ELEMENTS OF ORDER COXETER NUMBER +1 IN GHEVALLEY GROUPS

BOMSHIK CHANG

1. Introduction. Following the notation and the definitions in [1], let $L(K)$ be the Chevalley group of type L over a field K, W the Weyl group of L and h the Coxeter number, i.e., the order of Coxeter elements of W. In a letter to the author, John McKay asked the following question: If $h+1$ is a prime, is there an element of order $h+1$ in $L(C)$? In this note we give an affirmative answer to this question by constructing an element of order $h+1$ (prime or otherwise) in the subgroup $L_{\mathbf{Z}}=$ $\left\langle x_{r}(1) \mid r \in \Phi\right\rangle$ of $L(K)$, for any K.
Our problem has an immediate solution when $L=A_{n}$. In this case $h=n+1$ and the $(n+1) \times(n+1)$ matrix

$$
M=\left[\begin{array}{rrrrrrrr}
1 & 1 & 1 & . & . & . & 1 & 1 \\
-1 & 0 & 0 & . & . & . & 0 & 0 \\
0 & -1 & 0 & . & . & . & 0 & 0 \\
. & . & . & . & . & . & . & . \\
0 & 0 & 0 & . & . & . & -1 & 0
\end{array}\right]
$$

has order $2(h+1)$ in $S L_{n+1}(K)$. This seemingly trivial solution turns out to be a prototype of general solutions in the following sense. Using the usual identification (see, for example, [1], p. 185), one may write

$$
M=\phi_{\alpha_{1}}\left(\begin{array}{rr}
1 & 1 \tag{1}\\
-1 & 0
\end{array}\right) \phi_{\alpha_{2}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \ldots \phi_{\alpha_{n}}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right)
$$

where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ are the fundamental roots of A_{n} (in the usual order). We shall see that if the α_{i} 's in (1) are replaced by fundamental roots of any L (of rank n) then we again have $M^{2(h+1)}=I$ in $L(K)$. A rather amazing fact is that our proof is valid for all types but A_{n} (n even).

Let us state our theorem.
Theorem. Let $\Pi=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ be a fundamental system of roots of L and let
(2) $\quad M=\phi_{\alpha_{1}}\left(\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right) \phi_{\alpha_{2}}\left(\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right) \ldots \phi_{\alpha_{n}}\left(\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right)$.

Then $M^{2(h+1)}=1$, where h is the Coxeter member of L.
The proof will be given in Section 4.

Received June 15, 1981 and in revised form October 5, 1981.
2. Orderings of the α_{i} 's. We first note that the order of the α_{i} 's appearing in (1) is inessential because of

Lemma 2.1. If M^{\prime} is obtained from M by permuting $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$ in (2), then M and M^{\prime} are conjugate in $L_{\mathbf{z}}$.

Proof. We recall the well known argument used in the proof (for example, [1], p. 157) of the conjugacy of the Coxeter elements. A virtually identical argument will yield the lemma.

We find it convenient (and essential in the proof when $L=A_{n}, D_{n}$, n odd or E_{6}) to choose a particular order of the α_{i} 's in (2).
Let $\Pi=A \cup B$ be the partition of Π into two subsets each of which contains mutually orthogonal roots. Then, for any S, T and $r, s \in A$ or B, $r \neq s$, we have

$$
\begin{equation*}
\phi_{r}(S) \phi_{s}(T)=\phi_{s}(T) \phi_{r}(S) . \tag{4}
\end{equation*}
$$

The right element to deal with will be

$$
M=\prod_{a \in A} \phi_{a}\left(\begin{array}{rr}
1 & 1 \tag{5}\\
-1 & 0
\end{array}\right) \prod_{b \in B} \phi_{b}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) .
$$

3. Coxeter elements and the involution w_{0}. Let Φ^{+}(or Φ^{-}) be the set of positive (or negative) roots of L. Let w_{0} be the element of W such that $w_{0}\left(\Phi^{+}\right)=\Phi^{-}$, or equivalently, $l\left(w_{0}\right)=\left|\Phi^{+}\right|$, where l is the minimal length function. We recall that
3.1. (1) If $L=B_{n}, C_{n}, D_{n}(n$ even $), F_{4}, E_{7}, E_{8}$ or G_{2}, then $w_{0}=-I$, i.e.,

$$
w_{0}\left(\alpha_{i}\right)=-\alpha_{i}
$$

for all $\alpha_{i} \in \Pi$.
(2) If $L=A_{n}, D_{n}(n$ odd $)$ or E_{6}, then

$$
w_{0}\left(\alpha_{i}\right)=-\rho\left(\alpha_{i}\right)
$$

where ρ is the symmetry of the Dynkin diagram ([1], p. 200).
Let w be a Coxeter element of W. The order h of w is even except for the case when $L=A_{n}, n$ even. We put $h=2 k$. Then simple computations show that
3.2 (1) If $w_{0}=-I$ then $w^{k}=w_{0}$ for any Coxeter element w.
(2) If $L=A_{n}$ (n odd), D_{n} (n odd) or E_{6} then ($w^{k}=w_{0}$ is no longer true for an arbitrary Coxeter element w and)

$$
\left(w_{A} w_{B}\right)^{k}=w_{c}
$$

where

$$
w_{A} w_{B}=\prod_{a \in A} w_{a} \prod_{b \in B} w_{b}
$$

with $\Pi=A \cup B$ as in Section 2.
We need the following lemma on the orbits of Coxeter elements w.
Lemma 3.3. Suppose that h is even (i.e., $L \neq A_{n}, n$ even) and

$$
w=w_{\alpha_{1}} w_{\alpha_{2}} \ldots w_{\alpha_{n}}
$$

is a Coxeter element enjoying the property $w^{k}=w_{0}$. Let

$$
\begin{aligned}
& \beta_{1}=\alpha_{1} \\
& \beta_{j}=w_{\alpha_{1}} w_{\alpha_{2}} \ldots w_{\alpha_{j-1}}\left(\alpha_{j}\right), 2 \leqq j \leqq n
\end{aligned}
$$

Then

$$
w^{i}\left(\beta_{j}\right)>0
$$

for all $0 \leqq i \leqq k-1$ and $1 \leqq j \leqq n$.
Proof. Since $w^{k}=w_{0}$ and $l\left(w_{0}\right)=\left|\Phi^{+}\right|=k l(w)\left([1]\right.$, p. 165), $l\left(w^{i}\right)=$ $i l(w)$ for all $0 \leqq i \leqq k$. Suppose that i is the smallest nonnegative integer such that

$$
w^{i}\left(\beta_{j}\right)<0
$$

for some β_{j}. Then

$$
w^{i} w_{\alpha_{1}} w_{\alpha_{2}} \ldots w_{\alpha_{j-1}}\left(\alpha_{j}\right)<0
$$

and for the smallest j satisfying this relation, we have (cf [1], p. 18),

$$
l\left(w^{i} w_{\alpha_{1}} \ldots w_{\alpha_{j-1}} w_{\alpha_{j}}\right)=l\left(w^{i} w_{\alpha_{1}} \ldots w_{\alpha_{j-1}}\right)-1
$$

Then $l\left(w^{i+1}\right)<(i+1) l(w)$, and hence $i>k-1$.
Corollary 3.4. If $w=w_{A} w_{B}$ (and h is even) then

$$
\begin{aligned}
& w^{i}(a)>0 \\
& w^{i} w_{A}(b)>0
\end{aligned}
$$

for all $a \in A, b \in B$ and $0 \leqq i \leqq k-1$.
4. Proof of theorem. In this section, we assume that $L \neq A_{n}, n=1$ or n even, and by M and w we shall mean

$$
\begin{aligned}
M & =\prod_{a \in A} \phi_{a}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right) \prod_{b \in B} \phi_{b}\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right), \\
w & =w_{A} w_{B}
\end{aligned}
$$

For any $T \in S L_{2}(K)$, let

$$
\phi_{A}(T)=\prod_{n \in A} \phi_{u}(T), \quad \phi_{B}(T)=\prod_{b \in B} \phi_{b}(T) .
$$

Then by virtue of (4), we have

$$
\phi_{R}(S) \phi_{R}(T)=\phi_{R}(S T)
$$

for any $S, T \in S L_{2}(K)$ and $R=A$ or B. Let

$$
\begin{array}{ll}
x_{R}=\phi_{R}\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)=\prod_{r \in R} x_{r}(-1), \\
x_{-R}=\phi_{R}\left(\begin{array}{rr}
1 & 0 \\
1 & 1
\end{array}\right)=\prod_{r \in R} x_{-r}(1), \\
\omega_{R}=\phi_{R}\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right), & R=A, B .
\end{array}
$$

Then, from

$$
\left(\begin{array}{rr}
1 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
1 & -1 \\
0 & 1
\end{array}\right)\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)=\left(\begin{array}{rr}
1 & 0 \\
-1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

we obtain
(6) $M=x_{A} \omega_{A} x_{B} \omega_{B}$
and

$$
M=x_{-A}{ }^{-1} x_{A}{ }^{-1} x_{-B}{ }^{-1} x_{B}{ }^{-1} .
$$

Since $x_{\alpha_{i}}(s)$ and $x_{-\alpha_{j}}(t)$ commute, for any fundamental roots α_{i}, α_{j}, $\alpha_{i} \neq \alpha_{j}$, we have

$$
\begin{align*}
& x_{A}^{-1} x_{-B}^{-1}=x_{-B}^{-1} x_{A}{ }^{-1} \quad \text { and } \tag{7}\\
& M=x_{-A}^{-1} x_{-B}^{-1} x_{A}{ }^{-1} x_{B}{ }^{-1} .
\end{align*}
$$

Note also that, for $R=A$ or B and $r \in \Phi$,

$$
\begin{aligned}
& \omega_{R} x_{R} \omega_{R}{ }^{-1}=x_{-R}, \\
& \omega_{R} x_{r}(t) \omega_{R}^{-1}=x_{w_{R}(r)}(\pm t) .
\end{aligned}
$$

Thus if we let $\omega=\omega_{A} \omega_{B}$ and $\omega_{0}=\omega^{k}$, then

$$
\begin{aligned}
& \omega x_{r}(t) \omega^{-1}=x_{w(r)}(\pm t), \\
& \omega_{0} x_{r}(t) \omega_{0}{ }^{-1}=x_{u_{0}(r)}(\pm t)
\end{aligned}
$$

by virtue of 3.2 .
Now take the k th power of M written as (6). If we put $x_{A}\left(\omega_{A} x_{B} \omega_{A}{ }^{-1}\right)=$ y then $M=y \omega$ and

$$
M^{k}=y\left(\omega y \omega^{-1}\right) \ldots\left(\omega^{k-1} y \omega^{-k+1}\right) \omega_{0} .
$$

Since

$$
\omega^{i} y \omega^{-i}=\prod_{a \in \mathbb{A}} x_{w^{i}(a)}(\pm 1) \prod_{b \in B} x_{w^{i} w_{A}(b)}(\pm 1),
$$

Corollary 3.4 shows that

$$
\omega^{i} y \omega^{-i} \in U
$$

for all $0 \leqq i \leqq k-1$, where U is the unipotent subgroup $\left\langle x_{r}(t) \mid r \in \Phi^{+}\right\rangle$, as usual. Hence

$$
M^{k}=\tilde{y} \omega^{k}
$$

with $\tilde{y} \in U$. Then

$$
\begin{equation*}
M^{h}=M^{2 k}=\tilde{y}\left(\omega_{0} \tilde{y} \omega_{0}{ }^{-1}\right) \omega_{0}^{2} \tag{8}
\end{equation*}
$$

with $\tilde{y} \in U, \omega_{0} \tilde{y_{0}}{ }^{-1} \in U^{-}, \omega_{0}{ }^{2} \in H$ where

$$
U^{-}=\left\langle x_{r}(t) \mid r \in \Phi^{-}\right\rangle
$$

and H the Cartan subgroup, again, as usual. On the other hand the second expression (7) of M gives us
(9) $\quad M^{-1}=\left(x_{B} x_{A}\right)\left(x_{-B} x_{-A}\right)$
with $x_{B} x_{A} \in U$ and $x_{-B} x_{-A} \in U^{-}$. Since such a decomposition of an element of $L(K)$ is unique, (8) and (9) give us a clear indication of the next steps.

Let

$$
y=x_{A} \omega_{A} x_{B} \omega_{A}^{-1}, y^{\prime}=x_{-A} \omega_{A} x_{-B} \omega_{A}^{-1}, x=x_{B} x_{A}, x^{\prime}=x_{-B} x_{-A},
$$

so that $M^{-1}=x x^{\prime}$. First we verify
(10) $x=y\left(\omega x \omega^{-1}\right) y^{\prime-1}$
(11) $x^{\prime}=y^{\prime}\left(\omega x^{\prime} \omega^{-1}\right) y^{-1}$.

Proof. Simple substitutions give us

$$
y\left(\omega x \omega^{-1}\right) y^{\prime-1}=x_{A} \omega_{A} x_{B}\left(\omega_{B} x_{B} x_{A} x_{B}{ }^{-1} \omega_{B}{ }^{-1}\right) x_{A}{ }^{-1} \omega_{A}{ }^{-1} .
$$

Then from a simple calculation of 2×2 matrices we obtain

$$
\omega_{B} x_{B}=x_{B}{ }^{-1} x_{-B}{ }^{-1} .
$$

Consequently,

$$
\omega_{B} x_{B} x_{A} x_{B}{ }^{-1} \omega_{B}{ }^{-1}=x_{B}{ }^{-1} x_{-B}{ }^{-1} x_{A} x_{-B} x_{B}=x_{B}{ }^{-1} x_{A} x_{B} .
$$

Hence

$$
\begin{aligned}
y\left(\omega x \omega^{-1}\right) y^{\prime-1} & =x_{A} \omega_{A} x_{B}\left(x_{B}^{-1} x_{A} x_{B}\right) x_{A}^{-1} \omega_{A}{ }^{-1} \\
& =x_{A}\left(\omega_{A} x_{A} x_{B} x_{A}^{-1} \omega_{A}^{-1}\right) \\
& =x_{A}\left(x_{A}{ }^{-1} x_{B} x_{A}\right)=x_{B} x_{A} .
\end{aligned}
$$

Similarly we can verify (11).
By substituting the right hand side of (10) into x, we obtain

$$
x=y\left(\omega y \omega^{-1}\right)\left(\omega^{2} x \omega^{-2}\right)\left(\omega y^{\prime} \omega^{-1}\right)^{-1} y^{\prime-1}
$$

and repeating this substitution further we obtain

$$
x=\tilde{y}\left(\omega_{0} x \omega_{0}^{-1}\right) \tilde{y}^{\prime-1}
$$

where

$$
\begin{aligned}
& \tilde{y}=y\left(\omega y \omega^{-1}\right) \ldots\left(\omega^{k-1} y \omega^{-k+1}\right), \quad \text { (as above) } \\
& \tilde{y}^{\prime}=y^{\prime}\left(\omega y^{\prime} \omega^{-1}\right) \ldots\left(\omega^{k-1} y^{\prime} \omega^{-k+1}\right) .
\end{aligned}
$$

Since $x, \tilde{y} \in U$ and $\omega_{0} x \omega_{0}{ }^{-1}, \tilde{y}^{\prime} \in U^{-}$we have
(12) $x=\tilde{y}$,
(13) $\omega_{0} x \omega_{0}{ }^{-1}=\tilde{y}^{\prime}$.

Similarly, we can obtain, from (11)
(14) $x^{\prime}=\tilde{y}^{\prime}$,
(15) $\omega_{0} x^{\prime} \omega_{0}^{-1}=\tilde{y}$.

Hence
(16) $\quad x^{\prime}=\omega_{0} x \omega_{0}^{-1}=\omega_{0} \tilde{y} \omega_{0}^{-1}$.

Then (8), (9), (12) and (16) give us

$$
M^{h} \omega_{0}{ }^{2}=M^{-1}
$$

Since $\omega_{0}{ }^{2} x_{r}(t) \omega_{0}{ }^{-2}=x_{r}(\pm t)$ for all $r \in \Phi, \omega_{0}{ }^{2}$ is (loosely speaking) a diagonal element with entries 1 or -1 , and hence $\omega_{0}{ }^{4}=1$. However, in our case we can say a little more about $\omega_{0}{ }^{2}$. From (12), (13), (14), and (15), we obtain that

$$
\omega_{0}^{2} x \omega_{0}{ }^{-2}=x .
$$

Hence we have

$$
\omega_{0}{ }^{2} x_{\alpha}(-1) \omega_{0}{ }^{-2}=x_{\alpha}(-1)
$$

for all $\alpha \in \Pi$, which in turn, implies that

$$
\omega_{0}^{2} x_{r}(t) \omega_{0}^{-2}=x_{r}(t)
$$

for all $r \in \Phi$. Hence $\omega_{0}{ }^{2}$ is an element in the center of $L(K)$.
This completes the proof of our theorem for $L \neq A_{n}, n=1$ or n even. For the cases when $L=A_{1}$, or A_{n}, n even, we have to be content with the matrix M in Section 1.
5. Some remarks. (i) The identity (12) may be regarded as an identity for the commutator $x_{A}{ }^{-1} x_{B} x_{A} x_{B}{ }^{-1}$ written as the product of $x_{r}(t)$ with $t \neq 0$ for all r with $h(r) \geqq 2$, because (16) shows that

$$
\omega_{0} x_{\alpha}(-1) \omega_{0}^{-1}=\omega_{\alpha} x_{\alpha}(-1) \omega_{\alpha}^{-1} \quad(\alpha \in \Pi)
$$

and hence the last factor $\omega^{k-1} y \omega^{-k+1}$ of \tilde{y} is equal to $\left(\omega_{B}{ }^{-1} x_{A} \omega_{B}\right) x_{B}$.
(ii) If $L=G_{2}$ then $G_{2}(K)$ may be regarded as the automorphism group of the octanion algebra over K. Then the cyclic permutation of the seven basis elements $(\neq 1)$ is an element of order $h+1=7$.
(iii) For the case when $L=E_{7}$ or E_{8}, all the prime torsions of $L(\mathbf{Z})$ are given in [2], hence the existence of elements of order $h+1$. I wish to thank Professor Eckmann for bringing this paper to my attention.

References

1. R. W. Carter, Simple groups of Lie type (John Wiley, New York, 1972).
2. J.-P. Serre, Cohomologie des groupes discrets, Seminaire Bourbaki 399 (Springer Verlag, New York, 1971).

University of British Columbia ${ }_{i}$ Vancouver, British Columbia

