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BELIEVING THE AXIOMS. II 

PENELOPE MADDY 

This is a continuation of Believing the axioms. I,1 in which nondemonstrative 
arguments for and against the axioms of ZFC, the continuum hypothesis, small 
large cardinals and measurable cardinals were discussed. I turn now to determinacy 
hypotheses and large large cardinals, and conclude with some philosophical 
remarks. 

§V. Determinacy. Determinacy is a property of sets of reals.2 If A is such a set, we 
imagine an infinite game G(A) between two players I and II. The players take turns 
choosing natural numbers. In the end, they have generated a real number r (actually 
a member of the Baire space mco). If r is in A, I wins; otherwise, II wins. The set A is 
said to be determined if one player or the other has a winning strategy (that is, a 
function from finite sequences of natural numbers to natural numbers that 
guarantees the player a win if he uses it to decide his moves). 

Determinacy is a "regularity" property (see Martin [1977, p. 807]), a property of 
well-behaved sets, that implies the more familiar regularity properties like Lebesgue 
measurability, the Baire property (see Mycielski [1964] and [1966], and Mycielski 
and Swierczkowski [1964]), and the perfect subset property (Davis [1964]). 
Infinitary games were first considered by the Polish descriptive set theorists Mazur 
and Banach in the mid-30s; Gale and Stewart [1953] introduced them into the 
literature, proving that open sets are determined and that the axiom of choice can be 
used to construct an undetermined set. 

Gale and Stewart also raised the question of whether or not all Borel sets are 
determined, but the answer was long in coming. Wolfe [1955] quickly established 
the determinacy of S° games, but it was not until [1964] that Davis showed the same 
for 13 games. It was [1972] before Paris was able to extend the result to Z%, and by 
that point the proof had become fiendishly complex. Martin then capped the whole 
enterprise with his surprising proof of Borel Determinacy in [1975]. (This result was 
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BELIEVING THE AXIOMS. II 737 

mentioned in [BAI, §§1.8 and III] because of its essential use of Replacement.) 
Given that V = L implies the existence of a nonmeasurable A \ set, this result is the 
best possible; any further determinacy goes beyond ZFC.3 

The first determinacy hypothesis, suggested by Steinhaus in Mycielski and 
Steinhaus [1962], was the full Axiom of Determinacy (AD), that is, the assumption 
that every set of reals is determined. Given that it contradicts the Axiom of Choice, 
the authors did not propose AD as a truth about V, but rather as applying to some 
substructure thereof: 

It is not the purpose of this paper to depreciate the classical mathematics 
with its fundamental 'absolute' intuitions on the universum of sets (to which 
belongs the axiom of choice), but only to propose another theory which 
seems very interesting ... Our axiom can be considered as a restriction of 
the classical notion of a set leading to a smaller universum, say of 
determined sets, which reflect some physical intuitions which are not 
fulfilled by the classical sets ([the various pathologies implied by Choice] 
are eliminated). Our axiom could be considered as an axiom added to the 
classical set theory claiming the existence of a class of sets satisfying [AD] 
and the classical axioms (without the axiom of choice), (p. 2) 

Though the Axiom of Choice implies the existence of various extremely complex 
sets (for example, non-Lebesgue measurable sets, uncountable sets without perfect 
subsets, well-orderings of the reals, etc.), the Axiom of Determinacy might still hold 
is some inner model of ZF (ZFC, without Choice). This inner model would then 
consist only of regular sets; the irregular sets would appear in the more remote parts 
of V: 

We can only hope that some submodels of the natural models of [ZFC] are 
models of [ZFC + AD] ... It would be still more pleasant if such a 
submodel contains all the real numbers. In that case [AD] might be 
considered as a limitation of the notion of a set excluding some 'patho­
logical' [ZFC] sets. 

(Mycielski [1964, p. 205]) The smallest such model is L[R], and the Axiom of 
Quasi-Projective Determinacy (QPD)4 is the assumption that all sets of reals in this 
submodel are determined. This is the live axiom candidate (see e.g. Moschovakis 
[1970, p. 31] and [1980, pp. 422 and 605]; Martin [PSCN, p. 8]).5 

31 mean, full L\ or Fl\ determinacy go beyond ZFC. Modest gains beyond Borel determinacy are 
possible without additional assumptions. See, for example, Wolf [1985]. 

^This assumption is usually written symbolically as AD1,1"1 and otherwise unnamed. In [1969], 
Solovay uses the term "quasiprojective" for the sets of reals in L[R], so I have adopted his terminology. 

5 A weaker assumption, the Axiom of Projective Determinacy (PD), is also discussed in the literature. 
(PD is naturally the assumption that all projective sets of reals are determined; it is weaker than QPD 
because all projective sets appear in L[R].) QPD is the better axiom candidate because the projective 
hierarchy is only the second of a series of hierarchies, while L[R] is a transitive model of ZFC generated 
in a natural way. 
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738 PENELOPE MADDY 

It is worth noting that QPD has a form reminiscent of a number of mathematical 
implications (see Fenstad [1971, p. 42]; Addison and Moschovakis [1968, p. 710]). 
The quantifier switch 

3x Vy Rxy => Vy 3x Rxy 

is a theorem of logic, but the other direction 

Vx 3y Rxy => 3y Vx Rxy 

is nontrivial. Determinacy assumptions have the second form: if for every strategy 
for I, there is a way for II to play that results in a win for II, then there is a strategy for 
II that results in a win for II no matter what I plays. (In other words, if I has no 
winning strategy, then II does.) This same nontrivial quantifier switch is seen in 
various mathematical contexts, for example, in the implication from continuity to 
uniform continuity. An implication of this sort usually requires a simplifying 
assumption—in the continuity example, that the space in question is compact. In 
the case of QPD, the simplifying assumption is that the set in question is 
constructible from the reals. So QPD at least has a general form that is familiar from 
other parts of mathematics. 

Still, as far as intrinsic evidence for QPD is concerned, even its staunchest 
supporters are emphatic in their denials: 

No one claims direct intuitions... either for or against determinacy 
hypotheses. 

There is no a priori evidence for [Q] PD. 

Is [Q] PD true? It is certainly not self-evident. 

(Moschovakis [1980, p. 610]; Martin [1976, p. 90]; Martin [1977, p. 813]; see also 
Wang [1974, p. 554]). What sets QPD apart (or what did set it apart before the 
recent discoveries discussed in the next section) is that its defense has been purely 
extrinsic. Even the most skeptical among the supporters of large cardinals admit 
that extending the sequences of ordinals is intrinsic to the iterative conception of set 
(for example, maximize). Nothing of this type whatsoever was offered for QPD from 
its origin until the mid-80s.6 Yet it has been taken very seriously as an axiom 
candidate. 

6To be accurate, I should admit one exception: 

The reader who knows the Zermelo-von Neumann theorem on the strict determinateness of 
finite positional games could accept perhaps the following 'intuitive justification' of [AD]. 
Suppose that both players I and II are infinitely clever and that they know perfectly well what 
[the set of reals] P is, then owing to the complete information during every play, the result of 
the play cannot depend on chance. [AD] expresses exactly this. 

(Mycielski and Steinhaus [1962, p. 1]) I ignore this argument for two reasons. First, it supports, if 
anything, the full, false, AD. Second, it has not been adopted by subsequent researchers. 
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On the other hand, the appeal to extrinsic supports has been quite explicit: 

The author regards [Q] PD as an hypothesis with a status similar to that of 
a theoretical hypothesis in physics ... quasi-empirical evidence for [QJPD 
has been produced. 

... those who have come to favor these hypotheses as plausible, argue from 
their consequences ... the richness and internal harmony of these 
consequences. 

In the case of [QJPD the evidence is mostly a posteriori: its consequences 
look right. 

There is a good deal of a posteriori evidence for it. 

(Martin [1977, p. 814]; Moschovakis [1980, p. 610]; Martin [PSCN, p. 8]; Martin 
[1976, p. 90]). I will sketch the three main types of extrinsic evidence—from 
consequences, from intertheoretic connections, and from the "naturalness" of game 
theoretic proofs—in the next three subsections. In the final subsection, I will 
consider the relevance of determinacy assumptions to the continuum problem. 

V.l. Welcome consequences. Recall that the existence of a A \ well-ordering of the 
reals, a A \ non-Lebesgue measurable set, and an uncountable 77 J set with no perfect 
subset were all counted as extrinsic disconfirmation for V = L (see BAI, §§ II.2 and 
II.3.1]). It was felt that these Choice-generated oddities should not appear among 
the simpler sets, that they should probably not be definable at all. This might be 
counted as a rule of thumb in favor of the banishment of such sets to remote regions 
of V far beyond the simple sets. Of course, QPD does exactly this; it contradicts 
V = L by forcing these "irregular" sets of reals out of the projective hierarchy, and 
indeed, out of L[R]. Thus these consequences of V = L are called "a defect in that 
theory" (Fenstad [1971, p. 59]) or "unpleasant consequences of that theory" 
(Martin [1977, p. 806]), while the corresponding consequences of QPD are 
"pleasing consequences for the behavior of projective sets" (Martin [1976, p. 90]; 
see also Martin [1977, p. 811]). 

Another set of welcome consequences concerns the "structural" properties of the 
projective sets: separation, reduction and uniformization. In the 30s, Kuratowski, 
Lusin and Novikov established reduction and uniformization for r o , TI\, and I\, 
and separation for their opposites, /7 j , I\, and U\? Thus the reduction and 
uniformization principles hold for the circled classes, while separation holds on the 
opposite side: 

z i ••• 

u\ ••• 

1 For definitions, proofs and references, see Moschovakis [1980, pp. 33-35 and 4B. 10,4B. 11, and 4D.4]. 
Here Xj is taken to be the open sets of reals and /J j the closed. More on this choice of notation below. 

ZFC 
r1 

n\ 

https://doi.org/10.2307/2274569 Published online by Cambridge University Press

https://doi.org/10.2307/2274569


740 PENELOPE MADDY 

Nothing more was known until [1959], when Addison used the A\ well-ordering of 
the reals in L to show that there reduction and uniformization continue on the I 
side, and separation on the 77 side, for the remainder of the projective hierarchy: 

I y l 1 v i [ v l i (y l i IT 1 ) . . . 

771 (77 M /7 1 n1 II1 

uo xr_y 2 3 4 

There the matter stood for nearly ten years. 
The question of what pattern of structural properties to expect at the Ei/IJl 

level and beyond was somewhat overshadowed in the early 60s by the new forcing 
industry. Among those interested in the truth of this matter, rather than in relative 
consistency results, opinion varied. Some felt that the use of a measurable cardinal at 
the next level should push through the same pattern as V = L. Speaking in 1967, 
Addison considers this possibility: 

This [r-side] pattern at level 3 follows from the existence of a A\ well-
ordering of [the reals], which follows in turn from the axiom of 
constructihility. One possibility is that higher "axioms of infinity" such as 
the axiom of measurable cardinals might imply this pattern at the third 
level. From results of Silver it is known that this matter at the third level is 
at least consistent with the axiom of measurable cardinals. On the other 
hand the axiom of measurable cardinals wipes out some nice well-orderings 
of [the reals] and it is thought by some that still higher axioms of infinity 
may be found which wipe out all projective well-orderings of [the reals]. 
Although nice well-orderings can be viewed as pushing in the direction of 
[the T-side] pattern, weaker principles not ruled out by higher axioms of 
infinity might still be enough to force it. 

(Addison [1974, p. 9]) Others expected the pattern to continue alternating. 
Addison again: 

On the other hand if there is indeed some pressure, not yet understood, 
pushing for the separation principle to hold on one side or the other then it 
might be sufficient... to push through a[n alternating] pattern at level 3. 
This might look surprising, but at least one respected logician has suggested 
it. It has the advantage of prolonging the alternation... (p. 10) 

It should be noted that the second group outnumbered the first, and that it included 
Godel (Addison [1974, p. 10]). 

What reasons could be given for or against the alternating pattern? The structural 
properties at level three and above were strongly suspected of being independent, 
although this was not proved until much later (see Moschovakis [1980, p. 284]). 
Those who expected the continuation of the Z-side pattern of V = L had a powerful 
new hypothesis to work with (MC), one that had only recently begun producing 
results about projective sets (Solovay [1969]). Silver's work on L[[ / ] showed that 
their conjecture was relatively consistent, and the similarity of that model to L made 
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them expect the same pattern. Meanwhile, those favoring the alternating picture 
were without a new assumption, but they were supported by the brute fact that 
almost any human being will judge WWV to be a "more natural" continuation of 
v than V . (This fact is slightly compromised by its dependence on the 
identification of Zj with Z°. Without this, the first "zig" of the "zigzag" is lost.8 But 
see the next quotation from Addison below.) 

Moschovakis had a deeper reason for expecting the alternation to continue. In the 
mid-60s, he showed how the prewellordering property could be used to lift the 
structural theory of 77\ sets to 1\. A prewellordering misses being a full 
wellordering by lacking antisymmetry; equivalently, it is a mapping onto an ordinal. 
A class of sets of reals has the prewellordering property (PWO) if every set in it 
admits a prewellordering that meets a delicate definability condition (see 
Moschovakis [1980, 4B] for details). PWO(77}) is essentially a classical theorem 
proved by Lusin and Sierpihski in 1923 using something called the Lusin-Sierpinski 
ordering.9 

Since the prewellordering property is the key to the structural properties of the 
projective classes, Moschovakis's idea was to prove: 

PWO(77}) => PWO(£|) 

thus effectively lifting the theory of 77} to I\. The proof takes a simple form. 
Suppose A is I\. Then there is a 77} B such that 

A = {x|3z((x,z)e73}. 

If / maps B onto an ordinal as PWO(77\) requires, then a suitably definable 
prewellordering of A is achieved by taking infimums: for x, y in A, 

x<y iff inf{/(z) | (x,z)eB}<inf{/(z) | (y,z)e7?}. 

In fact, this proof is perfectly general; whenever PWO holds at III i t c a n be lifted to 

If a proof using infimums moves the prewellordering property from n\toXl+u 

shouldn't a proof using supremums move it from Z* to III+1 ? Of course this form of 
proof cannot work without a new hypothesis, because Addison's results from V = L 
show that PWO(Zj) and not-PWO(773) are relatively consistent. The trouble is that 
the prewellordering defined using supremums is often trivial, so the definability 
condition does not hold unless the set in question is more special than 77 \. Stillj 
Moschovakis felt the failed argument was a "false, but natural" proof, too rea­
sonable to be completely off-base, too natural to be a totally wrong idea. The flaw 
seemed akin to dividing by zero in a proof that is otherwise in order; some minor 

8 Opinion on this matter varies. Some would find it more natural to start the projective hierarchy from 
the Borel sets, which would destory the first leg of the alternation. It is worth noting that the 1\ beginning 
does not work for the actual reals (see Martin [ 1977, p. 790]). (Recall that modern descriptive set theory is 
done on the Baire space "co instead.) 

9The "lightface" or effective version of the same theorem was proved in 1955 by Kleene. There the 
ordering is called the Brouwer-Kleene ordering. 
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adjustment—multiplying through by a factor before dividing, or some such thing— 
should be enough to make it go through. This line of thought led Moschovakis to 
the conjecture that PWO(773), and to favor the alternating pattern.10 

Then came Blackwell [1967], in which an elegant new proof of Lusin's classi­
cal theorem on the separability of E\ sets is derived from the determinacy of open 
sets. Addison and Martin quickly adopted the method to show that the reduction 
property for 77 3 sets could be derived directly from the determinacy of A \ sets. When 
Moschovakis heard of this work, he had his additional hypothesis. The "false but 
natural" proof could be revived by requiring one supremum to be "effectively" 
smaller than the other, where "effectively" is parsed out in terms of a determined 
game. In general, then, we get the periodicity theorem: 

De t^ 1 ) => (PWO^ 1 ) => PWO(nl
n + 1)). 

(See Addison and Moschovakis [1968]. Martin proved the same thing indepen­
dently, using degree theoretic methods, in [1968].) Thus under the assumption of 
QPD, the alternating pattern of structural properties continues for the remainder 
of the projective hierarchy: 

( V M v l ( y l ) y l I V l I 

QPD ^ ' \ ^ _ / ^ ^ \ _ / ^ 
771 in! 1 T71 l 17]-1 771 

This result—the extension of the alternating pattern—is now considered strong 
extrinsic evidence in favor of QPD. In a footnote added to the pro-alternation 
paragraph in the printed version of his talk, Addison remarks: 

This paragraph turned out to be prophetic. Only a month or so after the 
talk was given it was shown that [QPD] does indeed give the alternation of 
... patterns discussed here ... Moreover the reasons mentioned above for 
the plausibility of this hypothesis actually lie behind the proof of the 
alternating pattern from... determinateness. Furthermore the idea of 
considering E° and 77° as the first level of the projective hierarchy is not 
only completely vindicated by the outcome but indeed actually suggested 
the structure of the proof of the alternating pattern. [1974, p. 10] 

(This last because Blackwell's proof depended on the determinacy of A° sets.) 
Nowadays we read: 

Which is the correct picture is perhaps not absolutely clear yet, but it is fair 
to say that many people working in this area and prone to speak of truth in 
set theory (ourselves included) tend to favor the alternating picture. 

... there is something odd in the sequence EQ, 77}, E\, E\, El,..., the 
sequence £ 0 , 77}, E\, TI\, El,... seems more plausible. 

'"Notice that it was the structure of a proof (or an attempted proof) that produced this conjecture. 
Philosophers are often tempted to think that conjectures are formed by a process quite independent of 
proof, but this case suggests otherwise. 
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(Moschovakis [1980, pp. 33-34]; Martin [1977, pp. 806 and 811]; see also Martin 
[PSCN, p. 8]; Fenstad [1971, p. 59]; Wang [1974, pp. 547 and 553-554]). 

To summarize these extrinsic supports: 

[Q] PD has pleasing consequences about the behavior of projective sets, 
such as: Every projective set is Lebesgue measurable; Every uncountable 
projective set has a perfect subset. More impressive is the fact that [Q]PD 
allows one to extend the classical structural theory of projective sets, which 
dealt only with the first two levels of the projective hierarchy, to a very 
elegant and essentially complete theory of the projective sets. [Q]PD 
cannot be proved in ZFC. . . but it is not unreasonable to suspect that it may 
be true. 

(Martin [1976, p. 90]) The full extent of this beautiful and remarkably detailed 
theory of the projective sets is clearly laid out in Moschovakis's [1980]. l i 

V.2. Intertheoretic connections. Despite the early (erroneous) suggestion that the 
Axiom of Measurable Cardinals (MC) might force the "wrong" resolution for the 
structural properties at the third level, measurable cardinals and determinacy 
hypotheses were soon found to point in the same direction. Often QPD will extend a 
result provable from MC which in turn extends a result provable in ZFC. To use an 
example that has already been discussed, ZFC implies that every uncountable Z\ set 
has a perfect subset, MC implies every uncountable Z\ s e t has a perfect subset, and 
QPD implies every uncountable quasiprojective set has a perfect subset. Another 
case in point: 

ZF => Every E\ set is the union of ^ Borel sets, 

MC => Every S\ set is the union of K2 Borel sets, 

QPD => Every Z^ set is the union of K3 Borel sets. 

(Sierpinski [1925]; Martin [PSCN]) In other cases, the same result can be proved 
using either MC or a determinacy hypothesis: 

To take one example, the fact that 77 \ sets can be uniformized by 773 sets 
follows both from MC and from D e t ^ ) , but by proofs which (at least on 
the surface) are totally unrelated; one tends to believe the result then and 
consequently to take both proofs seriously and to feel a little more 
sympathetic towards their respective hypotheses. 

(Moschovakis [1980, p. 610]) But these observations mark only the beginning of the 
deep connection between measurable cardinals and lower forms of determinacy. 

The first two results suggesting this connection were Solovay's of 1967: 

AD => Xx is a measurable cardinal 

1' It has been conjectured that these implications might be reversed, that is, that a strong determinacy 
hypothesis might be derivable from the assumption that this rich theory holds of the projective sets. This 
would obviously provide considerable additional support for determinacy. 
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and Martin's in [1970]: 
MC => Det(I}). 

In fact, Martin's theorem only depends on the existence of the sharps, and by [1978], 
Harrington had proved the converse: 

Vx(x# exists) = Det(£}). 

Meanwhile, Solovay (building on work of Martin and Friedman) improved his 
result to: 

Det(/l2) => There are inner models with many MCs. 

Martin saw the development of his and Harrington's results as following a 
pattern: a large cardinal axiom (MC) implies some determinacy assumption 
(Det(r})); careful analysis reveals that the hypothesis can be weakened to the 
existence of an inner model with a slightly smaller large cardinal and indiscernibles 
(here ZFC itself is viewed as "large cardinal assumption"); finally, the implication is 
improved to an equivalence. In view of Solovay's result, this pattern might be 
extended within the A \ sets. 

To get a finer breakdown of the A \ sets, Martin turned to the "difference 
hierarchy" of 77} sets:^isa-/7} iff there is a sequence (Affi < a) such that each A$ is 
n\ and x e A iff the least /? such that (/? = a or x $ Ap) is odd. (Limit ordinals are 
even.) Thus A is 1-/7} iff A is 77}; A is 2-77} iff A is a difference of 77} sets; A is 3-77} iff 
A is the union of a difference of 77} sets and a 77} set; A is 4-77} iff A is the union of 
two differences of 77} sets; and so on. The finite levels of this hierarchy generate all 
the Boolean combinations of 77} sets. 

The theorem, then, is: 

Det((co2 • a + l)-77}) = Vx(there is an inner model of ZFC 
containing x with indiscernibles 
and a MCs). 

For a = 0, this is exactly the Martin/Harrington equivalence. For a = 1, it is: 

Det((cw2 + l)-77}) = Vx(there is an inner model of ZFC 
containing x with indiscernibles 
and one MC). 

The canonical model L[[ / ] has one measurable cardinal and indiscernibles, and the 
set of formulas that codes its construction (just as 0* codes the construction of L) is 
called 0f. If xf is defined analogously with x*, the theorem for a = 1 can be written 

Det((co2 + l)-77}) = Vx(xf exists). 

Thus the pattern continues: the existence of two measurable cardinals implies 
Det((co2 -I- l)-77}). Careful analysis reveals that the hypothesis can be reduced to the 
existence of an inner model with one measurable cardinal and indiscernibles. 
Finally, the implication can be reversed. The general form of Martin's theorem 
shows that this pattern continues through the entire difference hierarchy of 77} sets. 

Thus simple game-theoretic hypotheses are equivalent to the inner model 
versions of measurable cardinal hypotheses for many natural classes of sets of reals 
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within A\}2 This wonderful and surprising correspondence between powerful and 
well-supported hypotheses of such different character counts as extrinsic evidence 
for both. 

V.3. The naturalness of game-theoretic proofs. Finally, there is what those 
involved call the "naturalness" of the proofs from QPD: 

In fact, the most persuasive argument for accepting [quasi]-projective 
determinacy (aside from Martin's proof of Det(Z})) is the naturalness of 
the known proofs of [the periodicity theorem], both Martin's and ours. 

(Moschovakis [1970, p. 34]) Given our look at the development of that theorem in 
V. 1, it is easy to see what Moschovakis has in mind here. Not only does QPD imply 
PWCHfiTj) and the rest, it does so by means of an argument that was previously 
thought to be of the correct sort. The proof is "natural". 

Another aspect of "naturalness" is revealed when the new game-theoretic proofs 
yield new, simpler proofs of old theorems, and recast them as special cases of new 
more powerful theorems: 

One [reason for believing QPD] is the naturalness of proofs from 
determinacy—in each instance where we prove a property of 77^ (say from 
Det^J)), the same argument gives a new proof of the same (known) 
property of 77}, using only the determinacy of clopen sets (which is a 
theorem of ZF). Thus the new results appear to be natural generalizations 
of known results and their proofs shed new light on classical descriptive set 
theory. (This is not the case with the proofs from V = L which all depend on 
the \_A\~] well-ordering of [the reals] and shed no light on n\) 

(Moschovakis [1980, p. 610]) The periodicity theorem itself gives an example of this 
phenomenon. Recall that the classical proof of PWO(77}) involved the special 
properties of U\, in particular, the Lusin-Sierpihski ordering. Now for n = 0, the 
periodicity theorem is 

Det(,dJ) => (PWO(Z0) => PWO(/7})). 

But determinacy of A 0 sets is just the Gale-Stewart theorem, and it is simple to show 
PWO(IJ). Thus the periodicity theorem provides a new proof of PWO(/7}) that 
avoids such complexities as the Lusin-Sierpinski ordering. (See also Moschovakis 
[1980, p. 309].) 

Another example is provided by Solovay's proofs [1969] that the regularity 
properties of I\ sets could be lifted to Il

2 assuming the Axiom of Measurable 

12 This sequence of results can be extended further. For example, Simms has shown that the existence of 
a measurable cardinal which is the limit of measurably many measurable cardinals implies the 
determinacy of countable unions of Boolean combinations of U\ sets. The hypothesis can be improved 
to the existence of an inner model with indiscernibles and a proper class of measurable cardinals. Then 
the implication can be reversed. 

Of course it would be nicer if the determinacy assumptions could prove the large cardinal hypotheses 
outright, but this is impossible. If, for example, K is the first measurable cardinal, the RK is a model of 
Det(r[) but not of MC. Thus the inner model equivalences are the best possible. 
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Cardinals. When Martin showed that Det(r}) could be derived from MC, he opened 
the way for game-theoretic proofs of these results. These new proofs avoid the 
complex forcing constructions of Solovay's original versions (see Moschovakis 
[1980, pp. 375-378, 544-546, 611]). 

V.4. Relevance to the continuum problem. QPD gives us lots of information about 
the projective sets; what can it tell us about the size of the continuum? The quick 
answer is that it cannot settle the continuum hypothesis. (It will be easy to see why 
from the result of the next section.) Still, it might give us evidence for or against, or, 
even better, it might lead us in the direction of a larger theory that does decide the 
question. 

Under the assumption of QPD, the perfect subset property is extended to cover 
the entire quasiprojective hierarchy, so the CH holds for all quasiprojective sets. As 
mentioned earlier [BAI, §11.3.1], the fact that CH holds for many simple sets might 
have been considered as evidence its favor, except that the perfect subset property is 
known not to hold for all sets of reals. Thus this consequence of QPD does not 
really provide evidence in favor of CH. 

What is at issue here is the length of the shortest well-ordering of the reals. Since a 
definable well-ordering yields a definable non-Lebesgue measurable set, and QPD 
implies that all quasiprojective sets are Lebesgue measurable, it also implies that 
there is no quasiprojective well-ordering of the reals. This is as it should be (see V. 1). 
In fact, the perfect subset property implies that every quasiprojective well-ordering 
of a set of reals is countable. This means that no projective well-ordering can 
provide a counterexample to CH; we cannot test the CH by looking at the projective 
well-orderings. 

What we can do is look into the lengths of projective prewellorderings: 
Now every I\ prewellordering has countable length, but there is a 77} 
prewellordering of [the reals] of length Kt. This already shows that our 
simple sets are more typical with respect to prewellorderings than with 
respect to well-orderings. 

(Martin [1976, p. 89]) In particular, consider: <5* = sup{length of R\R is a A\ 
prewellordering of the reals}. Information about these "projective ordinals" is 
information about the length of the continuum. It is a classical theorem that 
b\ = Nt; if any 5l

n is greater than K^ then the continuum hypothesis is false. 
The best way to approach the question of the size of the projective ordinals under 

QPD is to investigate them first under the full, false, AD, then to transfer the results 
to L[R~\. In the strange world of full AD, it is known that the projective ordinals 
form a strictly increasing sequence of regular cardinals, in particular: 

AD =>c5i = Kt, 

°A =
 ^ \ B + 2> 

^ 6 = K«>e°™> + 2-
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(These results are due to many researchers, among them Martin, Solovay, Kunen, 
Mansfield, Shoenfield and Jackson. See Moschovakis [1980, 7D.11]. Incidentally, 
the cardinals between N2 and Kra + 1 are all singular assuming AD; the projective 
ordinals are not only regular, but measurable.) This means that in the strange world 
of full determinacy, the continuum hypothesis is false in the sense that the reals can 
be mapped onto very large ordinals. In the real world, the Axiom of Choice would 
then yield very large subsets of the reals, but Choice does not hold in the AD world. 
There, remember, all uncountable sets have perfect subsets. Thus the CH is true in 
the sense that there are no sets of reals of intermediate cardinality, but false in the 
sense that the reals can be mapped onto large ordinals. As far as the actual 
cardinality of the reals is concerned, in the world of full AD it is not an aleph at all, 
because the reals cannot be well-ordered. 

What does this mean for the real world, on the assumption that both QPD and 
Choice hold there? Since QPD is the hypothesis that AD holds in L[R], the results 
above hold unchanged in that inner model. From this it follows that:13 

QPD=>6J =«! , 
«52 = (N2)

L™ < N2, 

= (the first regular cardinal after K2)L[R1 < K3, 

<5i<(K^)L [ R 1<K4. 

Recently, Jackson has shown that AD implies that there are exactly three regular 
cardinals between 3 \ and 6 \. By reasoning similar to what gave us the above, this 
means that 

QPD=><5* < N 7 . 

Of course it is relatively consistent that all these inequalities are strict, and that all 
the projective ordinals are in fact Nj. On the other hand, 5\ = K2 is also relatively 
consistent, and for someone looking for a theory to imply the falsity of CH, QPD 
would seem to make a good beginning: 

... while our simple sets have not provably given us a counterexample to 
CH, the possibility that they are counterexamples definitely arises. 

(Martin [1976, p. 89]) Working with Jackson's three intermediate cardinals in the 
context of QPD, Martin came to conjecture that the true picture might be 

13 Here we have another example of QPD extending a pattern that begins in ZFC and continues under 
MC: 

ZFC=><5! = « „ 

QPD =>dl < K4. 
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something like this: 

Regular Cardinals in L[R] Regular Cardinals in V 

a 

P = * 4 

where a and /? are the two other regular cardinals between ^3 and ^5 in the AD 
world of L[R~}. 

This complex conjecture can be partly confirmed by an assumption on saturated 
ideals developed independently by Foreman and others (for related principles, see 
Foreman, Magidor and Shelah [MM]). The saturated ideal hypothesis, along with 
QPD, implies that £5 < K5. It remains possible that dj, = K„ for odd n, but a new 
hypothesis would be needed, presumably one that would help us understand why 
L[R] produces so many false cardinals, both regular and singular, between the first 
few regular cardinals of V. Thus the best that can be said is that the rich theory of 
the projective ordinals provided by determinacy hypotheses might one day con­
tribute to a theory that could falsify CH. Of course, QPD might eventually play 
a role in a theory that verifies CH instead, and some members of the Cabal lean 
toward this possibility. 

§VI. Large large cardinals—down from above. By the early 70s, then, the most 
productive and appealing new axiom candidate, QPD, was supported exclusively by 
extrinsic evidence. Still, there was hope that an intrinsic connection could be found: 

Some set theorists consider large cardinal axioms self-evident, or at least 
as following from a priori principles [rules of thumb?] implied by the con­
cept of set. Det(r}) follows from large cardinal axioms. It is possible 
that [Q]PD itself follows from large cardinal axioms, but this remains 
unproved. 

One way to increase the evidence for [Q]PD would be to prove it from 
large cardinal axioms ... 

(Martin [1977, p. 813]; Martin [PSCN, p. 8]; see also Martin [1976, p. 90]). The 
inner model L[ l / ] discussed in [BAI, §IV], contains a measurable cardinal and a A 3 
well-ordering of the reals, so its A 3 sets are not all determined. Thus it was clear that 
a more powerful large cardinal would be needed. 

Meanwhile, inspired by the success of measurable cardinals, and the isolation of 
the simpler, structural characterization in terms of elementary embeddings, Solovay 
and Reinhardt produced stronger large cardinal axioms. I will discuss the first of 
these in the next subsection, and two rule of thumb arguments for its existence in the 
subsection following. The very largest of the large cardinals will then be introduced, 
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and the final subsection traces the recently-revealed connections with determinacy 
assumptions. 

VI.1. Supercompactness. Recall that the ultrafilter on a measurable cardinal K 
generates a nontrivial elementary embedding of V into a transitive M, and 
conversely, that the first ordinal moved by such an elementary embedding, the 
"critical point", must be measurable. Many of the strong properties of measurable 
cardinals spring from M's closure under arbitrary sequences of length K, but M is 
not closed under longer sequences. Thus, the search for a strengthening of the 
Axiom of Measurable Cardinals naturally led Solovay and Reinhardt to try 
imposing stronger closure conditions on the range of the elementary embedding. 
This idea led to the notion of supercompactness: 

Then all the desired fruit, suddently ripened, were easily plucked, and 
appropriately enough, the new concept was dubbed supercompactness. 

(Kanamori and Magidor [1978, p. 183]) Specifically, a cardinal K is A-supercompact 
(for k > K) iff there is a nontrivial elementary embedding of V into a transitive M 
with K critical and M closed under arbitrary sequences of length k; a cardinal K is 
supercompact iff K is A-supercompact for all k > K. 

The connections between measurability and supercompactness are quite simple: 
K is measurable iff it is /c-supercompact, and below a supercompact K there are K 
measurable cardinals. Furthermore, like measurability, supercompactness also has 
an ultrafilter characterization. Thus supercompact cardinals are thought of as "the 
proper generalization of measurability" (Solovay, Reinhardt and Kanamori [1978, 
§2]). The rule of thumb involved here, generalization, seems to be a presumption in 
favor of a natural strengthening of a well-supported axiom. Of course any large 
cardinal axiom also acquires intrinsic support from maximize. (Other rules of thumb 
favoring the Axiom of Supercompact Cardinals are discussed in VI.2 below.) 

Until recently (see VI.4 below), the only significant consequences of the Axiom of 
Supercompact Cardinals were various relative consistency results. When a state­
ment is too strong to be proved consistent relative to ZFC alone, its consistency can 
sometimes be derived from the assumption that ZFC plus some further axiom is 
consistent. (For example, recall Solovay's results from the consistency of "ZFC 
+ The Axiom of Inaccessibles Cardinals" mentioned in [BAI, §111].) Several strong 
results of this sort follow from the consistency of "ZFC + The Axiom of 
Supercompact Cardinals" (see e.g. Foreman, Magidor and Shelah [MM]). 

Notice that relative consistency results of this sort involving large cardinals are 
among the most useful applications of these axioms: 

... large cardinals via the method of forcing turn out to be the natural 
measures of the consistency strength of ZFC + (p for various statements <p 
in the language of set theory. 

(Kanamori and Magidor [1978, p. 105]) Large cardinals provide such a yardstick 
because they fit into an ordering: 

As our edifice grew, we saw how one by one the large cardinals fell into place 
in a linear hierarchy. This is especially remarkable in view of the ostensibly 
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disparate ideas that motivate their formulation. As remarked by H. 
Friedman, this hierarchical aspect of the theory of large cardinals is 
somewhat of a mystery. 

(Kanamori and Magidor [1978, p. 264]; see also Parsons [1983, p. 297] and Wang 
[1974, p. 555]). This unexpected pattern suggests that large cardinal axioms are 
straightforward ways of saying that the iterative hierarchy contains more and more 
levels, that is, that they are implementations of maximize: 

... the neat hierarchical structure of the large cardinals and the extensive 
equi-consistency results that have already been demonstrated to date are 
strong plausibility arguments for the inevitability of the theory of large 
cardinals as the natural extension of ZFC. 

(Kanamori and Magidor [1978, p. 264]) Thus the relative consistency results and 
the linear ordering of the large cardinal axioms provide extrinsic evidence for the 
large cardinal program in general. 

VI.2. Arguments for supercompact cardinals. Two further rule of thumb based 
arguments have been offered in favor of Supercompact Cardinals. The first is a fairly 
simple set-theoretic argument based on the model theoretic Vopenka's principle. 
The second, via extendibles,14 is a more elaborate argument due to Reinhardt. As 
mentioned in §IV above, it depends on somewhat dubious pseudo-reflection 
principles. Vopenka first. 

The most general version of Vopenka's principle states that any proper class of 
structures for the same language will contain two members, one of which can be 
elementarily embedded in the other. The rule of thumb usually cited as lying behind 
this principle is the idea that the proper class of ordinals is extremely rich (Kanamori 
and Magidor [1978, p. 196]). Suppose, for example, that a process is repeated once 
for each ordinal—Ord-many times, we might say—and every step produces a 
structure. Then richness implies that no matter how closely we keep track of the 
structures generated, there are so many ordinals that some will be indistin­
guishable.15 A similar idea can be developed from reflection: Anything true of V is 
already true of some Rx, that is, there is an Ra that resembles V. This property of V 
should also be reflected, that is, there is an Rx with a smaller Rfi that resembles it. 

14For details of extendibles, see Solovay, Reinhardt and Kanamori [1978, §5], or Kanamori and 
Magidor [1978, §16]. On the relationship between supercompacts and extendibles, Kanamori and 
Magidor remark: 

All in all, supercompactness and extendibility have similar features... Supercompactness has 
the flavor of a generalization from measurability, but extendibility reflects more ethereal 
ambitions, (pp. 196, 192) 

The nature of these "ethereal ambitions" will emerge from Reinhardt's argument, below. As I find this 
argument flawed, I will keep the emphasis here on supercompacts, rather than extendibles. It is also worth 
noting that supercompacts seem to occur more naturally in the hypotheses of theorems. 

15Notice that the thinking behind richness is very close to that behind Martin's version of reflection in 
[BAI,§III]. 
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Either way, we get a new rule of thumb, resemblance: 

... there are i?a's that resemble each other. 

... there should be stages Rx and Rfi which look very much alike. 

(Solovay, Reinhardt and Kanamori [1978, Introduction]; Martin [1976, p. 86]; see 
also Kanamori and Magidor [1978, p. 104]). The trick, of course, comes in spelling 
out "resembles". 

To do this, let us go back to richness and imagine ourselves in an Ord-long 
process, generating an Ra at each stage, one for each ordinal.16 Suppose we step 
several ranks at a time, so that by step a, we are already to jR7a, for some ya > a. We 
keep careful track of the structures at each stage by making copious notations on a 
clipboard, one scoresheet for every stage; we note down every detail of the structure 
we have just generated, along with every detail of the process that got us there. 
Richness then implies that with so many stages, our scoresheets cannot all be 
different. At step one, we record the complete diagram of 

(R7o,€,(Ry;.p<0)). 

At step two, we look to see if that scoresheet is satisfied by 

(Rn,e,<Ry,:P<l». 

Of course it is not, so we write down the complete diagram of this new structure. 
And so on. At each step, we generate a new structure, then check to see if any of our 
old scoresheets will do; if not, we prepare a new one. 

Richness then guarantees that we will eventually reach a step a' where one of our 
old scoresheets will match up. That is, we will reach a step a' where 

is a model of the complete diagram of 

(K y . , e ,<K w : / J<a» 

for some a < a'. This means that the smaller structure can be elementarily embedded 
in the larger; that is: 

3/ : (Ky. ,6 ,<Kw: |8<«» 

-=*->(/J7.„e,<V/»<«'»• 
This embedding must be nontrivial, because: 

«' = length«K y / l : / J<a '» 

= l e n g t h i j « i ^ : j 3 < a » 

= y( length«/?„: j8<a» 

= Ml 

16This treatment of the argument from Vopenka's principle was suggested by Magidor and clarified in 
discussion with Martin. 
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We thus have a nontrivial elementary embedding of Ra into Ra.. Our conclusion is a 
special case of Vopenka's principle, namely, that in any proper class of i?a's, there is a 
nontrivial elementary embedding of one into another. We get a supercompact by 
applying this to the class of all Ra's for limit a that reflect supercompactness. Some 
large cardinal theorists see this blend of richness, reflection and resemblance as 
providing strong intrinsic evidence for the larger large cardinal axioms. 

Reinhardt's argument also begins with the consideration of the proper class O R D 
of all ordinals. The universe V is then JR0RD- Reinhardt now asks that we look at V 
and O R D as it were "from the outside", in which case we see that there would be 
further ordinals and ranks of the form O R D + 1, O R D + ORD, K 0 RD+I> 

KORD + ORD, and so on. At this point, we seem to have introduced things other than 
sets, which threatens the universality of set theory, but Reinhardt proposes that we 

... mitigate this sorrow by seeing the universality of set theory not in the 
extension of the concept set, but in the applicability of the theory of 
sets. [1974, p. 198] 

In other words, we assume that our theory of sets is the universal theory of 
collections, and hence that it applies to these new objects. This gesture produces lots 
and lots of these class-like entities, lots of ordinal-like objects greater than ORD, 
lots of stages of construction after V; and they all obey the axioms of set theory. 

This treatment is neat, so neat that we begin to wonder if these new layers really 
consist of entities of a new and different type; perhaps we just forgot to finish the 
iterative hierarchy in the first place. To this Reinhardt replies by drawing a 
distinction between sets and classes that depends on their behavior in counterfactual 
situations. For example, the set consisting of the current members of congress would 
be the same in any case, but the class of current members of congress would have 
been different if the voters had favored the Republicans instead of the Democrats. 
Reinhardt also imagines that there might be more ordinals in some counterfactual 
situation, and hence, that there might have been more stages and more sets than 
there are. Granted this assumption, a set is completely determined by its members— 
it has the same members in every possible world—but a class might have more 
members in another possible world—as, for example, the class ORD has more 
members in a counterfactual situation with more ordinals. 

Now let us imagine one of these counterfactual situations, a projected universe 
with more ordinals. Reinhardt calls these extra ordinals, and the sets in the stages 
they number, imaginary ordinals and imaginary sets. Our ORD becomes, in the 
projected world, a new class y'(ORD) that consists of real and imaginary ordinals, 
while the old ORD is just an imaginary set, that is, 7'(ORD) > ORD. Sets, on the 
other hand, do not change their membership in counterfactual situations, so j(x) 
= x, for all x e V. 

What about truth? Well, consider a proper class P. P consists of sets; it is a subset 
of RORD, a member of R0RD+1 • Thus j(P), in the projected world, consists of sets and 
imaginary sets; it is a subset of RJ(0RT»> a n d a member of KJ(0RD) +1 • Now set theory is 
the universal theory of collections, so what is true of P in RQRD+ I should be true of 
7(P)inKJ ( 0RD)+i , that is , 

]'• ^ORD + 1 ~^~* fy(ORD) + 1 • 
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And the same should be true of the extra layers of proper classes. That is, if X is some 
ordinal-like object greater than ORD, then 

y.Rk > RJW 

Thus for any ordinal-like X greater than ORD, we have argued that there is an 
elementary embedding of Rx into Rjw with ORD as critical point, as shown in the 
figure: 

The "real" world The "projected" world 

This is just to say that ORD is extendible. All that is needed now is an application of 
reflection: if ORD is extendible, then there should be an extendible cardinal K. From 
this we get our supercompact. 

This argument has a number of severe shortcomings. The first arises even if we 
accept Reinhardt's premises; it is internal to the argument itself. Consider once again 
the purported universality of set theory. This is first applied to guarantee that the 
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theory of the "real" world, with its extra stages, is identical to the theory of V. So far, 
so good. The second application comes when the "real" world is compared with the 
projected world. Here it would seem fair to conclude that the theory of the projected 
world is the same as that of the "real" world, that is, that they are elementarily 
equivalent. This is enough to assure us an embedding that preserves truth for the 
definable proper classes, but Reinhardt needs the full force of the elementary 
embedding j . It is hard to see how the universality of set theory will do this job. 

Several other objections arise once we allow ourselves to question Reinhardt's 
premises. First, there are the alarming entities ORD + 1 and ^ORD + ORD-

The 
Vopenka argument involves thinking of proper classes of sets, but nothing so 
extravagant and potentially treacherous as these. Second, there is the use of 
counterfactual situations to distinguish these new entities from sets. I think even 
those with strong modal intuitions will have trouble imagining how there might be 
more pure sets and ordinals than there are. After all, V is supposed to contain all the 
sets and ordinals there could possibly be. 

Finally, there is a pernicious ambiguity in Reinhardt's notion of a proper class. 
Everyone grants that collections can be thought of in two quite different ways: as 
extensions of concepts on the Fregean model, or as combinatorially generated in 
stages on the iterative model. These are sometimes called the "logical" and the 
"mathematical" notion of collection, respectively. When Reinhardt argues that 
classes differ from sets in their behavior in counterfactual situations, he is playing on 
the logical notion of extension; the extension of the concept "ordinal" is different in 
the projected world. On the other hand, when he argues that set theory should apply 
to all collections, classes included, he is thinking of classes on the mathematical or 
combinatorial model. On the logical notion of class, there is little reason to think 
that set theory should apply to entities so different from sets, and abundant reason to 
think that it should not. For example, it seems that logical classes, like the class of all 
infinite classes, can be self-membered.17 

But even if Reinhardt's argument is flawed, we retain the Vopenka argument 
based on richness, reflection and resemblance, as well as the earlier defenses in terms 
of maximize and generalize. 

VI.3. Huge cardinals and beyond. If strengthening the closure condition on the 
range of the elementary embedding gives a natural generalization of measurability, 
generalization itself suggests the closure conditions might be strengthened even 
further. Indeed, why should the range of the elementary embedding not be 
completely closed, that is, why should it not be V itself?: 

In the first flush of experience with these ideas, Reinhardt speculated on the 
possibility of an ultimate extension: Could there be an elementary embed­
ding j : V —> VI 

(Kanamori and Magidor [ 1978, p. 200]) It was not long before Kunen destroyed this 
hope. In [1971], he showed that if j is an elementary embedding of V into a 
transitive M, if K is the critical point of j , and if J(K) = K,, y'Cq) = K 2 ) . . . and Km 

= lim„^00 K„, then there is a subset of KW that is not in M. Thus M is not V. 

l7Some aspects of the set/class distinction are discussed in my [1983]. 
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Kunen's theorem shows when a large large cardinal axiom is too large, so large 
that it contradicts ZFC (specifically, the Axiom of Choice): 

Kunen's result will limit our efforts in that we cannot embed the universe 
into too "fat" an inner model. 

(Solovay, Reinhardt and Kanamori [1978, §1]) Modern set theorists have reacted 
much as Zermelo did to the inconsistencies of his day, that is, by applying the rule of 
thumb one step back from disaster (see [BAI, §1.4]). Thus they consider n-huge 
cardinals: 

... they assert stronger and stronger closure properties, until their natural 
co-ary extension is inconsistent. 

(Kanamori and Magidor [1978, p. 202]) A cardinal K is n-huge iff there is an 
elementary embedding j of V into a transitive M such that M is closed under 
arbitrary sequences of length K„ . Kunen's theorem says that there is no such thing as 
an co-huge cardinal. 

Notice that 0-hugeness is just measurability. In addition: 

The n-huge cardinals certainly have an analogous flavor to A-supercompact 
cardinals, but there is an important difference: While A-supercompactness 
is hypothesized with an a priori / in mind as a proposed degree of closure 
for M, n-hugeness has closure properties only a posteriori: M here is to be 
closed under K„-sequences, however large the K„ turn out to be. This is a 
strengthening of an essential kind. 

(Kanamori and Magidor [1978, p. 198]) Thus the comparison with supercompacts 
tends to tarnish the image of the n-huge cardinals: 

Indeed, it is not clear how to motivate n-hugeness ... at all. 

(Kanamori and Magidor [1978, p. 198]) But if intrinsic support is lacking, at least n-
huge cardinals do have a familiar sort of ultrafilter characterization, and they have 
played a role in some relative consistency results. Both these are cited as weak 
extrinsic evidence (Kanamori and Magidor [1978, pp. 198, 200]). 

Another method of applying one step back from disaster is suggested by the form 
of Kunen's proof. The argument depends on the occurrence of a certain function in 
the domain of the elementary embedding. The domain of the function is the set of co-
sequences from Kra, so the function itself first occurs at the level RK<u + 2. Thus Kunen 
actually shows that there is no nontrivial elementary j : RKio + 2 - » RK o + 2. This leaves 
two possible forms of "there is a nontrivial elementary embedding of some Rx into 
itself": 

EE(I) 3j:RKto+1-S^»RKto + 1; 

EE(II) 3j:RK„-^-»RKoj. 

It is known that EE(I) implies EE(II) and that EE(II) implies the existence of n-huge 
cardinals for every n. Indeed, the large cardinal property which EE(I) asserts of the 
critical point of its embedding is so strong that the existence of such a cardinal 
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implies the existence of an even larger cardinal with the same property (Kanamori 
andMagidor[1978,p. 203]). 

Even the defenders of large large cardinals express discomfort over axioms this 
strong: 

It seems likely that [EE(I) and EE(II) are] inconsistent since they appear to 
differ from the proposition proved inconsistent by Kunen in an inessential 
technical way. The axioms asserting the existence of [n-huge] cardinals, for 
n > 1, seem (to our unpracticed eyes) essentially equivalent in plausibility: 
far more plausible than [EE(II)], but far less plausible than say 
extendibility. 

(Solovay, Reinhardt and Kanamori [1978, §7]; see also Kanamori and Magidor 
[1978, p. 202]). Notice also that, given the reformulation of Kunen's result, EE(I), if 
consistent, would seem to be the largest possible large cardinal axiom. Some set 
theorists feel that for every large cardinal axiom there should be a larger, and this 
sentiment counts for them against EE(I). 

VI.4. Connections with Determinacy. Recall that the existence of a measurable 
cardinal implies the determinacy of E\ sets of reals (see V.2). This sort of result was 
extended one level further, to the determinacy of I\ sets> by Martin in [1978], but 
the large cardinal axiom this proof requires is EE(I). This result caused some soul-
searching among those who had hoped to increase the intrinsic support of 
determinacy hypotheses by deriving them from large cardinal axioms, but who also 
felt uncomfortable with EE(I). Furthermore, if the "last" large cardinal axiom was 
indeed necessary to prove T)et(X\), then the program of proving all of QPD from 
such axioms seemed hopeless. Still, the fact that EE(I) implied more determinacy, 
and the naturalness of the proof, led to something of a softening in the attitude 
towards this axiom. 

There the situation remained until 1984, when consideration of the sets 
constructible from RKm+i led Woodin to an elementary embedding condition 
between EE(I) and Kunen's inconsistency: 

EE(0) 3/:L[K*„+i] - i ^ - L[i?K„+ 1]. 

Then came the result that everyone had been hoping for; Woodin went on to derive 
the full QPD from EE(0). With the discovery of EE(0), EE(I) no longer seemed the 
"last" large cardinal axiom, and EE(0) produced a natural and detailed theory of 
L[RKoj + j ] that resembled the theory of L [ # ] on the assumption QPD. All this was 
counted as extrinsic evidence in their favor. 

Recall that in the wake of Martin's earlier theorem deriving Det(rJ) from the 
existence of a measurable cardinal, various determinacy assumptions were proved 
equivalent to the inner model versions of the corresponding large cardinal axiom 
(see V.2). In addition to indiscernibles and a slightly smaller large cardinal, these 
inner models have well-orderings of the reals that are as simple as their level of 
determinacy allows. For example, the existence of the sharps (the inner model 
version of the Axiom of One Measurable Cardinal) guarantees the existence of an 
inner model of ZFC with indiscernibles; that model has A \ determinacy, so it cannot 
have a A} well-ordering of the reals, but it does have a A\ well-ordering. Similarly, 
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the inner model of ZFC + 2MC (the inner model version of the Axiom of Three 
Measurable Cardinals) has (co2 + 1) — 77} determinacy, so it cannot have a A \ well-
ordering of a certain special sort, but it does have a A \ well-ordering. If this pattern 
were to continue, as most set theorists concerned with the problem expected that it 
would, then there should be inner models of all large cardinal axioms up to EE(I) 
with various degrees of A \ determinacy and A \ well-orderings of the reals. Alas, the 
inner model theorists, Mitchell, Dodd, Steel and others, were unable to find such a 
model; their efforts failed before they reached a supercompact cardinal. 

The reasons for this failure were soon clarified from another quarter. Working on 
the development of further relative consistency results, Foreman, Magidor and 
Shelah were able to improve an older result of Kunen's by reducing the hypothesis 
from the consistency of a huge cardinal to the consistency of a supercompact 
cardinal (see [MM]). Shelah and Woodin then managed to reduce the hypothesis 
even more, to something between measurable and supercompact, and along the way, 
Woodin realized their methods led to another surprising result: if there is a 
supercompact cardinal, then every quasiprojective set of reals is Lebesgue 
measurable, has the Baire and perfect subset properties, and so on. Thus, the model 
the inner model theorists were seeking—an inner model with a supercompact 
cardinal and a A \ well-ordering of the reals—does not exist. Indeed there is no inner 
model with a supercompact cardinal and any quasiprojective well-ordering of the 
reals. The neat inner model theory that did so much to familiarize measurable 
cardinals cannot be duplicated for supercompacts.18 

But what about determinacy? There were two possibilities. Up to this point, the 
old-fashioned regularity properties like Lebesgue measurability had done hand-in-
hand with determinacy. Now the determinacy of quasiprojective sets seemed to 
require the somewhat staggering assumption of EE(0), while their other regularity 
properties required only a supercompact cardinal. The first possibility was that 
determinacy and Lebesgue measurability do in fact diverge here, and the inner 
model equivalences possible within A \ cannot be extended. The second possibility 
was that QPD could actually be proved from the far weaker assumption of a 
supercompact cardinal. 

Two who believed in the second possibility were Martin and Steel. Woodin had 
shown that his theorem on the Lebesgue measurability of quasiprojective sets could 
actually be derived from a complex hypothesis slightly weaker than the existence of 
a full supercompact cardinal, so Martin and Steel felt they had an exact formulation 
of the hypothesis that should yield QPD. Further, Steel had extensive experience 
with the sort of phenomena that had blocked the development of the inner model 
theory before it was known to be impossible. He and Martin theorized that whatever 
blocked the construction of a nice inner model might be closely connected with 
determinacy. Reasoning in this way, they were able to prove PD, and (using another 
result of Woodin) QPD, from Woodin's hypothesis, and hence, from the existence of 
a supercompact cardinal. 

18 As the existence of simple inner models made some set theorists more comfortable with measurable 
cardinals, the nonexistence of such inner models makes supercompacts appear more mysterious, perhaps 
even dangerous. 
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This sudden and unexpected reduction in the ante required for QPD naturally 
contributes strongly to the attractiveness of the theory. All the determinacy needed 
for descriptive set theory can be viewed as a theorem of "ZFC + The Axiom of 
Supercompact Cardinals". Indeed, the theory of L[R] under these axioms is in some 
sense "complete": it is invariant under most forcing extensions (see [MM]). Thus 
supercompact cardinals gain a tremendous amount of extrinsic evidence, and QPD 
inherits various intrinsic and rule of thumb support (maximize, generalize, richness 
and reflection) from the Axiom of Supercompact Cardinals. And both are extrinsi-
cally supported by the impressive strength of their intertheoretic connections. 
Thus it is not surprising that some Cabal members view the Martin/Steel theorem 
as proving the detailed descriptive set theory described in Moschovakis's book 
[1980]. 

Of course, now that QPD is seen to follow from the existence of a supercompact 
cardinal, the Levy/Solovay theorem of [1967] immediately implies that QPD 
cannot decide the size of the continuum. The next step would be to investigate 
hypotheses on the structure of L[^(R)]. 

§VII. Concluding philosophical remarks. As this is not a history paper, and even 
more obviously not a logic paper, I feel I owe at least a few philosophical reflections. 
Of course the motivating force behind the presentation of all this material has been a 
philosophical one: I hope to display the role of nondemonstrative arguments in set 
theory, especially in the search for new axioms, and to pose the philosophical task, 
for epistemologists and philosophers of mathematics, of describing and accounting 
for this role. In this final section, I will summarize and lightly categorize the data, 
then address a few random remarks to the serious philosophical questions raised. 

The defenses given here for set-theoretic axiom candidates have been roughly 
divided into three categories: intrinsic, extrinsic and rules of thumb. So far, I have 
not tried to classify particular rules of thumb as intrinsic, extrinsic or other, but it 
should be clear that there is considerably variation within that group. Let me begin 
with a rather stylized discussion of intrinsic justification. 

I have argued elsewhere [1980] that we acquire our most primitive physical and 
set-theoretic beliefs when we learn to perceive individual objects and sets of these. 
We come to believe, for example, that objects do not disappear when we are not 
looking at them, and that the number of objects in a set does not change when we 
move the objects around. These intuitive beliefs are not incorrigible—consider, for 
example, our erstwhile convictions that objects are solid, or that every property 
determines a set—but they do provide a starting point for our physical and 
mathematical sciences. The simplest axioms of set theory, like Pairing, have their 
source in this sort of intuition. If they are not strictly part of the concept (whatever 
that comes to), they are acquired along with the concept. Given its origin in 
prelinguistic experience, the best indication of intuitiveness is when a claim strikes 
us as obvious, or in Godel's words, when the axioms "force themselves upon us as 
being true" [1947/64, p. 484]. 

The extrinsic evidence cited in previous sections came in a bewildering variety of 
forms, among them: (1) confirmation by instances (the implication of known lower-
level results, as, for example, reflection implies weaker reflection principles known to 
be provable in ZFC); (2) prediction (the implication of previously unknown lower 
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level results, as, for example, the Axiom of Measurable Cardinals implies the 
determinacy of Borel sets which is later proved from ZFC alone); (3) providing new 
proofs of old theorems (as, for example, game-theoretic methods give new proofs of 
Solovay's older set-theoretic results); (4) unifying new results with old, so that the old 
results become special cases of the new (as, for example, the proof of PWO(/7}) 
becomes a special case of the periodicity theorem); (5) extending patterns begun in 
weaker theories (as, for example, the Axiom of Measurable Cardinals allows 
Souslin's theorem on the perfect subset property to be extended from E\ to Z\); (6) 
providing powerful new ways of solving old problems (as, for example, QPD settles 
questions left open by Lusin and Souslin); (7) providing proofs of statements 
previously conjectured (as, for example, QPD implies there are no definable well-
orderings of the reals); (8) filling a gap in a previously conjectured "false, but natural 
proof" (as, for example, D e t ^ ) filled the gap in Moschovakis's erroneous "sup" 
proof of PWO(/73)); (9) explanatory power (as, for example, Silver's account of the 
indiscernibles in L provides an explanation of how and why V # L); (10) 
intertheoretic connections (as, for example, the connections between determinacy 
hypotheses and large cardinal assumptions count as evidence for each). 

All of these more or less correspond to forms of confirmation recognized in the 
physical sciences. I would like very much to give an account of their rationality, but 
even our best philosophers of science, from Hempel [1945] to Glymour [1980], 
have so far been satisfied with predominantly descriptive accounts. A careful 
analysis of the structure of such arguments must precede what we hope will be 
an explanation of why they lead us toward truth (cf. Glymour [1980, p. 238]). 

Finally, rules of thumb. When uncritical, intuitive work with sets was inter­
rupted by the appearance of the paradoxes, examination of previously unexamined 
practice revealed that full Comprehension was not in fact used. Rather, sets were 
thought of as being formed from objects already available. This lead to the separa­
tion of sets from classes, and eventually, to the development of the rule iterative 
conception. The source of this rule of thumb in pretheoretical practice, and the 
overwhelming impression of its naturalness once it was specified, suggest that its 
origin is at least partly intuitive (see, e.g. Shoenfield [1967, p. 238]). Realism, 
maximize, and its companion, richness, are all closely tied to iterative conception. 
Finally, reflection is often claimed to be intuitive, perhaps with grounds in maxi­
mize as well. Inexhaustibility is just a special case of reflection, and resemblance is 
a consequence. 

In contrast, the evidence for the boldest of our rules of thumb—Cantorian 
finitism—is predominantly extrinsic, lying in the depth, breadth and effectiveness of 
the subject it launched. Other rules have the flavor of general methodological 
maxims, principles that express our higher-order preferences for theories of one sort 
or another. An example from physical science is Maxwell's principle, which states 
that a law of nature should be valid at all points in space and time (see Wilson [ 1979] 
for discussion). Diversity and generalization are rules of thumb at a similar level of 
abstraction. One step back from disaster, and its special case limitation of size, might 
also be viewed as methodological, though they share something of the spirit of 
maximize. Banishment, on the other hand, seems neither intrinsic, nor extrinsic, nor 
methodological, but rather based in seat-of-the-pants experience with the theory in 
question, like most conjectures. 
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Finally, uniformity and its capriciousness companion whimsical identity have been 
defended both as methodological principles akin to Maxwell's—a good theory does 
not single out particular locations—and as intuitions about the nature of the 
iterative hierarchy connected with richness and resemblance. Either way, we have 
seen the dangers inherent in applications of these two related rules. Perhaps what is 
needed is a theory of exactly what sorts of properties are allowable in uniformity and 
whimsical identity arguments, much as only so-called "structural" properties are 
allowed in reflection arguments.19 Another possibility would be to grant evidential 
status to uniformity and whimsical identity arguments only in the presence of good 
evidence for consistency, or perhaps to relegate them to the status of heuristic 
devices for generating hypotheses that must then be justified by other, probably 
extrinsic, means.20 

If, as we have seen, the practice of mathematics can be understood as analogous to 
that of the physical sciences in a great many respects, it must also be admitted that 
there is a striking difference: mathematicians rarely rely on observations in their 
nondemonstrative testing. This can be understood if we revert to our perceptual 
story. When we learn to see sets of things, we learn to see number properties, and 
from this we develop the humblest of our mathematical sciences: arithmetic. If our 
rudimentary physical science is the study of things qua stuff, arithmetic is the study 
of things qua individuals, the study of sets of things, and as such it is independent of 
the make-up of a set's elements qua stuff. As far as arithmetic is concerned, the 
particular things in its sets are irrelevant, as is their stuff; a set of a given cardinality is 
interchangeable, for arithmetical purposes, with a wide range of others, sets with 
different particular elements but the same cardinality, even sets of symbols.21 Thus, 
once our perceptual relation to the physical world has produced our ability to see 
sets and our basic intuitions about them, the further observation of particulars is 
unimportant. 

This is not to say that the physical world remains entirely irrelevant after this 
initial stage, but before I mention its further incursions, I should say a word about 
the ramifications of a naturalistic, empirical, perception-based account of mathe­
matical knowledge.22 Such views face an unavoidable challenge from the venerable 
philosophical observation that while our various perceptual, neurological and 

19We might try something along the following lines: in both forms of argument, the crucial property, 
the one that is to recur or the one that appears in the whimsical identity, must be "natural". Obviously a 
natural property cannot involve notions like "first" or "smallest", and it cannot involve proper names. 
After this, it is hard to know what to say, except that the failures of uniformity and whimsical identity could 
be explained away as involving instances of unnatural properties. That is, for example, "2 is the even 
prime" shows that "prime" would be more naturally defined as "odd number not divisible by anything but 
itself and 1", and "K0 is the cardinal K such that Vn,m<icic-* KJ," shows that arrow properties should 
not be formulated to allow infinite exponents. 

20 Representatives of each these various opinions on uniformity and whimsical identity arguments can 
be found within the Cabal. 

21 Even sets of appearances. This is why the threat of sensory illusion is less pressing for mathematics 
than for physical science: even if there were an evil demon systematically deceiving us as to the structure 
of the external world, arithmetic would still apply to the world of appearances. 

" T h e idea that perception is involved in the genesis of mathematical knowledge is fairly popular these 
days. See, for example, Resnik [1982], Kitcher [1983], Parsons [1979-80]. 
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evolutionary interactions with the world might well tell us what is true, they cannot 
tell us what must be true. This, coupled with the equally venerable assumption that 
mathematical truths are necessary, creates a mystery. We begin to ask ourselves odd 
questions: if our world (or the evil demon's illusion) were different, would we have a 
different arithmetic? Of course, it is much easier to imagine a world with a different 
physical make-up than ours, or even different physical laws, than to imagine one to 
which our arithmetic does not apply. But then again, if objects systematically 
appeared and disappeared during counting, perhaps we would calculate differently; 
at least it seems likely that the ancient Babylonians (or whoever) would have lost 
interest in the subject. Still, it seems that once a world has two objects, it has a 
potential infinity of which arithmetic is true: the apple, the orange, the set of these 
two, the set of the preceding three, etc.23 Perhaps only a world with absolutely no 
differentiation, a world completely homogeneous, the eternal oneness of the mystics, 
would be without number properties. But even if we leave aside the irritating 
inconclusiveness of musings along these lines, I think we must question their moral, 
their importance, their significance. We lack so much as a clear understanding of 
what it means to say that something is necessary: true in all possible worlds? true due 
to some irreducibly modal property of this world? At this point, it seems to me that 
the most reasonable answer to the old question—how do we know that 
mathematical truths are necessary?—must be that we do not know.24 

It is worth noting that the same goes for certainty. This obvious point should not 
need belaboring, except when a mathematical epistemologist attempts to find 
arguments strong enough to "convince the skeptic". Philosophers gave up the search 
for such arguments in natural science long ago; its retention in the philosophy of 
mathematics can only be traced to an outmoded vision of the nature of 
mathematical knowledge. No one would expect even the best scientific arguments to 
be absolutely justifying. Our epistemological inquiries in mathematics will be 
hampered if we set an unreasonably high standard. 

What, then, is the post-perceptual evidential connection of set theory with the 
physical world? I would suggest that it is the profound applicability of set theory's 
twin pillars: number theory and geometry/analysis. While number theory has its 
origin in counting, geometry arises from the study of the shapes of things (things as 
individuated objects, that is, not as amorphous arrays of physical stuff) and analysis 
from the study of their motions. Set theory systematizes and explains these two 
extravagantly useful branches of mathematics, and in so doing, gains much of its 
own justification (recall the extrinsic argument for the Power Set Axiom in [BAI, 
§1.6]). Notice that the continuum problem, whose independence prompted the 
search for new axioms, and whose solution would provide the most impressive 
extrinsic evidence, is itself a question about the real numbers of physical science. 
This is a central reason why many set theorists are confident of its meaningfulness, 
and thus of the propriety of the search for new axioms herein described. 

"Perhaps this is the truth behind Brouwer's obscure "two-oneness". See his [1912]. In any case, one 
object would do, as long as it was differentiated from its background: the it and the not-it. 

24I do not mean by this that we know mathematics to be contingent, either, but that we have no 
dependable information whatever on the question (assuming it is well-formed). 
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The success of set theory—its objectivity and its applicability—confirm the 
enterprise and its justificatory practices as a whole, but within that whole, the 
particular methods can be analyzed, supported or criticized individually. Not only 
would a clear account of the structure and rationality of nondemonstrative set 
theoretic arguments provide solace for the practitioners and philosophers of the 
subject, but it might even help with the very real problem of locating new rules of 
thumb and new axiom candidates for the solution of the continuum problem. I 
should emphasize that this is not a project of importance only to those with a 
Platonistic bent. It is central to any philosophical position for which the size of the 
continuum is a real issue: all realistic philosophies of set theory, even those that 
eschew mathematical objects (like Kitcher's [1983], Resnik's [1981], [1982], or 
Shapiro's [1983]); modalist accounts that depend on full second-order models (like 
Putnam's [1967] and Hellman's [1986]); and even some versions of Field's 
nominalism (the second-order option of [1985] where only one of "ZFC + 
(V = L)" and "ZFC + QPD" can be conservative (see his footnote 16)). This 
strongly suggests that in this area at least, we would do well to drop the ingrained 
philosophical tendency to concentrate of the differences (however minute) between 
positions, and to engage in a cooperative effort. 
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