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Schreier families and F-(almost) greedy
bases
Kevin Beanland and Hùng Viê. t Chu
Abstract. Let F be a hereditary collection of finite subsets of N. In this paper, we introduce and
characterize F-(almost) greedy bases. Given such a family F, a basis (en)n for a Banach space X is
called F-greedy if there is a constant C ⩾ 1 such that for each x ∈ X, m ∈ N, and Gm(x), we have

∥x −Gm(x)∥ ⩽ C inf {∥x − ∑
n∈A

an en∥ ∶ ∣A∣ ⩽ m, A ∈ F, (an) ⊂ K} .

Here, Gm(x) is a greedy sum of x of order m, and K is the scalar field. From the definition, any F-
greedy basis is quasi-greedy, and so the notion of beingF-greedy lies between being greedy and being
quasi-greedy. We characterize F-greedy bases as being F-unconditional, F-disjoint democratic, and
quasi-greedy, thus generalizing the well-known characterization of greedy bases by Konyagin and
Temlyakov. We also prove a similar characterization for F-almost greedy bases.

Furthermore, we provide several examples of bases that are nontrivially F-greedy. For a count-
able ordinal α, we consider the case F = Sα , where Sα is the Schreier family of order α. We show
that for each α, there is a basis that is Sα -greedy but is not Sα+1-greedy. In other words, we prove
that none of the following implications can be reversed: for two countable ordinals α < β,

quasi-greedy ⇐� Sα -greedy ⇐� Sβ-greedy ⇐� greedy.

1 Introduction

A (semi-normalized) basis in a Banach space X over the field K is a countable
collection (en)n such that:

(i) span{en ∶ n ∈ N} = X,
(ii) there exists a unique sequence (e∗n)n ⊂ X∗ such that e∗i (e j) = δ i , j for all i , j ∈ N,

and
(iii) there exist c1 , c2 > 0 such that

0 < c1 ∶= inf
n
{∥en∥, ∥e∗n∥} ⩽ sup

n
{∥en∥, ∥e∗n∥} =∶ c2 < ∞.

In 1999, Konyagin and Temlyakov [15] introduced the thresholding greedy algorithm
(TGA), which picks the largest coefficients (in modulus) for the approximation. In
particular, for each x ∈ X and m ∈ N, a set Λm(x) is a greedy set of order m if
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2 K. Beanland and H.V. Chu

∣Λm(x)∣ = m and minn∈Λm(x) ∣e∗n(x)∣ ⩾ maxn∉Λm(x) ∣e∗n(x)∣. A greedy operator Gm ∶
X → X is defined as

Gm(x) = ∑
n∈Λm(x)

e∗n(x)en , for some Λm(x).

Note that Λm(x) (and thus, Gm(x)) may not be unique and Gm is not even linear.
The TGA is a sequence of greedy operators (Gm)∞m=1 that gives the corresponding
sequence of approximants (Gm(x))∞m=1 for each x ∈ X.

A basis (en)n for a Banach space X is called greedy if there is a C ⩾ 1 such that for
all x ∈ X , m ∈ N, and Gm ,

∥x − Gm(x)∥ ⩽ C inf {∥x − ∑
n∈A

an en∥ ∶ ∣A∣ ⩽ m, (an) ⊂ K} .

A basis is called quasi-greedy [15] if there is a C ⩾ 1 so that for all x ∈ X , m ∈ N, and
Gm , we have ∥Gm(x)∥ ⩽ C∥x∥. The smallest such C is denoted by Cw , called the quasi-
greedy constant. Also, for quasi-greedy bases, let C�, called the suppression quasi-greedy
constant, be the smallest constant such that

∥x − Gm(x)∥ ⩽ C�∥x∥,∀x ∈ X ,∀m ∈ N,∀Gm .

There are many examples of quasi-greedy bases that are not greedy (see [2, Example
10.2.9]), and there has been research on the existence of greedy bases for certain
classical spaces [13, 17].

In this paper, we introduce and study the notion of what we call F-greedy bases
which interpolate between greedy bases and quasi-greedy bases. Recall that a collec-
tion F of finite subsets of N is said to be hereditary if F ∈ F and G ⊂ F imply G ∈ F.
Definition 1.1 Let F be a hereditary collection of finite subsets of N. A basis (en)n is
F-greedy if there exists a constant C ⩾ 1 such that for all x ∈ X , m ∈ N, and Gm ,

∥x − Gm(x)∥ ⩽ CσF
m(x),

where

σF
m(x) ∶= inf {∥x − ∑

n∈A
an en∥ ∶ ∣A∣ ⩽ m, A ∈ F, (an) ⊂ K} .

The least constant C is denoted by CF
g .

Remark 1.2 In the case when F = P(N), F-greedy corresponds to greedy, and when
F = {∅}, F-greedy corresponds to quasi-greedy.

The first order of business is to generalize the theorem of Konyagin and Temlyakov,
which characterizes greedy bases as being unconditional and democratic. To do so, we
introduce the definitions of F-unconditionality and F-democracy. For various fami-
liesF, the notion ofF-unconditionality has appeared numerous times in the literature,
most notably in Odell’s result [16], which states that every normalized weakly null
sequence in a Banach space has a subsequence that is Schreier-unconditional. Also,
see [5–7] for other notion of unconditionality for weakly null sequences.

For a basis (en)n of a Banach space X and a finite set A ⊂ N, let PA ∶ X → X be
defined by PA(∑i e∗i (x)e i) = ∑i∈A e∗i (x)e i .
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Schreier families and F-(almost) greedy bases 3

Definition 1.3 A basis (en) of a Banach space X is F-unconditional if there exists a
constant C ⩾ 1 such that for each x ∈ X and A ∈ F, we have

∥x − PA(x)∥ ⩽ C∥x∥.

The least constant C is denoted by KF
s . We say that (en) is KF

s -F-suppression
unconditional.

As far as we know, the following natural definition has not appeared in the literature
before.

Definition 1.4 A basis (en) is F-disjoint democratic (F-disjoint superdemocratic,
respectively) if there exists a constant C ⩾ 1 such that

∥∑
i∈A

e i∥ ⩽ C ∥∑
i∈B

e i∥ (∥∑
i∈A

ε i e i∥ ⩽ C ∥∑
i∈B

δ i e i∥ , respectively) ,

for all finite sets A, B ⊂ N with A ∈ F, ∣A∣ ⩽ ∣B∣, A∩ B = ∅, and signs (ε i), (δ i). The
least constant C is denoted by CF

d ,⊔ CF
sd ,⊔, respectively. When F = P(N), we say that

(en) is (super)democratic.

One of our main results is the following generalization of the Konyagin–Temlyakov
theorem [15].

Theorem 1.5 A basis (en) in a Banach space X is F-greedy if and only if it is quasi-
greedy, F-unconditional, and F-disjoint democratic.

We also present another characterization regarding F-almost greedy bases.

Definition 1.6 A basis (en) is F-almost greedy if there exists a constant C ⩾ 1 such
that for all x ∈ X , m ∈ N, and Gm , we have

∥x − Gm(x)∥ ⩽ C inf{∥x − PA(x)∥ ∶ ∣A∣ ⩽ m, A ∈ F}.

The least constant C is denoted by CF
a .

The next theorem generalizes [14, Theorem 3.3].

Theorem 1.7 A basis (en) is F-almost greedy if and only if it is quasi-greedy and
F-disjoint democratic.

The second set of results in this paper focuses on the well-known Schreier families
(Sα)∞n=1 (for each countable ordinal α) introduced by Alspach and Argyros [4]. The
sequence of countable ordinals is

0, 1, . . . , n, . . . , ω, ω + 1, . . . , 2ω, . . . .

We recall the definition of Sα . For two sets A, B ⊂ N, we write A < B to mean that a < b
for all a ∈ A, b ∈ B. It holds vacuously that ∅ < A and ∅ > A. Also, n < A for a number
n means {n} < A. Let S0 be the set of singletons and the empty set. Supposing that Sα
has to be defined for some ordinal α ⩾ 0, we define

Sα+1 = {∪m
i=1E i ∶ m ⩽ E1 < E2 < ⋅ ⋅ ⋅ < Em and E i ∈ Sα ,∀1 ⩽ i ⩽ m}.
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If α is a limit ordinal, then fix αm + 1 ↗ α with Sαm ⊂ Sαm+1 for all m ⩾ 1 and define

Sα = {E ⊂ N ∶ for some m ⩾ 1, m ⩽ E ∈ Sαm+1}.

The following proposition is well known, but we include its proof for completion.

Proposition 1.8 Let α < β be two countable ordinals. There exists N ∈ N such that

E/{1, . . . , N − 1} ∈ Sβ ,∀E ∈ Sα .

Proof Fix two ordinals α < β. We prove by induction. Base cases: if β = 0, there is
nothing to prove. If β = 1, then α = 0. Clearly, S0 ⊂ S1. Inductive hypothesis: suppose
that the proposition holds for all η < β. If β is a successor ordinal, then write β = γ + 1.
Since α < β, we have α ⩽ γ. By the inductive hypothesis, there exists N ∈ N such that

E/{1, . . . , N − 1} ∈ Sγ ,∀E ∈ Sα .

By definition, Sγ ⊂ Sβ . Hence,

E/{1, . . . , N − 1} ∈ Sβ ,∀E ∈ Sα .

If β is a limit ordinal, then let βm ↗ β. There exists M ∈ N such that βM ⩾ α. By the
inductive hypothesis, there exists N1 ∈ N such that

E/{1, . . . , N1 − 1} ∈ SβM ,∀E ∈ Sα .

By definition,

E/{1, . . . , M − 1} ∈ Sβ ,∀E ∈ SβM .

Therefore,

E/{1, . . . , max{N1 , M} − 1} ∈ Sβ ,∀E ∈ Sα .

This completes our proof. ∎

We have the following corollary, which is proved in Section 4.

Corollary 1.9 For two countable ordinals α < β, an Sβ-greedy basis is Sα-greedy.

Each Schreier family Sα is obviously hereditary and is moreover spreading and
compact (see [6, pp. 1049 and 1051]). We shall show that each of the following
implications cannot be reversed: for two countable ordinals α < β,

quasi-greedy ⇐� Sα-greedy ⇐� Sβ-greedy ⇐� greedy.

We, thereby, study the greedy counterpart of the notion of Sα-unconditionality.

Theorem 1.10 For two countable ordinals α < β, there exists a Banach space X with an
Sα-greedy basis that is not Sβ-greedy.

Theorem 1.11 Fix a countable ordinal α.
(1) A basis is greedy if and only if it is C-Sα+m-greedy for all m ∈ N and some uniform

C ⩾ 1.
(2) There exists a basis that is Sα+m-greedy (with different constants) for all m ∈ N but

is not greedy.
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2 Characterizations of F-greedy bases

In this section, we prove Theorem 1.5 and other characterizations of F-greedy bases.
Throughout, F will be a hereditary family of finite subsets of N. We first need to
define Property (A, F), inspired by the classical Property (A) introduced by Albiac
and Wojtaszczyk in [3]. Write ⊔i∈I A i , for some index set I and sets (A i)i∈I , to mean
that the A i ’s are pairwise disjoint. Define 1A = ∑n∈A en and 1εA = ∑n∈A εn en , for some
signs (ε) = (εn)n ∈ KN.

Definition 2.1 A basis (en) is said to have Property (A, F) if there exists a constant
C ⩾ 1 such that

∥x +∑
i∈A

ε i e i∥ ⩽ C ∥x + ∑
n∈B

bn en∥ ,

for all x ∈ X with ∥x∥∞ ⩽ 1, for all finite sets A, B ⊂ N with ∣A∣ ⩽ ∣B∣, A ∈ F, A⊔ B ⊔
supp(x), and for all signs (ε i) and ∣bn ∣ ⩾ 1. The least constant C is denoted by CF

b .

Proposition 2.2 A basis (en) has CF
b -Property (A, F) if and only if

∥x∥ ⩽ CF
b ∥x − PA(x) + ∑

n∈B
bn en∥ ,(2.1)

for all x ∈ X with ∥x∥∞ ⩽ 1, for all finite sets A, B ⊂ N with ∣A∣ ⩽ ∣B∣, A ∈ F, B ∩ (A∪
supp(x)) = ∅, and ∣bn ∣ ⩾ 1.

Proof Assume (2.1). Let x , A, B, (ε), (bn)n∈B be as in Definition 2.1. Let y = x + 1εA.
By (2.1),

∥x + 1εA∥ = ∥y∥ ⩽ CF
b ∥y − PA(y) + ∑

n∈B
bn en∥ = CF

b ∥x + ∑
n∈B

bn en∥ .

Conversely, assume that (en) has CF
b -Property (A, F). Let x , A, B, (bn)n∈B be as in

(2.1). We have

∥x∥ = ∥x − PA(x) + ∑
n∈A

e∗n(x)en∥ ⩽ sup
(δ)

∥x − PA(x) + 1δA∥ by norm convexity

⩽ CF
b ∥x − PA(x) + ∑

n∈B
bn en∥ ,

where the last inequality is due to Property (A, F). ∎

Theorem 2.3 Let (en) be a basis for a Banach space X.

(1) The basis (en) is CF
g -F-greedy, then (en) is CF

g -F-suppression unconditional and
has CF

g -Property (A, F).
(2) The basis (en) is KF

s -F-suppression unconditional and has CF
b -Property (A, F),

then (en) is KF
s CF

b -F-greedy.
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Proof (1) Assume that (en) is CF
g -F-greedy. We shall show that (en) is

F-unconditional. Choose x ∈ X and a finite set B ∈ F. Set

y ∶= ∑
n∈B

(e∗n(x) + α)en + ∑
n∉B

e∗n(x)en ,

where α is sufficiently large such that B is a greedy set of y. Then

∥x − PB(x)∥ = ∥y − PB(y)∥ ⩽ CF
g σF
∣B∣(y) ⩽ CF

g ∥y − α1B∥ = CF
g ∥x∥.

Hence, (en) is CF
g -F-suppression unconditional.

Next, we prove Property (A, F). Choose x , A, B, (ε i), (bn)n∈B as in Definition 2.1.
Set y ∶= x + 1εA +∑n∈B bn en . Since B is a greedy set of y, we have

∥x + 1εA∥ = ∥y − PB(y)∥ ⩽ CF
g σF
∣B∣(y) ⩽ CF

g ∥y − PA(y)∥ = CF
g ∥x + ∑

n∈B
bn en∥ .

Therefore, (en) has CF
g -Property (A, F).

(2) Assume that (en) is KF
s -F-unconditional and has CF

b -Property (A, F). Let
x ∈ X with a greedy set A. Choose B ∈ F with ∣B∣ ⩽ ∣A∣ and choose (bn)n∈B ⊂ K. If
A/B = ∅, then A = B, and we have

∥x − PA(x)∥ = ∥x − PB(x)∥ ⩽ KF
s ∥x − PB(x) + ∑

n∈B
(e∗n(x) − bn)en∥

= KF
s ∥x − ∑

n∈B
bn en∥ .

Assume that A/B ≠ ∅. Note that B/A ∈ F as F is hereditary and minn∈A/B ∣e∗n(x)∣ ⩾
∥x − PA(x)∥∞. By Proposition 2.2, we have

∥x − PA(x)∥ ⩽ CF
b ∥(x − PA(x)) − PB/A(x) + PA/B(x)∥

= CF
b ∥x − PB(x)∥

⩽ CF
b KF

s ∥x − PB(x) + ∑
n∈B

(e∗n(x) − bn)en∥

= CF
b KF

s ∥x − ∑
n∈B

bn en∥ .

Since B and (bn) are arbitrary, we know that (en) is CF
b KF

s -F-greedy. ∎
We have the following immediate corollary.

Corollary 2.4 A basis (en) is 1-F-greedy if and only if it is 1-F-unconditional and has
1-Property (A, F).

The next proposition connects Property (A,F) and F-disjoint democracy.

Proposition 2.5 Let (en) be a quasi-greedy basis. Then (en) has Property (A, F) if and
only if (en) is F-disjoint democratic.

The proof of Proposition 2.5 uses the following results which can be found in [18]
and [12, Lemma 2.5].
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Lemma 2.6 Let (en) be a C�-suppression quasi-greedy basis. The following hold:
(1) For any finite set A ⊂ N and sign (εn)n , we have

1
2C�

∥∑
n∈A

en∥ ⩽ ∥∑
n∈A

εn en∥ ⩽ 2C� ∥∑
n∈A

en∥ .

(2) For all α > 0 and x ∈ X,
������������

∑
n∈Γα(x)

α sgn(e∗n(x))en + ∑
n/∈Γα(x)

e∗n(x)en

������������
⩽ C�∥x∥,

where Γα(x) = {n ∶ ∣e∗n(x)∣ > α}.
Proof of Proposition 2.5 It is obvious that Property (A, F) implies F-disjoint
democracy. Let us assume that (en) is CF

d ,⊔-F-disjoint democratic and is
C�-suppression quasi-greedy (or Cw -quasi-greedy). Let x , A, B, (bn), (ε i) be as in
Definition 2.1. Since B is a greedy set of x +∑n∈B bn en , we have

∥x + ∑
n∈B

bn en∥ ⩾ 1
Cw

∥∑
n∈B

bn en∥ ⩾ 1
Cw C�

∥∑
n∈B

sgn(bn)en∥ by Lemma 2.6

⩾ 1
2Cw C2

�

∥1B∥ by Lemma 2.6

⩾ 1
2Cw C2

�CF
d ,⊔

∥1A∥ ⩾ 1
4Cw C3

�CF
d ,⊔

∥1εA∥.

Again, since B is a greedy set of x +∑n∈B bn en ,

∥x + ∑
n∈B

bn en∥ ⩾ 1
C�

∥x∥.

Therefore, we obtain

2∥x + ∑
n∈B

bn en∥ ⩾ 1
4Cw C3

�CF
d
∥1εA∥ +

1
C�

∥x∥ ⩾ 1
4Cw C3

�CF
d
∥1εA + x∥.

We have shown that

∥x + 1εA∥ ⩽ 8Cw C3
�CF

d ∥x + ∑
n∈B

bn en∥ ,

which completes our proof that (en) has Property (A, F). ∎
Theorem 2.7 For a basis (en) of a Banach space X, the following are equivalent:
(1) (en) is F-greedy.
(2) (en) is F-unconditional and has Property (A, F).
(3) (en) is F-unconditional, F-disjoint superdemocratic, and quasi-greedy.
(4) (en) is F-unconditional, F-disjoint democratic, and quasi-greedy.
Proof of Theorem 2.7 By Theorem 2.3, we have that (1) ⇐⇒ (2). Since an F-greedy
basis is quasi-greedy, and Property (A, F) implies F-disjoint superdemocracy (by
definition), we get (1) ⇐⇒ (2) �⇒ (3). Trivially, (3) �⇒ (4). That (4) �⇒ (2) is due
to Proposition 2.5. ∎
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3 Characterizations of F-almost greedy bases

In this section, we first characterizeF-almost greedy bases using Property (A,F), then
show that theF-almost greedy property is equivalent to the quasi-greedy property plus
F-disjoint superdemocracy.

Theorem 3.1 A basis (en) is C-F-almost greedy if and only if (en) has C-Property
(A, F).

Proof of Theorem 3.1 The proof that C-F-almost greediness implies that C-Property
(A, F) is similar to what we have in the proof of Theorem 2.3. Conversely, assume
that (en) has C-Property (A, F). Let x ∈ X with a greedy set A. Choose B ∈ F with
∣B∣ ⩽ ∣A∣. If A/B = ∅, then A = B and ∥x − PA(x)∥ = ∥x − PB(x)∥. If A/B ≠ ∅, note that
minn∈A/B ∣e∗n(x)∣ ⩾ ∥x − PA(x)∥∞. By Proposition 2.2, we have

∥x − PA(x)∥ ⩽ C∥(x − PA(x)) − PB/A(x) + PA/B(x)∥
= C∥x − PB(x)∥.

Since B is arbitrary, we know that (en) is C-F-almost greedy. ∎

Theorem 3.2 Let (en) be a basis. The following are equivalent:

(1) (en) is F-almost greedy.
(2) (en) has Property (A, F).
(3) (en) is F-disjoint superdemocratic and quasi-greedy.
(4) (en) is F-disjoint democratic and quasi-greedy.

Proof of Theorem 3.2 That (1) ⇐⇒ (2) follows from Theorem 3.1. Clearly, an F-
almost greedy basis is quasi-greedy. By Proposition 2.5, we have (2) ⇐⇒ (4). Since (1)
⇐⇒ (2) �⇒ (3) �⇒ (4), we are done. ∎

Corollary 3.3 (Generalization of Theorem 2.3 in [1]) A basis (en) is 1-F-almost greedy
if and only if (en) has 1-Property (A, F).

4 Schreier families and Sα-greedy bases

In this section, we will provide several nontrivial examples of F-greedy basis. In
particular, we will consider bases that are quasi-greedy but not greedy. As mentioned
in the introduction, the Schreier families Sα form a particularly rich collection of finite
subsets of N.

Proof of Corollary 1.9 Fix two countable ordinals α < β. Let N be as in Proposi-
tion 1.8. Suppose that (en) is C-Sβ-greedy for some constant C ⩾ 1. By Theorems
1.5 and 2.3, (en) is C-Sβ-suppression unconditional, C-Sβ-disjoint democratic, and
C-suppression quasi-greedy.

We show that (en) is C-Sα-suppression unconditional. Let x ∈ X and E ∈ Sα . We
know that E/{1, . . . , N − 1} ∈ Sβ . Hence,

∥x − PE/{1, . . . ,N−1}(x)∥ ⩽ C∥x∥.
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We have

∥x − PE(x)∥ ⩽ ∥x − PE/{1, . . . ,N−1}(x)∥ + ∥PE∩{1, . . . ,N−1}(x)∥
⩽ C∥x∥ + N sup

n
∥en∥∥e∗n∥∥x∥ ⩽ (C + Nc2

2)∥x∥.

Therefore, (en) is Sα-suppression unconditional.
Next, we show that (en) is C-Sα-disjoint democratic. Let A ∈ Sα and B ⊂ N such

that A∩ B = ∅ and ∣A∣ ⩽ ∣B∣. Since A/{1, . . . , N − 1} ∈ Sβ , we have

∥1A/{1, . . . ,N−1}∥ ⩽ C∥1B∥.

Also, due to C-quasi-greediness,

C∥1B∥ ⩾ c1 .

Hence,

∥1A∥ ⩽ ∥1A/{1, . . . ,N−1}∥ + ∥1A∩{1, . . . ,N−1}∥

⩽ C∥1B∥ + c2N ⩽ C∥1B∥ +
Cc2N

c1
∥1B∥ = C (1 + N c2

c1
)∥1B∥.

Therefore, (en) is Sα-disjoint democratic.
By Theorem 1.5, we conclude that (en) is Sα-greedy. ∎
We have

quasi-greedy ⇐� Sα-greedy ⇐� Sβ-greedy ⇐� greedy.

We construct bases to show that none of the reverse implications holds. Consider the
following definition.

Definition 4.1 Let ω1 denote the set of all countable ordinals and (α, β) ∈ (ω1 ∪
{∞})2. A quasi-greedy basis (en) for a Banach space X is called (α, β)-quasi-greedy
if and only if (en) is Sα-unconditional but not Sα+1-unconditional and Sβ-disjoint
democratic but not Sβ+1-disjoint democratic.

Suppose that either α or β is ∞. If we denote by S∞ the set of all finite subsets of N,
thenS∞-unconditionality andS∞-disjoint democracy coincide with unconditionality
and disjoint democracy, respectively.

Remark 4.2 Due to the proof of Corollary 1.9, a basis (en) for a Banach space X
is Sη-greedy if and only if it is (α, β)-quasi-greedy for some α ⩾ η and β ⩾ η. Note
also that the (∞,∞)-quasi-greedy property is the same as the greedy property, and a
(0, 0)-quasi-greedy basis is quasi-greedy but is far from being greedy.

We prove Theorem 1.10 by providing the following examples.

Theorem 4.3 There are spaces with bases (en) that are (0, 0)-quasi-greedy, (∞, 0)-
quasi-greedy, and (0,∞)-quasi-greedy.

Theorem 4.4 Fix a nonzero α ∈ ω1. There is a space Xα ,∞ with a basis (en) that is
(α,∞)-quasi-greedy. Hence, Xα ,∞ is Sα-greedy but not Sα+1-greedy.

Theorem 4.5 Fix a nonzero α ∈ ω1. There is a space X∞,α with a basis (en) that is
(∞, α)-quasi-greedy. Hence, X∞,α is Sα-greedy but not Sα+1-greedy.
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10 K. Beanland and H.V. Chu

Remark 4.6 The bases we construct in Theorem 4.4 give new examples of conditional
quasi-greedy bases. Furthermore, these bases are 1-suppression quasi-greedy.

4.1 Proof of Theorem 4.3

4.1.1 A (0, 0)-quasi-greedy basis

We modify an example by Konyagin and Temlyakov [15] who gave a conditional
basis that is quasi-greedy. We shall construct a quasi-greedy basis that is neither
S1-disjoint democratic nor S1-unconditional. For each N ∈ N, let XN be the (2N − 1)-
dimensional space that is the completion of c00 under the norm: for x = (a i)i ,

∥(a i)i∥ = max
⎧⎪⎪⎨⎪⎪⎩
(

2N−1
∑
i=1

∣a i ∣2)
1/2

, sup
N⩽m⩽2N−1

∣
m
∑
i=N

1√
i − N + 1

a i ∣
⎫⎪⎪⎬⎪⎪⎭

.

Let X = (⊕∞N=1 XN)c0 . Let B be the canonical basis of X.

Theorem 4.7 The basis B is (0, 0)-quasi-greedy.

Proof First, we show that B is not S1-unconditional. For each XN , let ( f N
i )2N−1

i=1 be
the canonical basis of XN (that also belongs to B). We have

∥
2N−1
∑
i=N

1√
i − N + 1

f N
i ∥ =

N
∑
i=1

1
i

, while ∥
2N−1
∑
i=N

(−1)i
√

i − N + 1
f N
i ∥ = (

N
∑
i=1

1
i
)

1/2

.

As N →∞, ∥∑2N−1
i=N

1√
i−N+1

f N
i ∥ / ∥∑2N−1

i=N
(−1)i
√

i−N+1
f N
i ∥ → ∞; hence, B is not S1-

unconditional.
Next, we show that B is not S1-disjoint democratic. We have

∥
2N−1
∑
i=N

f N
i ∥ =

N
∑
i=1

1√
i

, while ∥
2N
∑

i=N+1
f i
1 ∥ = 1.

Therefore, B is not S1-disjoint democratic.
Finally, we prove that B is quasi-greedy. To do so, we need only to show that

for each N, the basis ( f N
i )2N−1

i=1 has the same quasi-greedy constant of 3 +
√

2. Let
(a i)2N−1

i=1 ∈ XN , where ∥(a i)i∥ ⩽ 1. It suffices to prove that

∣∑
i∈Λ

1√
i − N + 1

a i ∣ ⩽ 3 +
√

2,

for all ε > 0, for all M ∈ [N , 2N − 1], and for Λ = {N ⩽ i ⩽ M ∶ ∣a i ∣ > ε}. Since
∥(a i)i∥ ⩽ 1, we know that ∣a i ∣ ⩽ 1, and so we can assume that 0 < ε < 1. Set L = ⌊ε−2⌋
to have 1/2 ⩽ ε2L ⩽ 1. We proceed by case analysis.
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Case 1: M − N + 1 ⩽ L. We have

∣∑
i∈Λ

a i√
i − N + 1

∣ ⩽ ∣ ∑
N⩽i⩽M

a i√
i − N + 1

∣ +

3333333333333333
∑

N⩽i⩽M
∣a i ∣⩽ε

a i√
i − N + 1

3333333333333333

⩽ 1 + ε
M
∑
i=N

1√
i − N + 1

⩽ 1 + ε
M−N+1
∑
i=1

1√
i

⩽ 1 + 2ε
√

M − N + 1 ⩽ 1 + 2ε
√

L ⩽ 3.

Case 2: M − N + 1 > L. We have

∣∑
i∈Λ

a i√
i − N + 1

∣ =

3333333333333333
∑

N⩽i⩽N+L−1
∣a i ∣>ε

a i√
i − N + 1

3333333333333333

+

3333333333333333
∑

N+L⩽i⩽M
∣a i ∣>ε

a i√
i − N + 1

3333333333333333

.

By above,
3333333333333333

∑
N⩽i⩽N+L−1
∣a i ∣>ε

a i√
i − N + 1

3333333333333333

⩽ 3.

Furthermore, we have
3333333333333333

∑
N+L⩽i⩽M
∣a i ∣>ε

a i√
i − N + 1

3333333333333333

⩽ ( ∑
N+L⩽i⩽M

1
(i − N + 1)3/2 )

1/3 ⎛
⎜⎜
⎝

∑
N+L⩽i⩽M
∣a i ∣>ε

∣a i ∣3/2
⎞
⎟⎟
⎠

2/3

⩽ (
∞
∑

i=L+1

1
i3/2 )

1/3 ⎛
⎜⎜
⎝

∑
N+L⩽i⩽M
∣a i ∣>ε

∣a i ∣3/2
√

∣a i ∣
ε

⎞
⎟⎟
⎠

2/3

⩽ 21/3L−1/6ε−1/3 ⩽
√

2.

This completes our proof. ∎

4.1.2 An (∞, 0)-quasi-greedy basis

Define

F ∶= {A ⊂ N ∶ A is finite and does not contain even integers}.

LetX be the completion of c00 with respect to the following norm: for x = (x1 , x2 , . . .),
let

∥x∥ ∶=
⎛
⎝∑2∣i

∣x i ∣
⎞
⎠
+
⎛
⎝∑2∤i

∣x i ∣2
⎞
⎠

1/2

.
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12 K. Beanland and H.V. Chu

Let B be the canonical basis. Clearly, B is 1-unconditional. Note that B is not S1-
disjoint democratic. To see this, fix N ∈ N and choose A = {1, 3, 5, . . . , 2N − 1} and
B = {2N , 2N + 2, 2N + 4, . . . , 4N − 2} ∈ S1. Then ∥1A∥ =

√
N , while ∥1B∥ = N . Hence,

∥1B∥/∥1A∥ → ∞ as N →∞. It follows that B is not S1-disjoint democratic.

4.1.3 A (0,∞)-quasi-greedy basis

We define the spaces XN as in Section 4.1.1: for each N ∈ N, let XN be the (2N − 1)-
dimensional space that is the completion of c00 under the norm: for x = (a i)i ,

∥(a i)i∥ = max
⎧⎪⎪⎨⎪⎪⎩
(

2N−1
∑
i=1

∣a i ∣2)
1/2

, sup
N⩽m⩽2N−1

∣
m
∑
i=N

1√
i − N + 1

a i ∣
⎫⎪⎪⎬⎪⎪⎭

.

Let X = (⊕∞N=1 XN)�2 . Let B be the canonical basis of X. Using the same argument as
in Section 4.1, we know that B is quasi-greedy and is not S1-unconditional. We show
that B is democratic. Let A ⊂ B be a nonempty finite set. Write A = ⋃∞N=1 AN , where
AN is the intersection of A and the canonical basis of XN . We have

∥∑
e∈A

e∥ =
⎛
⎝
∞
∑
N=1

�����������
∑

e∈AN

e
�����������

2⎞
⎠

1/2

⩾ (
∞
∑
N=1

∣AN ∣)
1/2

= ∣A∣1/2 .

On the other hand, for each N,
�����������
∑

e∈AN

e
�����������
⩽
∣AN ∣
∑
i=1

1√
i
⩽ 2

√
∣AN ∣.

Therefore,

∥∑
e∈A

e∥ =
⎛
⎝
∞
∑
N=1

�����������
∑

e∈AN

e
�����������

2⎞
⎠

1/2

⩽ 2(
∞
∑
N=1

∣AN ∣)
1/2

= 2∣A∣1/2 .

We have shown that ∣A∣1/2 ⩽ ∥∑e∈A e∥ ⩽ 2∣A∣1/2, so B is democratic.

4.2 An (α,∞)-quasi-greedy basis

Fix a nonzero α ∈ ω1 and consider the following collection subsets related to Sα :

Fα = {∪r
i=1E i ∶ r/2 ⩽ E1 < E2 < ⋅ ⋅ ⋅ < Er are in Sα−1}.

The family F1 (among others) recently appeared in [10].

Lemma 4.8 Let F ∈ Fα . Then F can be written as the union of two disjoint sets in Sα .

Proof Write F = ∪r
i=1E i , where r/2 ⩽ E1 < E2 < ⋅ ⋅ ⋅ < Er and sets E i ∈ Sα−1. Discard

all the empty E i and renumber to have nonempty sets E′i satisfying r/2 ⩽ E′1 < E′2
< ⋅ ⋅ ⋅ < E′� for some � ⩽ r. Let s = ⌈r/2⌉.

Case 1: s ⩾ �. Then s ⩽ E′1 < E′2 < ⋅ ⋅ ⋅ < E′� implies that F = ∪�
i=1E′i ∈ Sα . We are done.

Case 2: s < �. Let F1 = ∪s
i=1E′i , which is in Sα due to Case 1. Note that

s + 1 ⩽ E′s+1 < ⋅ ⋅ ⋅ < E′�;
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furthermore, � − s ⩽ r − s ⩽ s + 1. Therefore, F2 ∶= ∪�
i=s+1E′i ∈ Sα . Since F = F1 ∪ F2, we

are done. ∎

Clearly, Sα ⊂ Fα . Let Xα ,∞ be the completion of c00 under the following norm: for
(a i) ∈ c00,

∥(a i)∥Xα ,∞ ∶= sup
⎧⎪⎪⎨⎪⎪⎩

d
∑
j=1

333333333333
∑
i∈I j

a i

333333333333
∶ I1 < I2 < ⋅ ⋅ ⋅ < Id intervals, (min I j)d

j=1 ∈ Fα

⎫⎪⎪⎬⎪⎪⎭
.

The space Xα ,∞ above is the Jamesfication of the combinatorial space X[Fα] (see [8,
11]) and is denoted by J(X[Fα]).

Theorem 4.9 The standard basis (en) for the space Xα ,∞ is (α,∞)-quasi-greedy.

We prove the above theorem through the following propositions. Let us start with
the easiest one.

Proposition 4.10 The basis (en) is democratic and Fα-unconditional, and thus
Sα-unconditional.

Proof It follows directly from the definition of ∥ ⋅ ∥ that for x ∈ X and F ∈ Fα ,

∥∑
i∈F

e∗i (x)e i∥
Xα ,∞

= ∑
i∈F

∣e∗i (x)∣ ⩽ ∥x∥Xα ,∞ .

Hence, (en) is Fα-unconditional.
Let A, B ⊂ N with ∣A∣ ⩽ ∣B∣. By Proposition 1.8, there exists N ∈ N⩾6 such that

E/{1, . . . , N − 1} ∈ Fα ,∀E ∈ S1 .

Without loss of generality, assume that ∣B∣ ⩾ N2. Let B′ ⊂ B such that ∣B′∣ ⩾ ∣B∣/2 and
B′ ∈ S1 ⊂ F1. Form B′′ = B′/{1, . . . , N − 1} ∈ Fα . We have

∥1B∥ ⩾ ∣B′′∣ ⩾ ∣B′∣ − N ⩾ ∣B∣/3 ⩾ ∣A∣/3 ⩾ ∥1A∥/3.

Therefore, (en) is democratic. ∎

Proposition 4.11 The basis (en) for the space Xα ,∞ is 1-suppression quasi-greedy.

Proof Let x = (a i) ∈ Xα ,∞ and ∣aN ∣ = ∥x∥∞. By induction, we need only to show
that

∥x − aN eN∥ ⩽ ∥x∥.

Suppose, for a contradiction, that ∥x − aN eN∥ > ∥x∥. Removing the Nth coefficient
aN increases the norm implies that there exists an admissible set of intervals {I j}d

j=1
satisfying:
(1) amin I j amax I j ≠ 0 for all 1 ⩽ j ⩽ d,
(2) for some k, N ∈ Ik and min Ik < N < max Ik ,
(3) ∑1⩽ j⩽d , j≠k ∣∑i∈I j

a i ∣ + ∣∑i∈Ik , i≠N a i ∣ > ∥x∥.
For two integers a ⩽ b, let [a, b] = {a, a + 1, . . . , b}; when a > b, we let [a, b] = ∅. We
form a new sequence of intervals as follows: if k > 1,
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14 K. Beanland and H.V. Chu

I′1 = I1/min I1 , I′2 = I2 , . . . , I′k−1 = Ik−1 ,
I′k = [min Ik , N − 1], I′k+1 = {N}, I′k+2 = [N + 1, max Ik],
I′k+3 = Ik+1 , . . . , I′d+2 = Id .

If k = 1, then

I′1 = [min I1 + 1, N − 1], I′2 = {N}, I′3 = [N + 1, max I1],
I′4 = I2 , . . . , I′d+2 = Id .

To see that {I′j}d+2
j=1 is admissible, we need to show {min I′j}d+2

j=1 ∈ Fα . We consider
only the case when k > 1; the case k = 1 is similar. By construction,

{min I′j ∶ 1 ⩽ j ⩽ d + 2} = {min(I1/min I1)} ∪ {min I j ∶ 2 ⩽ j ⩽ d} ∪ {N , N + 1}.

Let A = {min I j}d
j=1 and B = {min(I1/min I1)} ∪ {min I j ∶ 2 ⩽ j ⩽ d}. Since

min B − min A ⩾ 1 and A ∈ Fα , we know that B ∪ {N , N + 1} ∈ Fα .
We now use the admissible set (I′j)d+2

j=1 to obtain a contradiction. Write

∥x∥ ⩾
d+2
∑
j=1

3333333333333
∑
i∈I′j

a i

3333333333333
= ∑

j=1,k ,k+1,k+2

3333333333333
∑
i∈I′j

a i

3333333333333
+ ∑

j≠1,k ,k+1,k+2

3333333333333
∑
i∈I′j

a i

3333333333333
.(4.1)

Since ∣aN ∣ ⩾ ∣amin I1 ∣, we have

∑
j=1,k ,k+1,k+2

3333333333333
∑
i∈I′j

a i

3333333333333
⩾
⎛
⎝

33333333333
∑
i∈I1

a i

33333333333
− ∣amin I1 ∣

⎞
⎠
+
33333333333

N−1
∑

i=min Ik

a i

33333333333
+ ∣aN ∣ + ∣

max Ik

∑
i=N+1

a i ∣

⩾
33333333333
∑
i∈I1

a i

33333333333
+
33333333333

∑
i∈Ik , i≠N

a i

33333333333
.(4.2)

Furthermore, by definition,

∑
j≠1,k ,k+1,k+2

3333333333333
∑
i∈I′j

a i

3333333333333
=

k−1
∑
j=2

333333333333
∑
i∈I j

a i

333333333333
+

d
∑

j=k+1

333333333333
∑
i∈I j

a i

333333333333
.(4.3)

By (4.1)–(4.3), we conclude that

∥x∥ ⩾ ∑
1⩽ j⩽d , j≠k

333333333333
∑
i∈I j

a i

333333333333
+
33333333333

∑
i∈Ik , i≠N

a i

33333333333
∥x∥,

which is a contradiction. Therefore, (en) is a 1-suppression quasi-greedy. ∎

Corollary 4.12 The basis (en) is Fα-greedy and, thus, is Sα-greedy.

Proof Use Theorem 2.7 and Propositions 4.10 and 4.11. ∎

It remains to show that (en) is not Sα+1-unconditional and, thus, not Sα+1-greedy.
This part of the proof will require the repeated averages hierarchy [6, p. 1053].
However, for our purposes, we only need the following lemma, a weaker result than
[9, Proposition 12.9].
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Lemma 4.13 For each α ∈ ω1, ε > 0, and N ∈ N, there is a sequence (aα
k )∞k=1 satisfying:

(1) aα
k ⩾ 0 for each k ∈ N and ∥(aα

k )k∥�1 = 1,
(2) {k ∶ aα

k ≠ 0} is an interval and a maximal Sα+1-set,
(3) L ∶= min{k ∶ aα

k ≠ 0} > N and (aα
k )k⩾L is monotone decreasing,

(4) for each G ∈ Sα , we have ∑k∈G aα
k < ε.

Choose N such that

E/{1, . . . , N − 1} ∈ Sα ,∀E ∈ S1 .

Fix ε > 0 and find (aα
k ) satisfying Lemma 4.13 with N chosen as above. Since

F = {k ∶ aα
k /= 0} ∈ Sα+1, write F = ∪m

i=1E i , where m ⩽ E1 < E2 < ⋅ ⋅ ⋅ < Em and E i ∈ Sα .
Since F is an interval, each E i is an interval; furthermore, N < {min E i ∶ 1 ⩽ i ⩽
m} ∈ S1. Hence, {min E i ∶ 1 ⩽ i ⩽ m} ∈ Sα ⊂ Fα . By Lemma 4.13(1) and (2), we have
∥∑k∈F aα

k ek∥ = 1.
We estimate ∑k∈F(−1)k aα

k ek . Let I1 < ⋅ ⋅ ⋅ < Id be intervals so that (min I j)d
j=1 ∈

Fα and aα
min I j

≠ 0. For any interval I j , ∣∑i∈I j
(−1)k aα

k ∣ ⩽ 2aα
min I j

because (aα
k )k is

monotone decreasing. Therefore,

d
∑
j=1

333333333333
∑
k∈I j

(−1)k aα
k

333333333333
⩽

d
∑
j=1

2aα
min I j

.

By Lemma 4.8, we can write the set {min I1 , min I2 , . . . , min Id} as the union of two
disjoint sets A1 and A2 in Sα . By Lemma 4.13(3), we obtain

d
∑
j=1

aα
min I j

= ∑
i∈A1

aα
i + ∑

i∈A2

aα
i < 2ε.

Thus, ∥∑k∈F(−1)k aα
k ek∥ < 4ε. As ε was arbitrary and F ∈ Sα+1, we see that (en) is not

Sα+1-unconditional.

4.3 An (∞, α)-quasi-greedy basis

4.3.1 Repeated average hierarchy

Let [N] denote the collection of all infinite subsequences of N. Similarly, if M ∈ [N],
then [M] denotes the collection of all infinite subsequences of M.

Definition 4.14 Let B = (en) be the canonical basis of c00. For every countable
ordinal α and M = (mn)∞n=1 ∈ [N], we define a convex block sequence (α(M , n))∞n=1
of B by transfinite induction on α. If α = 0, then α(M , n) ∶= emn . Assume that
(β(M , n))∞n=1 has been defined for all β < α and all M ∈ [N]. For M ∈ [N], we define
(α(M , n))∞n=1.

If α is a successor ordinal, write α = β + 1. Set

α(M , 1) ∶= 1
m1

m1

∑
n=1

β(M , n).
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Suppose that α(M , 1) < ⋅ ⋅ ⋅ < α(M , n) have been defined. Let

Mn+1 ∶= {m ∈ M ∶ m > max supp(α(M , n))} and kn ∶= min Mn+1 .

Set

α(M , n + 1) ∶= 1
kn

kn

∑
i=1

β(Mn+1 , i).

If α is a limit ordinal, let (αn + 1) ↗ α. Set

α(M , 1) ∶= (αm1 + 1)(M , 1).

Suppose that α(M , 1) < ⋅ ⋅ ⋅ < α(M , n) have been defined. Let

Mn+1 ∶= {m ∈ M ∶ m > max supp(α(M , n))} and kn ∶= min Mn+1 .

Set

α(M , n + 1) ∶= (αkn + 1)(Mn+1 , 1).

Lemma 4.15 For each ordinal α ⩾ 1 and M ∈ [N], we have

∥α(M , n)∥�1 = 1 and 0 ⩽ e∗i (α(M , n)) ⩽ 1
min supp(α(M , n)) ,∀n, i ∈ N.(4.4)

Proof The proof is immediate from induction. ∎

Proposition 4.16 Fix α < β. For all N ∈ N and M ∈ [N], there exists L ∈ [M] such that
min L > N and

∥β(L, 1)∥α < 3
min L

,

where

∥(an)∥α ∶= sup
F∈Sα

∑
n∈F

∣an ∣.

Remark 4.17 See [9, Proposition 2.3] for the case when α is a finite ordinal. Our proof
of Proposition 4.16 is a combination of ideas used in the proofs of [9, Proposition 2.3]
and [5, Proposition 2.15].

Proof of Proposition 4.16 We prove by transfinite induction on β. Base case: β = 1.
Then α = 0. Let N ∈ N and M = (mn)∞n=1 ∈ [N]. Let mk be the smallest such that
mk > N . Choose L = (mn)n⩾k . We have

∥1(L, 1)∥0 = 1
min L

< 3
min L

.

Indeed, for finite ordinals β ⩾ 1, we know the conclusion holds by [9, Proposition 2.3].
Inductive hypothesis: suppose that the statement holds for all η < β for some β ⩾ ω.
We need to show that it also holds for β.
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Case 1: β is a limit ordinal. Let (βn + 1) ↗ β and α < β. Choose m > N such
that βm > α. Set L1 ∶= M∣>m and � ∶= min L1 > m. Note that � ⩾ 3. By the inductive
hypothesis, there exists L2 ∈ [M] such that min L2 > max supp(β�(L1 , 1)) and

∥β�(L2 , 1)∥α < 3
min L2

.

Repeat the process to find subsequences L3 , . . . , L� ∈ [M] such that

supp(β�(L1 , 1)) < supp(β�(L2 , 1)) < ⋅ ⋅ ⋅ < supp(β�(L� , 1))

and

∥β�(Ln , 1)∥α < 3
min Ln

,∀ 2 ⩽ n ⩽ �.

Let L ∶= ∪�−1
n=1 supp(β�(Ln , 1)) ∪ L� ∈ [M]. Then min L > N . By definition,

β(L, 1) ∶= (β� + 1)(L, 1) = 1
�

�

∑
n=1

β�(L, n) = 1
�

�

∑
n=1

β�(Ln , 1).

We have

∥β(L, 1)∥α ⩽ 1
�

�

∑
n=1

∥β�(Ln , 1)∥α

⩽ 1
�
+ 1
�
( 3

min L2
+ ⋅ ⋅ ⋅ + 3

min L�
)

⩽ 1
�
+ 1
�

3
min L2

(1 + 1
8
+ 1

82 + ⋅ ⋅ ⋅ ) by Lemma A.2

= 1
�
(1 + 24

7 min L2
) < 3

�
.

Case 2: β is a successor ordinal. Write β = η + 1.
(1) Case 2.1: α < η. Set L1 ∶= M∣>N+1 and � ∶= min L1 ⩾ 3. By the inductive hypothesis,

there exists L2 ∈ [M] such that min L2 > max supp(η(L1 , 1)) and

∥η(L2 , 1)∥α < 3
min L2

.

Repeat the process to find subsequences L3 , . . . , L� such that

supp(η(L1 , 1)) < supp(η(L2 , 1)) < ⋅ ⋅ ⋅ < supp(η(L� , 1))

and

∥η(Ln , 1)∥α < 3
min Ln

,∀2 ⩽ n ⩽ �.

Let L ∶= ∪�−1
n=1 supp(η(Ln , 1)) ∪ L� ∈ [M]. Then min L > N . By definition,

β(L, 1) ∶= (η + 1)(L, 1) = 1
�

�

∑
n=1

η(L, n) = 1
�

�

∑
n=1

η(Ln , 1).

Similar to Case 1, we have ∥β(L, 1)∥α < 3/�.
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(2) Case 2.2: α = η. Let (αn + 1) ↗ α and Sαn ⊂ Sαn+1 for all n ⩾ 1. Set L1 ∶= M∣>N+1
and � ∶= min L1 ⩾ 3. We have

(α� + 1)(L1 , 1) = α(L1 , 1).

Let k1 = max supp(α(L1 , 1)). By the inductive hypothesis, find L2 ∈ [M]with k1 <
min L2 and

∥α(L2 , 1)∥αk1
< 3

min L2
.

Repeat the process to find subsequences L3 , . . . , L� ∈ [M] such that

supp(α(L1 , 1)) < supp(α(L2 , 1)) < ⋅ ⋅ ⋅ < supp(α(L� , 1))

and if kn = max supp(α(Ln , 1)), we have

∥α(Ln , 1)∥αkn−1
< 3

min Ln
,∀2 ⩽ n ⩽ �.

Let L ∶= ∪�−1
n=1 supp(α(Ln , 1)) ∪ L� ∈ [M]. Then β(L, 1) ∶= 1

� ∑
�
n=1 α(Ln , 1).

It holds that ∥β(L, 1)∥α < 3
�

. Indeed, let G ∈ Sα . Suppose that k ∶= min G ∈
supp(α(L j0 , 1)). Then k ⩽ k j0 . By the definition of Sα , choose p ⩽ k such that
G ∈ Sαp+1. Finally, let q ⩽ k be such that G = ∪q

n=1Gn , where G1 < G2 < ⋅ ⋅ ⋅ < Gq
and Gn ∈ Sαp . For j0 < n ⩽ �, because p ⩽ k ⩽ kn−1, we obtain Sαp ⊂ Sαkn−1

and

∥α(Ln , 1)∥αp ⩽ ∥α(Ln , 1)∥αkn−1
< 3

min Ln
.

Therefore,

∑
n∈G

e∗n(α(Ln , 1)) ⩽ q 3
min Ln

,∀ j0 < n ⩽ �.

Noting that q ⩽ k ⩽ k j0 < min L j0+1 ⩽ 1
8 min L j0+2 by Lemma A.2, we have

∑
n∈G

e∗n(β(L, 1)) = 1
�

⎛
⎝

1 + 1 + 3q
�

∑
n= j0+2

1
min Ln

⎞
⎠

⩽ 1
�
(2 + 24q

7 min L j0+2
) < 3

�
.

We have completed the proof. ∎

4.3.2 An (∞, α)-quasi-greedy basis

By Proposition 4.16, we can find infinitely many Sα+1-maximal sets F1 < F2 <
F3 < ⋅ ⋅ ⋅ and for each set Fi , coefficients (wn)n∈Fi , such that ∑n∈Fi

wn = 1, while
�����������

min Fi ⋅ ∑
n∈Fi

wn en

�����������α

< 3.
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Let X be the completion of c00 under the norm:

∥(an)n∥ ∶= sup
Fi

⎧⎪⎪⎨⎪⎪⎩
max

n
∣an ∣, min Fi ⋅ ∑

n∈Fi

wn ∣an ∣
⎫⎪⎪⎬⎪⎪⎭

.

Let B be the canonical basis.

Claim 4.18 The basis B is 1-unconditional and normalized.

Proof That B is 1-unconditional is obvious. Let us show that ∥en∥ = 1 for all n ∈ N.
Fix n ∈ N. Due to the appearance of ∥ ⋅ ∥∞, ∥en∥ ⩾ 1. Since min Fi ⋅wn ⩽ 1 for all i ∈ N
and n ∈ Fi according to Lemma 4.15, ∥en∥ ⩽ 1. Hence, ∥en∥ = 1. ∎
Claim 4.19 The basisB is Sα-disjoint democratic. In particular, ∥1A∥ < 3 for all A ∈ Sα .

Proof Choose A ∈ Sα . For any Fi , we have

min Fi ⋅ ∑
n∈A∩Fi

wn ⩽
�����������

min Fi ⋅ ∑
n∈Fi

wn en

�����������α

< 3.

Therefore, ∥1A∥ < 3. ∎
Claim 4.20 The basis B is not Sα+1-disjoint democratic.

Proof Choose Fi , which is a maximal Sα+1-set. Let A be an Sα-set with ∣Fi ∣ ⩽ ∣A∣
and Fi ⊔ A. By how Fi ’s are defined, ∥1Fi ∥ = min Fi . On the other hand, we have that
∥1A∥ < 3 by Claim 4.19. Since ∥1Fi ∥/∣1A∥ > min Fi/3 →∞ as i →∞, the basis B is not
Sα+1-disjoint democratic. ∎

By Claims 4.18–4.20, our basis B is (∞, α)-quasi-greedy.

5 Proof of Theorem 1.11

Before proceeding to the proof of Theorem 1.11, we isolate the following simple lemma,
but omit its straightforward proof.

Lemma 5.1 Let α < ω1 and S be a finite set of positive integers with min S ⩾ 2. Then
there is an m ∈ N so that S ∈ Sα+m .

Proof of Theorem 1.11 Assume that our basis (en) is greedy. Let m ∈ N. By Konya-
gin and Temlyakov’s characterization of greedy bases [15], we know that (en) is
K-unconditional and Δ-democratic for some K , Δ ⩾ 1. It follows from the definitions
that (en) is K-Sα+m-unconditional, Δ-Sα+m-disjoint democratic, and K-quasi-greedy.
By the proof of Proposition 2.5 and Theorem 2.3, (en) is C-Sα+m-greedy for some
C = C(K , Δ).

Conversely, assume that (en) is C-Sα+m-greedy for all m ∈ N and some uniform
C ⩾ 1. We need to show that (en) is unconditional and disjoint democratic. Let A ⊂ N

be a finite set. Write A = (A∩ {1}) ∪ (A/{1}). By Lemma 5.1, there exists m such
that A/{1} ∈ Sα+m . Hence, Sα+m-unconditionality implies that ∥PA/{1}∥ ⩽ C + 1 (see
Theorem 2.3). Therefore,

∥PA∥ ⩽ ∥e∗1 ∥∥e1∥ + C + 1 ⩽ c2
2 + C + 1,
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and so (en) is unconditional. Next, we show that (en) is disjoint democratic. Pick
finite disjoint sets A, B ⊂ N with ∣A∣ ⩽ ∣B∣. Since A/{1} ∈ Sα+m for some sufficiently
large m and (en) is C-Sα+m-disjoint democratic, ∥1A/{1}∥ ⩽ C∥1B∥. Furthermore,

∥1A∩{1}∥ ⩽ c2 ⩽ c2 sup
n
∥e∗n∥∥1B∥ ⩽ c2

2∥1B∥.

We obtain

∥1A∥ ⩽ (C + c2
2)∥1B∥.

Hence, (en) is disjoint democratic. This completes our proof.
Finally, we show that there exists a basis that is Sα+m-greedy for all m ∈ N but is

not greedy. Let β be the smallest limit ordinal that is greater than α + m for all m ∈ N.
Consider the canonical basis (en) of the space Xβ ,∞ in Section 4.2. We have shown
that (en) is Sβ-greedy. By Corollary 1.9, (en) is Sα+m-greedy for all m. However, since
the basis is not unconditional, it is not greedy. ∎

6 Future research

In this paper, we show that given a pair (α, β) ∈ (ω1 ∪ {∞})2, if either α or β is ∞ or
if (α, β) = (0, 0), there is a Banach space with an (α, β)-quasi-greedy basis. The result
is sufficient enough to prove Theorem 1.10. A natural extension of our work is whether
there is an (α, β)-quasi-greedy basis for every pair (α, β) ∈ (ω1 ∪ {∞})2.

Regarding Theorem 1.11, we would like to know whether an Sα-greedy basis for all
countable ordinals α (with different greedy constants) is greedy. Similarly, must an
Sα-unconditional basis for all countable ordinals α be unconditional?

A Appendix

Lemma A.1 The following hold.

(i) If F ∈ Sα for some α and min F = 1, then F = {1}.
(ii) For all ordinals α ⩾ 0, S0 ⊂ Sα .

(iii) For all ordinals α ⩾ 2, S2 ⊂ Sα .

We omit the straightforward proof of Lemma A.1. For completeness, we include
the easy proof of the following lemma.

Lemma A.2 Fix α ⩾ 2 and M ∈ [N], min M ⩾ 3. Let �n = min α(M , n). It holds that
�n+1 ⩾ 8�n for all n ⩾ 1.

Proof Let Ln = M/ ∪n−1
i=1 supp(α(M , i)) for n ⩾ 1. Then min Ln = �n for all n ⩾ 1.

First, we show that,

max supp(α(M , n)) ⩾ max supp(2(Ln , 1)),∀n ⩾ 1.(A.1)

Suppose, for a contradiction, for some n,

max supp(α(M , n)) < max supp(2(Ln , 1)).
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Let E = supp(α(M , n)) and F = supp(2(Ln , 1)). Then E ⊊ F. Since F ∈ S2, F ∈ Sα
according to Lemma A.1. That E ⊊ F and F ∈ Sα contradict that E is a maximal
Sα-set. Therefore, for all n ⩾ 1, (A.1) holds.

We have for all n ⩾ 1,

�n+1

�n
⩾ max supp(α(M , n)) + 1

�n
⩾ max supp(2(Ln , 1)) + 1

�n
⩾ 2�n�n

�n
⩾ 8.

This completes our proof. ∎
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