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Abstract

Knowledge representation and reasoning (KRR) systems describe and reason with complex con-
cepts and relations in the form of facts and rules. Unfortunately, wide deployment of KRR
systems runs into the problem that domain experts have great difficulty constructing correct
logical representations of their domain knowledge. Knowledge engineers can help with this con-
struction process, but there is a deficit of such specialists. The earlier Knowledge Authoring
Logic Machine (KALM) based on Controlled Natural Language (CNL) was shown to have very
high accuracy for authoring facts and questions. More recently, KALMFL, a successor of KALM,
replaced CNL with factual English, which is much less restrictive and requires very little train-
ing from users. However, KALMFL has limitations in representing certain types of knowledge,
such as authoring rules for multi-step reasoning or understanding actions with timestamps. To
address these limitations, we propose KALMRA to enable authoring of rules and actions. Our
evaluation using the UTI guidelines benchmark shows that KALMRA achieves a high level of
correctness (100%) on rule authoring. When used for authoring and reasoning with actions,
KALMRA achieves more than 99.3% correctness on the bAbI benchmark, demonstrating its
effectiveness in more sophisticated KRR jobs. Finally, we illustrate the logical reasoning capa-
bilities of KALMRA by drawing attention to the problems faced by the recently made famous
AI, ChatGPT.

KEYWORDS: knowledge authoring, knowledge representation and reasoning, natural language
understanding, frame-based parsing

1 Introduction

Knowledge representation and reasoning (KRR) systems represent human knowledge as

facts, rules, and other logical forms. However, transformation of human knowledge to

these logical forms requires the expertise of knowledge engineers with KRR skills, which,

unfortunately, is scarce.

To address the shortage of knowledge engineers, researchers have explored the

use of different languages and translators for representing human knowledge. One

idea was to use natural language (NL), but the NL-based systems, such as Open

Sesame (Swayamdipta et al. 2017) and SLING (Ringgaard et al. 2017), had low accu-

racy, and led to significant errors in subsequent reasoning. The accuracy issue then mo-

tivated researchers to consider Controlled Natural Language (CNL) (Fuchs et al. 2008;
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Schwitter 2002) for knowledge authoring. Unfortunately, although CNL does improve

accuracy, it is hard for a typical user (say, a domain expert) to learn a CNL grammar

and its syntactic restrictions. Furthermore, systems based on either NL or CNL cannot

identify sentences with the same meaning but different forms. For example, “Mary buys

a car” and “Mary makes a purchase of a car” would be translated into totally different

logical representations. This problem, known as semantic mismatch (Gao et al. 2018a),

is a serious limitation affecting accuracy.

The Knowledge Authoring Logic Machine (KALM) (Gao et al. 2018b) was introduced

to tackle semantic mismatch problem, but this approach was based on a CNL (At-

tempto Fuchs et al. 2008) and had heavy syntactic limitations. Recently, the KALMFL

system (Wang et al. 2022) greatly relaxed these restrictions by focusing on factual English

sentences, which are suitable for expressing facts and queries and require little training

to use. To parse factual sentences, KALMFL replaced the CNL parser in the original

KALM system with an improved neural NL parser called mStanza. However, this alter-

ation brought about several new issues that are typical in neural parsers, such as errors in

part-of-speech and dependency parsing. KALMFL then effectively addressed these issues

and achieved high accuracy in authoring facts and queries with factual sentences.

In this paper, we focus on other types of human knowledge that KALMFL does not

cover, such as, rules and actions. We further extend KALMFL to support authoring

of rules and actions, creating a new system called KALM for Rules and Actions (or

KALMRA).1 KALMRA allows users to author rules using factual sentences and perform

multi-step frame-based reasoning using F-logic (Kifer and Lausen 1989). In addition to

rule authoring, KALMRA incorporates a formalism known as Simplified Event Calcu-

lus (SEC) (Sadri and Kowalski 1995) to represent and reason about actions and their

effects. The use of authored knowledge (facts, queries, rules, and actions) allows for

logical reasoning within an underlying logical system for reasoning with the generated

knowledge. This system must align with the scope of the knowledge that KALMRA can

represent and supports the inference of new knowledge from existing one. In terms of

implementation, we found a Prolog-like system is more suitable for frame-based parsing,

so we implemented KALMRA in XSB (Swift and Warren 2012). However, the knowl-

edge produced by KALMRA contains disjunctive knowledge and function symbols, so we

chose the answer set programming system DLV (Leone et al. 2006) as the logical system

for reasoning about the generated knowledge.2 Evaluation on benchmarks including the

UTI guidelines (Shiffman et al. 2009) and bAbI Tasks (Weston et al. 2015) shows that

KALMRA achieves 100% accuracy on authoring and reasoning with rules, and 99.3% on

authoring and reasoning about actions. Finally, we assess the recently released powerful

dialogue model, ChatGPT,3 using bAbI Tasks, and highlight its limitations with respect

to logical reasoning compared to KALMRA.

The paper is organized as follows: Section 2 reviews the KALMFL system and some

logic programming techniques, Section 3 introduces the new KALMRA system and de-

scribes how it represents rules and actions, Section 4 presents the evaluation settings and

results, and Section 5 concludes the paper and discusses future work.

1 https://github.com/yuhengwang1/kalm-ra.
2 Other ASP logic programming systems, such as Potassco (Gebser et al. 2019), lack the necessary level
of support for function symbols and querying.

3 https://chat.openai.com/chat.
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Fig. 1. The frameworks of the KALMFL system.

2 Background

2.1 Knowledge Authoring Logic Machine for factual language

The Knowledge Authoring Logic Machine (KALM) (Gao et al. 2018a;b) allows users to

author knowledge using Attempto Controlled English (ACE) (Fuchs and Schwitter 1996).

However, ACE’s grammar is too limiting and poses a high learning curve, particularly for

non-technical users. To mitigate this problem, KALM was extended to KALM for Fac-

tual (English) Language (KALMFL) (Wang et al. 2022) by introducing factual (English)

sentences and focusing on authoring facts and simple queries. Factual sentences express

atomic database facts and queries (e.g. “Mary buys a car”). They can become more com-

plex with adnominal clauses (e.g. “Mary buys a car that is old”) and can be combined

via “and” and “or” (e.g. “Mary buys a car and Bob buys a watch”). In comparison,

sentences not expressing factual information (e.g. “Fetch the ball” or “Oh, well”) are

non-factual and are not allowed. Factual sentences can be captured through properties

based on dependency analysis and Part-of-Speech (POS) tagging (Wang et al. 2022),

which is a very mild restriction compared to complex grammars such as in ACE. This

means that users do not need to master complex grammars. Instead, they can simply

write normal sentences that describe database facts or basic Boolean combinations of

facts, and, as long as they avoid fancy language forms, their sentences will be accepted.

KALMFL is a two-stage system following the structured machine learning paradigm. In

the first stage, known as the training stage, KALMFL constructs logical valence patterns

(LVPs) by learning from training sentences. An LVP is a specification that tells how

to extract role fillers for the concepts represented by the English sentences related to

that LVP. In the second stage, known as the deployment stage, the system does semantic

parsing by applying the constructed LVPs to convert factual English sentences into unique

logical representations (ULRs). Figure 1(a) depicts the training stage of KALMFL, with

the key steps explained in the accompanying text.

Annotating Training Sentences. To enable semantic understanding of a domain of

discourse, knowledge engineers must first construct the required background knowledge

in the form of KALMFL frames. The overall structure of most of these frames can be

https://doi.org/10.1017/S1471068423000169 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000169


800 Y. Wang et al.

Fig. 2. mStanza parses.

adopted from FrameNet (Baker et al. 1998) and converted into the logic form required

by KALMFL. Then, knowledge engineers compose training sentences and annotate them

using KALMFL frames. For example, the annotated training sentence (1), below, indicates

that the meaning of “Mary buys a car” is captured by the Commerce buy frame; the word

that triggers this frame, a.k.a. the lexical unit (LU), is the 2nd word “buy” or its synonym

“purchase”; and, the 1st and the 4th words, “mary” and “car,” play the roles of Buyer

and Goods in the frame.

train("Mary buys a car","Commerce_buy","LU"=2,[purchase],

["Buyer"=1+required,"Goods"=4+required]).
(1)

Syntactic Parsing. KALMFL then performs syntactic parsing using mStanza
4 (Wang

et al. 2022) and automatically corrects some parsing errors. Figure 2 shows two mStanza

parses, where the colored boxes contain POS tags and the labeled arrows display depen-

dency relations.

Construction of LVPs. mStanza parses, along with annotations of sentences, allow

KALMFL to construct LVPs that specify how to fill the roles of a frame triggered by

an LU. For example, by synthesizing the information in training sentence (1) and the

mStanza parse in Figure 2(a), KALMFL learns that, to fill the roles Buyer and Goods

of the Commerce buy frame triggered by the LU “buys,” one should extract the subject

and object of “buys” through the dependency relations nsubj and obj, respectively. This

learned knowledge about role-filling is encoded as an LVP (2) as follows:

lvp(buy,"Commerce_buy",[pattern("Buyer",[nsubj],required),

pattern("Goods",[obj],required)]).
(2)

The deployment stage of KALMFL is illustrated in Figure 1(b). Two key steps in this

stage are further explained below.

Frame-based Parsing. When an unseen factual sentence comes in, KALMFL triggers

all possible LVPs using the words in the sentence. Then, the triggered LVPs are applied to

this sentence to extract role fillers and a frame-based parse of this sentence is generated.

For example, a new sentence “Bob bought a watch” is parsed as Figure 2(b) by mStanza.

It triggers LVP (2) using the LU “bought” (whose base form is “buy”). KALMFL then

extracts the role filler “Bob” for the role Buyer according to the dependency list [nsubj].

Similarly, “watch” is extracted for the role Goods according to the dependency [obj].

Constructing ULRs. Ultimately, frame-based parses are represented as ULR facts that

capture the meaning of the original English sentences and are suitable for querying. For

4 A modification of Stanza (Qi et al. 2020) that returns ranked lists of parses rather than just one
parse.
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example, the ULR for the factual sentence “Bob bought a watch,” below, indicates that

the meaning of the sentence is captured by the Commerce buy frame, that “Bob” is the

Buyer, and “watch” plays the role of Goods, where rl/2 represents instances of (role,

role-filler) pairs.

frame("Commerce_buy",[rl("Buyer","Bob"),rl("Goods",watch)]).

2.2 Disjunctive information and frame reasoning

Our reasoning subsystem combines Answer Set Programming (ASP) with aspects of

frame-based reasoning.

DLV (Leone et al. 2006) is a disjunctive version of Datalog that operates under the ASP

paradigm. It extends Datalog by adding support for disjunction in facts and rule heads,

thus providing greater expressiveness for disjunctive information than KRR systems

based on the well-founded semantics (e.g. XSB Swift and Warren 2012). Furthermore,

DLV’s support for function symbols and querying makes it more convenient for working

with frames (Fillmore et al. 2006) than other ASP systems, such as Potassco (Gebser

et al. 2019).

F-logic (Kifer et al. 1995; Kifer and Lausen 1989) is a knowledge representation and on-

tology language that combines the benefits of conceptual modeling with object-oriented

and frame-based languages. One of its key features is the ability to use composite frames

to reduce long conjunctions of roles into more compact forms, matching ideally the struc-

ture of FrameBase’s frames. For example, F-logic frames5 can be used to answer the ques-

tion “What did Mary buy?” given the fact “Mary bought a car for Bob,” whose ULRs,

shown below, are not logically equivalent (the fact has more roles than the query).

frame("Commerce_buy",[rl("Buyer","Mary"),rl("Goods",car),rl("Recipient","Bob")]).

?- frame("Commerce_buy",[rl("Buyer", "Mary"),rl("Goods", What)]). What=car.

2.3 Event Calculus for reasoning about actions and their effects

The event calculus (EC) (Kowalski and Sergot 1989) is a set of logical axioms that

describe the law of inertia for actions. This law states that time-dependent facts, fluents,

that are not explicitly changed by an action preserve their true/false status in the state

produced by that action. Here we use the simplified event calculus (SEC) (Sadri and

Kowalski 1995), which is a simpler and more tractable variant of the original EC. A

fluent in SEC is said to hold at a particular timestamp if it is initiated by an action and

not terminated subsequently. This is formalized by these DLV rules:

holdsAt(F,T2) :-

happensAt(A,T1), initiates(A,F), timestamp(T2), T1 < T2,

not stoppedIn(T1,F,T2).

stoppedIn(T1,F,T2) :-

happensAt(A,T), terminates(A,F), timestamp(T1), T1 < T, timestamp(T2), T < T2.

5 We depart from the actual syntax of F-logic as it is not supported by the DLV system. Instead,
we implemented a small subset of that logic by casting it directly into the already supported DLV
syntax.
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Here happensAt/2 represents a momentary occurrence of action A at a timestamp.

If an action is exogenous insertion of a fluent f at time t then we also represent it as

happensAt(f,t). Example 1 demonstrates the use of happensAt/2.

Example 1

The sentence “Mary goes to the bedroom. The bedroom is north of the garden.” is repre-

sented as follows:

happensAt(frame("Travel",[rl("Person","Mary"),rl("Place",bedroom)]),1).

happensAt(frame("North_of",[rl("Entity1",bedroom),rl("Entity2",garden)]),2).

person("Mary"). place(bedroom). entity(bedroom). entity(garden). timestamp(1..2).

The first happensAt/2 introduces an action of traveling from place to place

while the second happensAt/2 uses an observed (i.e. exogenously inserted) fluent

"North of"(bedroom, garden). Observable fluents are supposed to be disjoint from

action fluents, and we will use a special predicate, observable/1, to recognize them in

SEC rules. Timestamps indicate the temporal relation between the action and the ob-

served fluent. Predicates person/1, place/2, entity/2 define the domain of roles, while

timestamp/1 restricts the domain of timestamps.

The predicates initiates(Action, Fluent) and terminates(Action, Fluent) in

SEC are typically used to specify domain-specific axioms that capture the initiation and

termination of fluents.

3 Extending KALMFLor rules and actions

This section describes an extension of KALMFL to handle rules and actions (KALMRA).

Since we want to be able to handle disjunctive information required by some of the

bAbI tasks, we made a decision to switch the reasoner from XSB which was used in

KALMFL to an ASP-based system DLV (Leone et al. 2006) that can handle disjunction

in the rule heads. Thus, the syntax of the ULR, that is, the logical statements produced

by KALMRA, follows that of DLV. A number of examples inspired by the UTI guidelines

and bAbI Tasks are used in this section to illustrate the workings of KALMRA.

3.1 Authoring and reasoning with KALMRAules

Rules are important to KRR systems because they enable multi-step logical inferences

needed for real-world tasks, such as diagnosis, planning, and decision-making. Here we

address the problem of rule authoring.

3.1.1 Enhancements for representation of facts

First we discuss the representation of disjunction, conjunction, negation, and coreference,

which is not covered in KALMFL.

Conjunction and Disjunction. The KALMRA system prohibits the use of a mixture

of conjunction and disjunction within a single factual sentence to prevent ambiguous

expressions such as “Mary wants to have a sandwich or a salad and a drink.” To represent

a factual sentence with homogeneous conjunction or disjunction, the system first parses

https://doi.org/10.1017/S1471068423000169 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068423000169


Knowledge authoring for rules and actions 803

the sentence into a set of component ULRs. For conjunction, KALMRA uses this set of

ULRs as the final representation. For disjunction, the component ULRs are assembled

into a single disjunctive ULR using DLV’s disjunction v as shown in Example 2.

Example 2

The factual sentence with conjunction “Daniel administers a parenteral and an oral

antimicrobial therapy for Mary” is represented as the following set of ULRs:

frame("Cure",[rl("Doctor", "Daniel"),rl("Patient", "Mary"),

rl("Therapy", antimicrobial),rl("Method", parenteral)]).

frame("Cure",[rl("Doctor", "Daniel"),rl("Patient", "Mary"),

rl("Therapy", antimicrobial),rl("Method", oral)]).

doctor("Daniel"). patient("Mary"). therapy(antimicrobial).

method(parenteral). method(oral).

where the predicates doctor, patient, therapy, and method define the domains for the

roles. These domain predicates will be omitted in the rest of the paper, for brevity.

The disjunctive factual sentence “Daniel administers a parenteral or an oral antimi-

crobial therapy for Mary” is represented as the following ULR:

frame("Cure",[rl("Doctor", "Daniel"),rl("Patient", "Mary"),

rl("Therapy", antimicrobial),rl("Route", parenteral)])

v frame("Cure",[rl("Doctor", "Daniel"),rl("Patient", "Mary"),

rl("Therapy", antimicrobial),rl("Route", oral)]).

Negation. The KALMRA system supports explicit negation through the use of the

negative words “not” and “no.” Such sentences are captured by appending the suffix

“ not” to the name of the frame triggered by this sentence.

Example 3

The explicitly negated factual sentence “Daniel’s patient Mary does not have UTI ” is

represented by

frame("Medical_issue_not",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Ailment","UTI")]).

Coreference. Coreference occurs when a word or a phrase refers to something that

is mentioned earlier in the text. Without coreference resolution, one gets unresolved

references to unknown entities in ULRs. To address this issue, KALMRA uses a coref-

erence resolution tool neuralcoref,6 which identifies and replaces coreferences with the

corresponding entities from the preceding text.

Example 4

The factual sentences “Daniel’s patient Mary has UTI. He administers an antimicrobial

therapy for her.” are turned into

frame("Medical_issue",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Ailment","UTI")]).

frame("Cure",[rl("Doctor","Daniel"),rl("Patient","Mary"),

rl("Therapy", antimicrobial)]).

where the second ULR uses entities "Daniel" and "Mary" instead of the pronouns “he”

and “she.”

6 https://github.com/huggingface/neuralcoref.
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3.1.2 Rule representation

Rules in KALMRA are expressed in a much more restricted syntax compared to facts

since, for knowledge authoring purposes, humans have little difficulty learning and

complying with the restrictions. Moreover, since variables play such a key role in rules,

complex coreferences must be specified unambiguously. All this makes writing rules in a

natural language into a very cumbersome, error-prone, and ambiguity-prone task com-

pared to the restricted syntax below.

Definition 1 A rule in KALMRA is an if-then statement of the form “If P1, P2, ..., and

Pn, then C1, C2, ..., or Cm,” where

1. each Pi (i = 1..n) is a factual sentence without disjunction;

2. each Cj (j = 1..m) is a factual sentence without conjunction;

3. variables in Cj (j = 1..m) must use the explicitly typed syntax (Gao et al. 2018a) and

must appear in at least one of the Pi (i = 1..n). For example, in the rule “If Mary

goes to the hospital, then $doctor sees Mary,” the explicitly typed variable $doctor

appears in the conclusion without appearing in the premise, which is prohibited.

Instead, the rule author must provide some information about the doctor in a rule

premise (e.g. “and she has an appointment with $doctor”). This corresponds to the

well-known “rule safety” rule in logic programming.

4. variables that refer to the same thing must have the same name. For example, in

the rule “If $patient is sick, then $patient goes to see a doctor,” the two $patient

variables are intended to refer to the same person and thus have the same name.

Here are some examples of rules in KALMRA.

Example 5

The KALMRA rule “If $doctor’s $patient is a young child and has an unexplained fever,

then $doctor assesses $patient’s degree of toxicity or dehydration” is represented as fol-

lows:

frame("Assessing",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Item",toxicity)])

v frame("Assessing",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Item",dehydration)]) :-

frame("People_by_age",[rl("Person",Patient),rl("Type",child)]),

frame("Medical_issues",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Ailment",fever),rl("Cause",unexplained)]).

KALMRA supports two types of negation in rules: explicit negation (Gelfond and Lifs-

chitz 1991) and negation as failure (with the stable model semantics Gelfond and Lifschitz

1988). The former allows users to specify explicitly known negative factual information

while the latter lets one derive negative information from the lack of positive information.

Explicit negation in rules is handled the same way as in fact representation. Negation as

failure must be indicated by the rule author through the idiom “not provable,” which is

then converted into the predicate not/1. The idiom “not provable” is prohibited in rule

heads.

Example 6

The KALMRA rule “If not provable $doctor does not administer $therapy for $patient,

then $patient undergoes $therapy from $doctor”is represented as follows:
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frame("Undergoing",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Therapy",Therapy)]) :-

not frame("Cure_not",[rl("Doctor",Doctor),rl("Patient",Patient),

rl("Therapy",Therapy)]),

patient(Patient), doctor(Doctor), therapy(Therapy).

where patient/1, doctor/1, and therapy/1 are domain predicates that ensure that

variables that appear under negation have well-defined domains.

3.1.3 Queries and answers

Queries in KALMRA must be in factual English and end with a question mark. KALMRA

translates both Wh-variables and explicitly typed variables into the corresponding DLV

variables. Example 7 shows how KALMRA represents a query with variables.

Example 7

The query “Who undergoes $therapy?” has the following ULR:

frame("Undergoing",[rl("Patient",Who),rl("Therapy",Therapy)])?

KALMRA then invokes the DLV reasoner to compute query answers. DLV has two

inference modes: brave reasoning and cautious reasoning. In brave reasoning, a query

returns answers that are true in at least one model of the program and cautious reasoning

returns the answers that are true in all models. Users are free to choose either mode.

Example 8

For instance, if the underlying information contains only this single fact

{frame("Undergoing",[rl("Patient","Mary"),rl("Therapy",mental)]).}

then there is only one model and both modes return the same result:

{Who="Mary",Therapy=mental}

In case of “Mary or Bob undergoes a mental therapy,” two models are computed:

{frame("Undergoing",[rl("Patient","Mary"),rl("Therapy",antimicrobial)]).}

{frame("Undergoing",[rl("Patient","Bob"),rl("Therapy",antimicrobial)]).}

In the cautious mode, there would be no answers while the brave mode yields two:

{Who="Mary",Therapy=mental}

{Who="Bob",Therapy=mental}

3.2 Authoring and reasoning with actions

Time-independent facts and rules discussed earlier are knowledge that persists over time.

In contrast, actions are momentary occurrences of events that change the underlying

knowledge, so actions are associated with timestamps. Dealing with actions and their

effects, also known as fluents, requires an understanding of the passage of time. KALMRA

allows users to state actions using factual English and then formalizes actions as temporal

database facts using SEC discussed Section 2.3. The following discussion of authoring

and reasoning with actions will be in the SEC framework.

Reasoning based on SEC requires the knowledge of fluent initiation and termination.

This information is part of the commonsense and domain knowledge supplied by knowl-
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edge engineers and domain experts via high-level fluent initiation and termination state-

ments (Definition 2) and KALMRA translates them into facts and rules that involve the

predicates initiates/2 and terminates/2 used by Event Calculus. Knowledge engi-

neers supply the commonsense part of these statements and domain experts supply the

domain-specific part.

Definition 2 A fluent initiation statement in KALMRA has the form “A/Fobs initiates

Finit” and a fluent termination statement in KALMRA has the form “A/Fobs terminates

Fterm,” where

1. action A, observed fluent Fobs, initiated fluent Finit, and terminated fluent Fterm

are factual sentences without conjunction or disjunction;

2. variables in Finit use explicitly typed syntax and must appear in A (or in Fobs when

a fluent is observed) to avoid unbound variables in initiated fluents;

3. variables that refer to the same thing must have the same name.

Example 9 shows how KALMRA represents fluent initiation and termination.

Example 9

The commonsense initiation statement “$person travels to $place initiates $person is

located in $place” would be created by a knowledge engineer and translated by KALMRA

as the following rule:

initiates(frame("Travel",[rl("Person",Person),rl("Place",Place)]),

frame("Located",[rl("Entity",Person),rl("Location",Place)])):-

person(Person), place(Place).

Here, person/1 and place/1 are used to guarantee rule safety. Since, any object can

be in one place only at any given time, we have a commonsense termination statement

“$person travels to $place1 terminates $person is located in $place2.” This statement

would also be created by knowledge engineers and translated by KALMRA as follows:

terminates(frame("Travel",[rl("Person",Person),rl("Place",Place)]),

frame("Located",[rl("Entity",Person),rl("Location",Place2)])):-

person(Person), place(Place), entity(Person), location(Place2), Place!=Place2.

KALMRA also enhances rules by incorporating temporal information, allowing the

inference of new knowledge under the SEC framework. The process begins by requiring

users to specify their domain knowledge on fluents in the form of rules described in

Definition 1. Then KALMRA translates these rules into ULRs, with each premise and

conclusion linked to a timestamp via the holdsAt/2 predicate. We call these rules time-

related because they enable reasoning with fluents containing temporal information. Here

is an example of a time-related rule.

holdsAt(ULRC1,T) v ... v holdsAt(ULRCm,T) :-

holdsAt(ULRP1,T), ..., holdsAt(ULRPn,T).

where all holdsAt/2 terms share the same timestamp T, since the disjunction of con-

clusion ULRs ULRC1, ..., ULRCm holds immediately if all premise ULRs ULRP1, ..., ULRPn

hold simultaneously at T.

KALMRA incorporates temporal information in queries also using holdsAt/2. In this

representation, the second argument of holdsAt/2 is set to the highest value in the
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temporal domain extracted from the narrative. For Example 1, a time-related query can

be represented as holdsAt(ULRQ,3)?, where ULRQ is the ULR of the query and 3 is the

timestamp that exceeds all the explicitly given timestamps.

4 KALMRAvaluation

In this section, we assess the effectiveness of KALMRA-based knowledge authoring using

two test suites, the clinical UTI guidelines (Committee on Quality Improvement 1999)

and the bAbI Tasks (Weston et al. 2015).

4.1 Evaluation of rule authoring

The UTI guidelines (Committee on Quality Improvement 1999) are a set of therapeutic

recommendations for the initial Urinary Tract Infection (UTI) in febrile infants and young

children. The original version in English was rewritten into the ACE CNL (Shiffman et al.

2009) for the assessment of ACE’s expressiveness. We rewrite the original English version

into factual English, as shown in Appendix A. This new version has a significant number

of rules with disjunctive heads, as is common in the real-world medical domain.

The experimental results show that KALMRA is able to convert the UTI guidelines

document into ULRs with 100% accuracy.

4.2 Evaluation of authoring of actions

The 20 bAbI tasks (Weston et al. 2015) were designed to evaluate a system’s capacity for

natural language understanding, especially when it comes to actions. They cover a range

of aspects, such as moving objects (tasks 1-6), positional reasoning (task 17), and path

finding (task 19). Each task provides a set of training and test data, where each data point

consists of a textual narrative, a question about the narrative, and the correct answer.

Figure B.1 in Appendix B presents 20 data points from 20 bAbI tasks, respectively. We

used the test data for evaluation. Each task in the test data has 1000 data points.

The comparison systems in this evaluation include a state-of-the-art neural model on

bAbI Tasks, STM (Le et al. 2020); an approach based on inductive learning and logic

programming (Mitra and Baral 2016) that we call LPA here; and a recent sensation,

ChatGPT. The comparison with STM and ILA results is displayed in Table 1, where

“#I&T” denotes the number of user-given initiation and termination statements (Defi-

nition 2) used to specify each particular task in KALMRA. The table shows that KALMRA

achieves accuracy comparable to STM and ILA. ChatGPT has shown impressive ability

to give correct answers for some manually entered bAbI tasks even though (we assume) it

was not trained on that data set. However, it quickly became clear that it has no robust

semantic model behind its impressive performance and it makes many mistakes on bAbI

Tasks. The recent (Jan 30, 2023) update of ChatGPT fixed some of the cases, while still

not being able to handle slight perturbations of those cases. Three such errors are shown

in Table 2, which highlights the need for authoring approaches, like KALMRA, which are

based on robust semantic models.

As to KALMRA, it does not achieve 100% correctness on Tasks 13 (Compound Coref-

erence) and 16 (Basic Induction). In Task 13, the quality of KALMRA’s coreference

resolution is entirely dependent on the output of neuralcoref, the coreference resolver we
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Table 1. Result comparisons.

STM ILA KALMRA

TASK Acc. Acc. #I&T #Rules Acc.

1 Single Supporting Fact 100 100 2 0 100
2 Two Supporting Facts 99.79 100 4 1 100
3 Three Supporting Facts 97.87 100 4 1 100
4 Two Argument Relations 100 100 4 0 100
5 Three Argument Relations 99.43 100 4 0 100
6 Yes/No Questions 100 100 2 0 100
7 Counting 99.19 100 4 0 100
8 Lists/Sets 99.88 100 4 0 100
9 Simple Negation 100 100 4 0 100
10 Indefinite Knowledge 99.97 100 2 0 100
11 Basic Coreference 99.99 100 2 0 100
12 Conjunction 99.96 100 2 0 100
13 Compound Coreference 99.99 100 2 0 93.1
14 Time Reasoning 99.84 100 2 0 100
15 Basic Deduction 100 100 0 1 100
16 Basic Induction 99.71 93.6 2 1 93.6
17 Positional Reasoning 98.82 100 8 20 100
18 Size Reasoning 99.73 100 0 1 100
19 Path Finding 97.94 100 12 4 100
20 Agent’s Motivations 100 100 5 6 100

Average 99.61 99.68 3.45 1.75 99.34

Table 2. ChatGPT error cases.

Task 2 Task 17 Task 19

2 Supporting facts Positional reasoning Path finding

Mary went to the kitchen The red square is below The garden is west of the hallway
Mary got the apple the blue square The kitchen is west of the garden
Mary got the ball The red square is left of The garden is north
Mary got the book the pink rectangle of the bathroom
Mary went to the bedroom The bedroom is east
Mary went to the garden of the bathroom
Mary dropped the book The hallway is west of the office

Q: Where is the apple? Q: Is the blue square below Q: How do you go from the
the pink rectangle? bathroom to the hallway?

ChatGPT: ... not specified ChatGPT: ... not specified ChatGPT: ... east..., ... south...
Correct: garden Correct: no Correct: east, north

used. As this technology improves, so will KALMRA. Task 16 requires the use of the in-

duction principles adopted by bAbI tasks, some of which are questionable. For instance,

in Case 2 of Table 3, the color is determined by the maximum frequency of that type,

whereas in Case 3, the latest evidence determines the color. Both of these principles are

too simplistic and, worse, contradict each other.
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Table 3. KALMRA error cases.

Case1 Case 2 Case 3

Task 13 compound coreferences Task 16 basic induction

Mary and Sandra went Brian is a swan Berhnard is a rhino
back to the bedroom Greg is a swan Brian is a rhino

Then they moved to the kitchen Julius is a swan Bernhard is white
Sandra and Daniel went Greg is gray Brian is white

back to the bathroom Julius is gray Lily is a lion
Then they went to the office Bernhard is a lion Lily is yellow

Lily is a swan Greg is a rhino
Berhnard is green Greg is green
Brian is white Julius is a rhino

Q: Where is Daniel? Q: What color is Lily? Q: What color is Julius?

KALMRA: bathroom KALMRA: gray, white KALMRA: green, white
bAbI Correct: office bAbI Correct: gray bAbI Correct: green

5 Conclusion and future work

The KALMFL system (Wang et al. 2022) was designed to address the limitations of

KALM (Gao et al. 2018a) in terms of expressive power and the costs of the actual

authoring of knowledge by human domain experts. KALM did not support authoring of

rules and actions, and it required abiding a hard-to-learn grammar of the ACE CNL. In

this paper, we introduced KALMRA, an NLP system that extends KALMFL to authoring

of rules and actions by tackling a slew of problems. The evaluation results show that

KALMRA achieves 100% accuracy on authoring rules, and 99.34% accuracy on authoring

and reasoning with actions, demonstrating the effectiveness of KALMRA at capturing

knowledge via facts, actions, rules, and queries. In future work, we plan to add non-

monotonic extensions of factual English to support defeasible reasoning (Wan et al. 2009),

a more natural way of human reasoning in real life, where conclusions are derived from

default assumptions, but some conclusions may be retracted when the addition of new

knowledge violates these assumptions.

Supplementary material

To view supplementary material for this article, please visit http://doi.org/10.1017/

S1471068423000169.
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