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We prove the existence of nontrivial ground state solutions of the critical quasilinear

Hénon equation −Δpu = |x|α1 |u|p∗(α1)−2u − |x|α2 |u|p∗(α2)−2u in R
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problem in the sense that the signs of the coefficients of critical terms are opposite.
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1. Introduction

In this paper, we consider the p-Hénon equation{
−Δpu = |x|α1 |u|p∗(α1)−2u − |x|α2 |u|p∗(α2)−2u in R

N ,

u ∈ D1,p
r (RN ),

(1.1)

where 1 < p < N , Δpu = div(|∇u|p−2∇u), α1 > α2 > −p, p∗(αi) = p(N+αi)
N−p (i =

1, 2), and D1,p
r (RN ) =

{
u ∈ D1,p(RN ) : u is radial

}
, D1,p(RN ) is the com-

pletion of C∞
0 (RN ) under the norm ‖u‖ := (

∫
RN |∇u|pdx)1/p, C∞

0,r(R
N ) ={

u ∈ C∞
0 (RN ) : u is radial

}
.

For q � 1, α ∈ R, let

Lq(RN ; |x|α) :=
{

u : R
N → R is Lebesgue measurable,

∫
RN

|x|α|u|qdx < ∞
}

be the weighted Lebesgue space with the norm ‖u‖q,α := (
∫

RN |x|α|u|qdx)1/q. For
all α > −p, the best weighted Sobolev constant

Sα := inf
u∈D1,p

r (RN )\{0}

∫
RN |∇u|pdx(∫

RN |x|α|u|p∗(α)dx
) p

p∗(α)
(1.2)
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is achieved by the function (see [7, 24])

Uα(x) =

(
(N−p)p−1(N+α)

(p−1)p−1

) N−p
p(p+α)

(
1 + |x| p+α

p−1

)N−p
p+α

,

which is a positive solution of the critical equation{
−Δpu = |x|α|u|p∗(α)−2u in R

N ,

u ∈ D1,p
r (RN ).

(1.3)

The weighted Sobolev inequality (1.2) gives the weighted Sobolev embedding

D1,p
r (RN ) ↪→ Lp∗(α)(RN ; |x|α). (1.4)

The number p∗(α) := p(N+α)
N−p is named as the Sobolev (resp. Hardy–Sobolev,

Hénon–Sobolev) critical exponent for α = 0 (resp. −p < α < 0 (cf. [10]), α > 0 (cf.
[20, 21, 23])). It should be pointed out that (1.2) and (1.4) are valid on D1,p(RN )
for −p < α � 0. Equation (1.3) with Hardy–Sobolev or Sobolev or Hénon–Sobolev
critical exponent has been extensively investigated, we refer to [2, 5, 6, 8, 10–12,
15–18, 22] and some references therein.

In recent years the double critical elliptic equation

− Δpu = |x|α1 |u|p∗(α1)−2u + λ|x|α2 |u|p∗(α2)−2u in R
N , (1.5)

involving with Hardy–Sobolev and Sobolev critical exponents has been researched
by a few of authors. Filippucci et al. [9, theorem 1] proved the existence of pos-
itive solutions of (1.5) for the case λ = 1, α1 = 0, −p < α2 < 0. Hsiaet al. [13,
theorem 1.2] established the ground state solutions for (1.5) as p = 2, λ = 1, α1 = 0,
−2 < α2 < 0 in the half space R

N
+ . For (1.5) with p = 2, λ ∈ R, −2 < α2 < α1 < 0,

Li and Lin [19, theorems 1.3 and 1.4] found the ground state solutions in R
N
+ . More

recently, we have established in [25] the positive ground state solutions of (1.5) as
p = 2, λ = 1, α1 > α2 > −2 by using the ideas in [9]. To be more precise, the crit-
ical exponents in [25] include Hardy–Sobolev, Sobolev and Hénon–Sobolev critical
exponents. In the case p = 2, αi > 0, we call (1.5) the Hénon equation which was
raised by Hénon [14] in 1973 in studying the rotating stellar structures. Indeed,
the results in [25] can be extended to the quasilinear case (1.5) with 1 < p < N ,
α1 > α2 > −p. What is more interesting is that whether or not (1.5) with λ = −1
and α1 > α2 > −p has nontrivial solutions. It is a new problem and has never been
considered before. The following theorem gives a positive answer in radial case.

Theorem 1.1. Let 1 < p < N and α1 > α2 > −p. Then (1.1) has a nonnegative
ground state solution.

It is worth noting that the existence of nontrivial solutions for (1.1) with α2 >
α1 > −p is still an open problem. In § 2 we give the proof of theorem 1.1.
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2. Proof of theorem 1.1

By the continuous embedding (1.4), weak solutions of (1.1) are exactly critical
points of the C1 functional

Φ(u) =
1
p
A(u) − 1

p∗(α1)
B(u)dx +

1
p∗(α2)

C(u), u ∈ D1,p
r (RN ), (2.1)

where

A(u) =
∫

RN

|∇u|pdx, B(u) =
∫

RN

|x|α1 |u|p∗(α1)dx, C(u) =
∫

RN

|x|α2 |u|p∗(α2)dx.

There exists a ground state solution of (1.1) provided the minimum

m := inf
u∈N

Φ(u) (2.2)

can be achieved, where

N :=
{
u ∈ D1,p

r (RN )\{0} : 〈Φ′(u), u〉 = 0
}

is the Nehari manifold for the functional Φ. Using the similar arguments in [26],
we have the following properties about the manifold.

Lemma 2.1. Let α1 > α2 > −p. For each u ∈ D1,p
r (RN )\{0}, there exists a unique

tu > 0 such that tuu ∈ N and Φ(tuu) = maxt�0 Φ(tu). The function u 	→ tu is con-
tinuous and the map u 	→ tuu is a homeomorphism of the unit sphere in D1,p

r (RN )
with N .

Applying the mountain pass theorem in [1], we have the following lemma.

Lemma 2.2. Let α1 > α2 > −p. There exists a sequence {un} ⊂ D1,2
r (RN ) such that

Φ(un) → ĉ > 0, Φ′(un) → 0, n → ∞ (2.3)

with

ĉ := inf
γ∈Γ

max
t∈[0,1]

Φ(γ(t)), (2.4)

where Γ :=
{
γ ∈ C([0, 1], D1,p

r (RN )) : γ(0) = 0, Φ(γ(1)) < 0
}

.

By the arguments in [26, chapter 4] and lemma 2.1, we get a key fact that

m = ĉ. (2.5)

Now we analyse the properties of the (PS)ĉ sequence {un} on the δ-ball Bδ :=
{x ∈ R

N : |x| < δ} and on the annular domain Ba,b :=
{
x ∈ R

N : 0 < a < |x| < b
}

which are important to the proof of theorem 1.1. We remark that the discussion
below will be carried out in the sense of subsequence which will be denoted by the
original sequence.
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Lemma 2.3. Assume un ⇀ 0 in D1,p
r (RN ). Then for any annular domain Ba,b, we

have∫
Ba,b

|∇un|pdx → 0,

∫
Ba,b

|x|αi |un|p∗(αi)dx → 0 (i = 1, 2), n → ∞. (2.6)

Proof. Let η ∈ C∞
0,r(R

N ) be such that 0 � η � 1 and η|Ba,b
≡ 1. Since

D1,p
r (RN ) ↪→↪→ Lq(BR\Bρ; |x|α) (2.7)

for any R > ρ > 0, 1 � q < ∞ and α > −p, see [21, lemma 6], it follows that∫
Ba,b

|x|αi |un|p∗(αi)dx → 0, i = 1, 2, n → ∞, (2.8)

By Hölder inequality and (2.7), we get that

∫
RN

|∇un|p−1|∇(ηp)||un|dx �
(∫

RN

|∇un|pdx

) p−1
p

(∫
RN

|∇(ηp)|p|un|pdx

) 1
p

→ 0

(2.9)
as n → ∞. Furthermore, combining (2.3), (2.8), (2.9) and ηpun ∈ D1,p

r (RN ), we get
that

o(1) = 〈Φ′(un), ηpun〉 =
∫

RN

|∇un|p−2∇un · ∇(ηpun)dx + o(1)

=
∫

RN

un|∇un|p−2∇un · ∇(ηp) + |η∇un|pdx + o(1)

=
∫

RN

|η∇un|pdx + o(1).

It follows from η|Ba,b
≡ 1 that∫

Ba,b

|∇un|pdx → 0 as n → ∞,

and this completes the proof. �

For any δ > 0, we set

κ := lim
n→∞

∫
Bδ

|∇un|pdx, κi := lim
n→∞

∫
Bδ

|x|αi |un|p∗(αi)dx, i = 1, 2.

From lemma 2.3 we see that these three quantities are well defined and are
independent of the choice of δ > 0. We have the following conclusion.

Lemma 2.4. Assume un ⇀ 0 in D1,p
r (RN ). Then

either κ1 = 0 or κ1 � S
p∗(α1)

p∗(α1)−p
α1 for all δ > 0.
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Proof. Let φ ∈ C∞
0,r(R

N ) satisfy φ|Bδ
≡ 1. Since φun ∈ D1,p

r (RN ),

〈Φ′(un), φun〉 → 0 as n → ∞. (2.10)

According to lemma 2.3, we obtain that∫
RN

|∇un|p−2∇un∇(φun)dx =
∫

Bδ

|∇un|2dx + o(1),

∫
RN

|x|αi |un|p∗(αi)φdx =
∫

Bδ

|x|αi |un|p∗(αi)dx + o(1), i = 1, 2.

Therefore (2.10) leads to

κ = κ1 − κ2. (2.11)

The weighted Sobolev inequality (1.2) shows that

(∫
RN

|x|α1 |φun|p∗(α1)dx

) p
p∗(α1)

� S−1
α1

∫
RN

|∇(φun)|pdx.

Using lemma 2.3 and (2.11), we get that

κ
p

p∗(α1)

1 � S−1
α1

κ � S−1
α1

κ1.

It follows that

κ1 = 0 or κ1 � S
p∗(α1)

p∗(α1)−p
α1 ,

and this completes the proof. �

We need the following interpolation inequality for proving lemma 2.6.

Lemma 2.5 [24, lemma 2.4]. Assume 1 < p < N, α1 > α2 > −p. For any u ∈
D1,p

r (RN ), it holds that

‖u‖p∗(α2),α2 � S
− 1−τ

p

θ ‖u‖τ
p∗(α1),α1

‖u‖1−τ ,

where θ = p∗(α1)α2−να1
p∗(α1)−ν , τ = ν

p∗(α2)
∈ (0, (p+α2)(N+α1)

(p+α1)(N+α2)
], 0 < ν � p+α2

p+α1
p∗(α1).

Lemma 2.6. There exist 0 < ξ1 < 1
2S

p∗(α1)
p∗(α1)−p
α1 and a sequence {rn > 0}, such that

ũn(x) := r
N−p

p
n un(rnx) for x ∈ R

N

verifies for all ξ ∈ (0, ξ1),∫
B1

|x|α1 |ũn|p∗(α1)dx = ξ, ∀ n ∈ N. (2.12)
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Proof. It follows from ĉ > 0 and lemma 2.5 that κ∞ := lim
n→∞

∫
RN

|x|α1 |un|p∗(α1)dx >

0. Let ξ1 := min{S
p∗(α1)

p∗(α1)−p
α1 , κ∞}, for fixed ξ ∈ (0, ξ1) and any n ∈ N, there exists

rn > 0 such that ∫
Brn

|x|α1 |un|p∗(α1)dx = ξ.

By scaling, it is straightforward to check that {ũn} satisfies (2.12). �

Proof of theorem 1.1. It is easy to see that {ũn} satisfies (2.3). Since p∗(α1) >
p∗(α2) > p, it follows from (2.3) that

Φ(ũn) − 1
p∗(α2)

〈Φ′(ũn), ũn〉 �
(

1
p
− 1

p∗(α2)

)
‖ũn‖p. (2.13)

Thus {ũn} is bounded in D1,p
r (RN ) and then there exists ũ ∈ D1,p

r (RN ) such that⎧⎪⎨
⎪⎩

ũn ⇀ ũ in D1,p
r (RN );

ũn ⇀ ũ in Lp∗(αi)(RN ; |x|αi), i = 1, 2.

ũn(x) → ũ(x) a.e. on R
N .

Using the ideas of Boccardo and Murat [3] (see details in [24]), we can prove that
∇ũn(x) → ∇ũ(x) a.e. on R

N . It follows that ũ is a critical point of Φ and Φ(ũ) � 0
by (2.13) again. Let vn := ũn − ũ, then {vn} is bounded in D1,p

r (RN ). Assume

A(vn) → A∞, B(vn) → B∞, C(vn) → C∞.

Using Brezis–Lieb lemma[4], we get

Φ(vn) → 1
p
A∞ − 1

p∗(α1)
B∞ +

1
p∗(α2)

C∞ = ĉ − Φ(ũ), (2.14)

〈Φ′(vn), vn〉 → A∞ − B∞ + C∞ = 0. (2.15)

If A∞ = 0, then ũ is ground state solution of (1.1). Assume that A∞ > 0 and ũ = 0.
Then lemma 2.4 implies that

either lim
n→∞

∫
B1

|x|α1 |ũn|p∗(α1)dx = 0 or lim
n→∞

∫
B1

|x|α1 |ũn|p∗(α1)dx � S
p∗(α1)

p∗(α1)−p
α1 .

This contradicts (2.12) with 0 < ξ < 1
2S

p∗(α1)
p∗(α1)−p
α1 . Thus ũ is nontrivial. If Φ(ũ) = ĉ,

then we finish the proof with (2.5). Otherwise, we get that

Φ(ũ) > m = ĉ.

Since

Φ(vn) − 1
p∗(α2)

〈Φ′(vn), vn〉 �
(

1
p
− 1

p∗(α2)

)
A(vn) � 0,
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we get by (2.14) and (2.15) that

Φ(ũ) � ĉ,

which contradicts (2). It follows that ũ is a ground state solution of (1.1).
By the structure of the manifold N , we get that |ũ| ∈ N , then a nonnegative

ground state solution is established. �
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