0 < ¢ < k. Suppose that 7 is the smallest nonnegative
integer such that

w'(B;) <0
for some B3;. Then
W e Way - - - Waj_y () <O
and for the smallest j satisfying this relation, we have (cf [1], p. 18),
KW Way .« .« Waj_ Wa;) = LW Wy . .. Wa,_,) — 1.
Then I(w™') < (1 4+ 1)I(w), and hence 7 > k& — 1.
CoROLLARY 34. If w = wywy (and h is even) then

wi(a) >0
wiw, (b)) > 0

foralla € A,b € Band0 <1<k — 1.

4. Proof of theorem. In this section, we assume that L # 4,,n = 1
or n even, and by M and w we shall mean

11 11
M“gd’“(—l O)Dg“’”(—l 0)’

W = WyWpg.

https://doi.org/10.4153/CJM-1982-067-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1982-067-4

948 BOMSHIK CHANG

For any I" € SLy(K), let
¢A(]‘) = H ¢11(T)y ¢B(T) = H ¢D(T)
€A bEB
Then by virtue of (4), we have
or(S)or(T) = ¢r(ST)
for any S, 7' € SL:(K) and R = A or B. Let

Xr = ¢R<(1) —i> = Hx,(-—l),

TER

X_p = dm(i ?) =[x,

TER

wg = d’R(_(l) (1)> ) R = A4, B.

Then, from

(96700 D= 9e o
-1 0 0 1/\—=1 0 -1 1/\0 1
we obtain
6) M = x wixpwp
and

M= x_,"x,x_pxp L.

Since x,,(s) and x_,,;(¢) commute, for any fundamental roots «;, «;
a; # aj, we have
(7) xA—lx_B_l = x_B_le—l and

M = x_A—lx_B—le_lx B_I.

Note also that, for R = 4 or Band 7 € &,

WRXRWR !

= X—R,
wpX (Dwp™" = Xppm ().

Thus if we let w = w wp and wy = ¥, then
W, (D)o = Fuen (1),
wo (£)wo™ = Xy () (L)

by virtue of 3.2.
Now take the kth power of M written as (6). If we put x4 (wsxpws™') =
y then M = yw and

M* = y(wyw™) ... (" lyw 1) w,.
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Since
wiyw_i = H xwi(a)(il) H xwiwA(b)(:}:l)v
agda bEB
Corollary 3.4 shows that
wiyo=t € U

forall0 < 7 < k — 1, where U is the unipotent subgroup {(x,(¢)|r € &t),
as usual. Hence

M* = jo*

with § € U. Then

8) M"= M¥ = j(wFwr™")w?

with ¥ € U, wofwy™" € U™, wy?> € H where
U~ = {x,(t)]r € )

and H the Cartan subgroup, again, as usual. On the other hand the
second expression (7) of M gives us

9) M= = (xpxa)(X_pX_4)

with xpx,s € U and x_px_4 € U~. Since such a decomposition of an
element of L(K) is unique, (8) and (9) give us a clear indication of the
next steps.

Let

Y = XawaXpwa™l, Y = X_qwa¥_pwaTl, X = Xp¥a, ¥ = X_pX_g4,
so that M1 = xx’. First we verify
(10) x = y(wxw )y
(11) « =y (wx'w= 1)y~
Proof. Simple substitutions give us
Y(wxw ™)y ! = 24005 (wpXpX X lwp )X " w4
Then from a simple calculation of 2 X 2 matrices we obtain
wpXp = Xp~_p~L.
Consequently,
WX pXaXp lwp™! = X5 WW_pT X X_pgXE = Xp X 4Xp.
Hence

XawaXp(Xp7 % 4%5) %0 T, 7t

e
= x4 (WaXaXpXa " wa™t)

= x4(0a"epXa) = XpXa.
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Similarly we can verify (11).
By substituting the right hand side of (10) into x, we obtain
x = y(wyw™) (0*rw™?) (wy'w™) 1y

and repeating this substitution further we obtain

x = F(woxwp™)F' !

where
¥ = y(wyw™) ... (W lyu~**1),  (as above)
F =y (w0y'w™t) ... (0w 1),

Since x, ¥ € U and woxwe™}, ¥ € U™ we have

(12) = =73,

(13)  woxwy™! = .

Similarly, we can obtain, from (11)

(14) =" =7,

(15)  wx'we™! = .

Hence

(16) «' = woxwo™' = weFwo ™.

Then (8), (9), (12) and (16) give us
M'wy? = M1,

Since wo¥x,(t)wo? = x,(Zxt) for all » € &, we? is (loosely speaking) a
diagonal element with entries 1 or —1, and hence wo* = 1. However, in
our case we can say a little more about we®. From (12), (13), (14), and
(15), we obtain that

woZxwoe™?2

= x.
Hence we have
wo2a(—1)wo™ = %,(—1)
for all @ € II, which in turn, implies that

w02x, (t)wo‘2 = X, (If)

for all » € ®. Hence wo? is an element in the center of L(K).

This completes the proof of our theorem for L # A,, n = 1 or n even.
For the cases when L = 4, or 4,, n even, we have to be content with the
matrix M in Section 1.
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5. Some remarks. (i) The identity (12) may be regarded as an
identity for the commutator x, 'xpzx,xp~! written as the product of
x,(t) with ¢ £ 0 for all » with k(r) = 2, because (16) shows that

woXa(—1)wo™ = welle(—1)w,!  (a € II)
and hence the last factor w*~lyw=*+1 of ¥ is equal to (wp~ X wp)x5.

(ii) If L = G; then G:(K) may be regarded as the automorphism group
of the octanion algebra over K. Then the cyclic permutation of the seven
basis elements (1) is an element of order # + 1 = 7.

(iii) For the case when L = E; or Es, all the prime torsions of L(Z)
are given in [2], hence the existence of elements of order & 4+ 1. I wish
to thank Professor Eckmann for bringing this paper to my attention.
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