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A global transient linear stability analysis of the three-dimensional time-dependent flow
around an aerofoil undergoing small-amplitude pitching motion is performed using
the optimally time-dependent (OTD) framework. The most salient linear instabilities
associated with the instantaneous basic state are computed and tracked over time. The
resulting OTD modes reflect the variations in the basic state and can be used as
predictors of its spatial and temporal evolution, including the formation of a laminar
separation bubble and its gradual spanwise modulation via primary global instability,
leading to secondary instability and finally rapid breakdown to turbulence. The study
confirms and expands upon earlier stability analyses of the same case based on the local
properties of spanwise averaged velocity profiles in the bubble that predicted the onset
of absolute instability soon followed by rapid breakdown of the separation bubble. The
three-dimensional structure of the most unstable OTD mode is extracted, which compares
well with both the locally absolutely unstable mode and the evolution of the basic state
itself.

Key words: absolute/convective instability, boundary layer stability

1. Introduction

A series of investigations on aeroelasticity in the last decade has highlighted the critical
role played by boundary layer transition on the aerodynamic forces experienced by
the aerofoil during unsteady motion. Experiments done in moderately high Reynolds
number compressible (Mai & Hebler 2011; Hebler, Schojda & Mai 2013) as well as
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incompressible (Lokatt 2017; Negi, Hanifi & Henningson 2021) regimes have shown
that in natural laminar flow aerofoils, the laminar–turbulent transition point may have a
sensitive dependence on the operating conditions, and small changes in angle of attack
can result in large variations of the suction side transition location. The emergence of
aerodynamic force nonlinearities was found to be linked intimately with this variation
of the laminar–turbulent transition location. Of course, such sensitive dependence on
operating conditions is not restricted to high Reynolds numbers, but may also be observed
in the transitional regime, as has been documented by Pascazio et al. (1996), Nati
et al. (2015) and Negi et al. (2018), where small-amplitude pitch oscillations produced
large variations in the boundary layer characteristics. The work of Negi et al. (2018,
2021) investigates these two regimes for the same aerofoil, and together they provide a
fascinating contrast between the effects of small-amplitude forced pitch oscillations of
an aerofoil in two different Reynolds number regimes. In the moderately high Reynolds
number Rec = 750 000 (studied in Negi et al. 2021), the unsteady flow dynamics could
be qualitatively understood through quasi-steady assumptions leading to phase-lagged
behaviour of the unsteady boundary layer. On the other hand, the transitional regime at
Rec = 100 000, investigated in Negi et al. (2018), displayed a richer dynamic behaviour of
the unsteady boundary layer that was far from quasi-steady.

Within a single oscillation cycle, the flow over the suction side of the aerofoil was
seen to alternate between turbulent and (mostly) laminar flow states. Different competing
mechanisms for transition existed during the cycle, with the flow transitioning over the
trailing-edge laminar separation when the boundary layer is mostly laminar. This gave
way to a more upstream transition due to the breakdown of Kelvin–Helmholtz rolls that
were shed from the incipient leading-edge laminar separation bubble (LSB), which starts
to form during the pitch-up phase of the oscillation cycle. The transition moves upstream
as the leading-edge LSB grows larger, and the flow eventually transitions over the shear
layer of this leading-edge LSB. The reverse process happens in the pitch-down phase of
the oscillation, with the leading-edge LSB shrinking in size, and the flow transition slowly
moving downstream again.

A large focus of the investigation in Negi et al. (2018) was on the upstream motion of
the transition. In particular, it was found that the transition point initially moves upstream
relatively smoothly, but at a certain instant has an abrupt change. At that instant, one can
identify two independent spatial locations of transition, one on the leading-edge LSB, and
one further downstream (due to the breakdown of the Kelvin–Helmholtz rolls), separated
by a region of laminar flow. In an attempt to shed more light on the mechanism behind
this abrupt change in transition, the authors analysed the local stability characteristics of
the leading-edge LSB, and found that the LSB changes character from being convectively
unstable to being absolutely unstable, with a small pocket of local absolute instability
found at the rear of the LSB. This was found to occur just before the abrupt change in
transition, and it was hypothesised that this change of character might be responsible for
the emergence of this new transition location.

While the data from the full nonlinear simulations indicated a qualitative agreement with
the local analysis, the methodology has a few drawbacks. First, the local analysis ignores
the streamwise variation of the flow, which can have a significant impact on the growth
rates of perturbations. Second, the local one-dimensional wall-normal profiles were
obtained via a spanwise averaging of the flow field. These variations may again contribute
to the growth rate of perturbations. Finally, the local analysis in Negi et al. (2018)
focused on spanwise homogeneous perturbations (invoking Squire’s theorem); however,
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the visualisation of the final abrupt breakdown shows an initial localised breakdown,
followed by the emergence of smaller-scale structures. This could mean that the absolute
instability found by the authors is possibly a precursor stage to the final breakdown, with a
secondary instability setting in before breakdown. This conjecture is further supported
by the fact that the absolute growth rates reported appear to be too low for the rapid
breakdown observed in the nonlinear simulations.

Considering the limitations on the local analysis, a global analysis of the flow case is
needed to overcome the restrictive assumption of spatial homogeneity in the streamwise
direction, and confirm the conclusions drawn in Negi et al. (2018). A straightforward
extension would be to perform a global linear stability analysis on instantaneous snapshots
of the basic state, and determine whether the local spectrum in time supports an unstable
global mode at the time predicted in the reference. Unfortunately, this approach has a
number of drawbacks. On the one hand, in contrast to classical stability analyses, the
baseflow trajectory considered in this work is unsteady, and there is ambiguity regarding
the appropriate instant to be used for the stability analysis. Furthermore, the search for
an unstable global eigenmode carries an implicit bias common to all stability analyses
focusing on eigenspectra, which is the assumption of an (effectively) infinite time horizon
for the growth of perturbations. While this assumption is usually appropriate in the case of
fixed points and even periodic orbits by considering the stability of Poincaré sections (i.e.
Floquet theory), the applicability becomes at least questionable in the case of an arbitrarily
time-dependent basic state such as the pitching aerofoil considered by Negi et al. (2018). In
fact, over short time horizons, non-normal operators such as the linearised Navier–Stokes
operator can give rise to considerable algebraic growth due to the interaction of highly
non-orthogonal eigendirections. This transient or non-modal growth may be so rapid that
modal growth is practically irrelevant.

In classical (quasi-)steady stability analysis, the linear operator is assumed to be
time-invariant, and its non-normality has the potential to lead to a transient episode of
non-modal growth before virtually all perturbations align with the leading eigendirection.
In the transient case, however, the changing baseflow leads to a drift in the linear operator.
In practice, this means that a linear perturbation effectively never fully aligns with
the dominant direction, which is constantly changing, and crucially that the resulting
misalignment can be seen as regeneration of conditions for repeated transient growth.
In the extreme case, modal growth – and thus the spatial structure and growth rates of
(instantaneous) eigendirections obtained from the spectral analysis of a single baseflow
snapshot – may by themselves never be practically relevant for the evolution of the
transient flow. The degree of misalignment between an instantaneous perturbation and
the instantaneous eigendirection is not a constant but depends on the one hand on the
rate of change of the baseflow and the sensitivity of the operator to it, and on the other
hand on the time scales of the linear growth mechanisms (modal or non-modal) present
in the flow. The former dictates how fast the spectral characteristics change, whereas the
latter provides the speed limit for the perturbation’s evolution and alignment. In order to
be able to correctly identify and interpret the stability characteristics of transient flows, the
baseflow therefore needs to be scrutinised at regular intervals, allowing us to assess these
rates of change.

1.1. Transient global linear stability analysis
In practice, global linear stability analyses of complex three-dimensional flows are
difficult and costly, such that the classic approach using extended spectral analyses of
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baseflow snapshots at sufficiently high frequency is not feasible. The realisation that
time-dependent, non-quasi-steady flows are governed by their temporal variation is the
motivation to develop a transient linear stability analysis that chooses a different trade-off
between resolution of the linear spectrum and temporal resolution. Instead of resolving
the full or even large parts of the linear spectrum at a few instants, we accurately
follow the variation of the most unstable part of the linear tangent space along the
nonlinear, time-dependent baseflow trajectory, which contains the dynamically relevant
linear structures for the flow evolution. The obvious drawback is that by spanning
only a (relatively) small subspace, the categorisation of linear structures as modal or
non-modal from classical stability analysis becomes difficult, because it necessarily
requires knowledge of the full spectrum. In spite of this, we argue that due to the
inadequacy of the quasi-steady assumption, this distinction becomes less significant in
practice compared to having access to the instantaneously most amplified structures over
time that, together with the external time-dependence, effectively drive the evolution of
the basic state.

When analysing and interpreting the results of transient linear stability analysis, it is
also important to consider that the paradigm shift requires a generalisation of the concept
of baseflow since, unlike in the classical linear stability of an (unstable) fixed point, the
transient baseflow is fundamentally not separable from the instabilities that develop on it
and alter it. Nevertheless, the appearance of new instabilities due to baseflow variations
can be identified by comparing the change of the baseflow to the spatial structure predicted
by the mode. Furthermore, the finite time horizon of the transient stability analysis also
relaxes the unconditional primacy of the instantaneously least stable mode, as growth rates
and structures can change rapidly and several unstable modes can coexist over finite times,
both influencing the flow state. In this context, it is important to note that the basic state
considered in this work is not fully laminar, due to the boundary layer transition leading
to turbulent regions, but is also far from fully turbulent and chaotic. It is precisely the
transient transitional nature of the basic state that makes it an intriguing flow case whose
comparatively slow temporal variation warrants linearisation and the detailed analysis of
the structures in the linear tangent space to understand the underlying dynamics.

1.2. Optimally time-dependent framework
In view of the requirements for the transient global linear stability analysis of a
time-dependent baseflow, the optimally time-dependent (OTD) framework, proposed
recently by Babaee & Sapsis (2016), provides us with a numerically efficient algorithm
for the purpose. The framework has two main features that make it particularly well
suited for the present analysis. First, the OTD framework is global, i.e. does not rely on
the assumption of spatial homogeneity central to the local approach, and can therefore
take into account the spatial variation of the baseflow, in particular the considerable
non-parallelism of the LSB. Second, the method is based on the time-integration
of the viscous linear perturbation problem designed to converge to and subsequently
follow the instantaneously most unstable subspace of the tangent space to the nonlinear
baseflow trajectory. The OTD framework constructs an orthonormal basis spanning and
subsequently tracking the most unstable subspace of the linear tangent space. We stress
that the approach is both global, i.e. makes no assumptions regarding the spatial structure
of the perturbations, and also agnostic of the time dependence of both the baseflow and
the perturbations, which need not be the same. From this OTD basis of the linear tangent
space, we can construct the OTD modes that allow us to track the spatio-temporal variation
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of the most salient linear instabilities in the time-dependent boundary layer in reaction to
changes in the baseflow due to the formation and subsequent breakdown of the LSB. The
mathematical details of the framework are presented in § 2.2.

Since its proposal, the OTD framework has seen a number of applications in the
analysis of chaotic dynamical systems (Farazmand & Sapsis 2016; Babaee et al. 2017)
and the computation of finite-time Lyapunov exponents (Babaee et al. 2017; Blanchard
& Sapsis 2019a; Kern et al. 2021; Beneitez et al. 2023), reduced-order modelling
and control (see e.g. Blanchard, Mowlavi & Sapsis 2018; Blanchard & Sapsis 2019b),
sensitivity computation in dynamical systems (Donello, Carpenter & Babaee 2022), and
edge tracking (Beneitez et al. 2020). The majority of these studies mainly took advantage
of the method’s appealing numerical properties, in spite of the fact that the physical
significance of the OTD modes was already visible in the application of the framework
to the case of jet in crossflow in the original publication (Babaee & Sapsis 2016), which
was unfortunately not discussed in great detail. The visualisations show how the four OTD
modes are strongly localised on the shear layers close to the exit of the jet, and in particular
the vortex sheet that is the origin of the strong instability in the jet that leads to the eventual
roll-up of the shear layer, which is confirmed by a classical global stability analysis that
identifies this region as the centre of the wavemaker (Chauvat et al. 2020). Although this
is not mentioned, the OTD modes also capture structures on top of the hairpin vortices that
appear downstream of the jet exit, and indicate secondary instability that cannot be studied
in the classical stability analysis of the steady fixed point. There is some irony in the
choice of physically relevant test cases for the OTD framework in the original publication,
namely plane Poiseuille flow and jet in crossflow, in that they are autonomous and thus
are not well suited to showcase a unique feature of the OTD modes, which is the fact that
they can follow the time-dependent linear dynamics for non-autonomous flows where the
fundamental assumptions underlying classical stability analysis break down.

This potential was explored in detail by Kern et al. (2021) using the canonical
non-autonomous case of two-dimensional pulsating plane Poiseuille flow, where the OTD
mode structures were seen to correspond to the instability modes of plane Poiseuille flow
modulated by the superimposed pulsations. The temporal periodicity of the flow case
combined with its geometrical simplicity that admits an analytical solution even in the
non-autonomous case – the direct comparison between the instantaneous eigendirections
of the local operator (i.e. the quasi-steady analysis at each point in time) and the
asymptotic linear solutions (the Floquet eigendirections) – was considered in Kern, Hanifi
& Henningson (2022). One of the key results of the analysis was to show the increasing
misalignment between the instantaneous eigendirections governed by the external time
dependence via the baseflow and the perturbations, whose time scales are independent
of the external pulsation time scale but are instead governed by the time scales of
linear growth mechanisms, in this case the transient growth via the Orr mechanism in
particular. The key fact here is that the leading OTD modes will always capture the
dominant perturbation dynamics and thus the physically relevant structures, although their
exhaustive interpretation in terms of modal and non-modal growth requires extensive
knowledge of the full spectrum of the linear operator.

Very recently, Beneitez et al. (2023) have applied the OTD framework to the temporal
evolution of the edge trajectory in the Blasius boundary layer featuring unsteady streaks
requiring a transient framework for a linear stability analysis. Their analysis recovered
unsteady counterparts of the outer modes akin to the secondary instability modes identified
by Vaughan & Zaki (2011) that dominate the dynamics in the tangent space. Furthermore,
a new type of structure was discovered, which is thought to play a role in streak switching
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and the lateral propagation of the localised edge state (Beneitez et al. 2023). Also here, the
generalisation of the linear stability concept avoiding the quasi-steady assumption allows
for a less restricted analysis, which provides new insights into the instability mechanisms
of transient flows.

The above successful applications of the OTD framework to various time-dependent
flows have inspired us to apply the method to the flow case considered by Negi et al.
(2018) to track the linear instabilities involved in the evolution of the LSB over time.
The present study is aimed at extracting physically relevant structures leading up to the
breakdown of the LSB using the transient OTD framework. The chosen approach naturally
captures linear phenomena that would appear under the quasi-steady assumption where it
is appropriate. A detailed comparison of the two approaches is beyond the scope of this
paper, but given the results obtained using the transient linear stability analysis framework
presented here, the authors believe that an analysis similar to the one performed for
pulsating Poiseuille flow (Kern et al. 2021, 2022) would be an interesting extension of the
present work to quantify the impact of the time dependence on the stability characteristics.

The remainder of the paper is organised as follows. After introducing the problem and
the mathematical models including the OTD framework in § 2, the numerical approach
including solvers and meshing is described in § 3. The results of the analysis are presented
in § 4, together with a discussion. A summary and concluding remarks are gathered in § 5.

2. Problem definition

The formation and evolution of an LSB on the ED36F128 natural laminar flow aerofoil
(Lokatt 2017; Lokatt & Eller 2017) subject to forced small-amplitude pitch oscillations is
considered at a chord-based Reynolds number Re = 100 000 using the set-up from Negi
et al. (2018). The sinusoidal aerofoil motion with a reduced frequency k = Ωb/U0 = 0.5
based on the semi-chord length b and the free-stream velocity U0 around the pitch axis
located at (x0, y0) = (0.35, 0.034) is defined in terms of the instantaneous angle of attack
given by

α(t) = α0 + �α sin(Ωt), (2.1)

where the mean angle of attack is α0 = 6.7◦, the oscillation amplitude is �α = 1.3◦, and
Ω is the oscillation frequency. The domain is periodic in the spanwise direction, which
has an extent of �z = 0.25 chords.

The focus of the present study is the dynamics of the LSB, which exists during only part
of the oscillation cycle. In order to capture both the formation and growth as well as the
eventual breakdown of the bubble, we restrict the analysis to the third pitching cycle of the
simulation in Negi et al. (2018) close to the maximum pitching angle corresponding to the
time interval t/Tosc ∈ [2.650, 3.363] with oscillation period Tosc = 2π. This corresponds
to approximately 4.5 convective time units c/U0.

2.1. Governing equations
The nonlinear basic flow over the aerofoil is governed by the fully three-dimensional,
time-dependent incompressible Navier–Stokes equations

∂Ub

∂t
+ (Ub · ∇)Ub = −∇P + 1

Re
∇2Ub, ∇ · Ub = 0, (2.2a,b)

where Ub = (Ux, Uy, Uz) is the three-dimensional velocity field, and P is the pressure.
The equations are non-dimensionalised with the free-stream velocity U0 and the chord
length c = 2b to obtain a chord-based Reynolds number Re = 100 000.
988 A8-6
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The instantaneous stability characteristics of the resulting baseflow Ub are analysed by
considering the evolution of a three-dimensional global linear perturbation on top of the
basic state, the dynamics of which follows the linearised Navier–Stokes equations

∂u
∂t

+ (Ub · ∇)u + (u · ∇)Ub = −∇p + 1
Re

∇2u + f ext, ∇ · u = 0, (2.3a,b)

where u is the three-dimensional linear perturbation velocity field, p is the associated
perturbation pressure, and f ext is an external forcing term for the linear problem. The
linear equations employ the same non-dimensionalisation as their nonlinear counterparts.

The pressure has no evolution equation in the incompressible limit but instead assumes
the appropriate value to satisfy the continuity constraint. Consequently, by projecting the
perturbation velocity field onto the closest divergence-free space via the Helmholtz–Hodge
decomposition, the linearised equations (2.3) are recast in dynamical system form

∂q
∂t

= Lq + f , (2.4)

where L represents the full linear operator (excluding pressure) acting on the
three-dimensional solenoidal part q = (u, v, w) of the velocity field, and f is the
divergence-free part of the external forcing f ext.

We note explicitly that the linearisation is performed continuously along the
time-dependent baseflow trajectory, implying that not only q but also L, directly dependent
on Ub, is implicitly time-dependent. The basic state considered here is never steady,
although the intrinsic unsteadiness of the Navier–Stokes equations may be negligible in
certain laminar flow conditions, due to the externally forced pitching motion.

2.2. The linear problem and the OTD framework
Given an orthonormal set of r basis vectors Q = {qi}r

i=1, the OTD framework formulates
and solves an optimisation problem to find the rate of change of Q that minimises
the Euclidean distance to the action of the linear operator L under the constraint of
maintaining orthonormality with respect to the standard energy norm

〈qi, qj〉 =
∫

Ω

qH
j qi dΩ, (2.5)

where the integration is carried out over the full domain of the linear problem, and (·)H

denotes complex conjugate transposition. The evolution equation for the individual basis
vectors qi given by the solution of this constrained optimisation problem given by Babaee
& Sapsis (2016) reads

∂qi

∂t
= Lqi −

r∑
j=1

[〈Lqi, qj〉 − ϕij]qj, i = 1, . . . , r, (2.6)

where ϕij is an arbitrary function satisfying ϕij = −ϕji. Following the work of Blanchard
& Sapsis (2019a), we choose ϕij to be

ϕij =

⎧⎪⎨
⎪⎩

−〈Lqj, qi〉 if j < i,
0 if j = i,
〈Lqj, qi〉 if j > i,

with j = 1, . . . , r, (2.7)

such that the evolution equations (2.6) become equivalent to continuous Gram–Schmidt
orthonormalisation of the basis vectors. The resulting expression for the forcing term is
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given by

f i = −〈Lqi, qi〉qi −
i−1∑
j=1

[〈Lqi, qj〉 + 〈Lqj, qi〉]qj, i = 1, . . . r, (2.8)

which is injected into the linear equations (2.4) for each of the r basis vectors.
The basis vectors evolving according to (2.6) are time-dependent and orthonormal, and

span a flow-invariant subspace of the linear tangent space called OTD subspace (Babaee
& Sapsis 2016). Following other authors (e.g. Farazmand & Sapsis 2016), we assume that
the convergence of the OTD subspace to the most unstable subspace of the tangent space,
proven for hyperbolic fixed points (Babaee & Sapsis 2016), holds also in the case of the
trajectory considered in this work, which has an arbitrary time dependence.

The chosen formulation using the specific rotation matrix (2.7) implies that adding more
modes does not change existing basis vectors but allows a more accurate interpretation
of the growth within the subspace in term of modal and non-modal growth, by adding
more information about possible interactions with newly spanned directions that may be
non-orthogonal (Kern et al. 2022). Furthermore, tracking additional modes has the benefit
of more accurately tracking the most unstable directions, which are effectively shielded
from the dynamics outside of the subspace by the most stable modes (Babaee et al. 2017).
Since subspace sizes rigorously based on spectral properties of the full linear operator
(Blanchard et al. 2018; Kern et al. 2021) are unfeasible for complex flows, the subspace
dimension must be chosen heuristically and is typically severely limited by the available
computational resources (Beneitez et al. 2023). In this work, an OTD subspace size r = 16
was chosen (corresponding to 8 complex conjugate eigenmodes) as a trade-off between
spanning the largest possible linear subspace of the tangent space and the computational
cost of solving additional linear problems in parallel with the evolution of the nonlinear
baseflow trajectory.

3. Numerical methods

3.1. Segregated simultaneous coupled nonlinear and linear simulations
The nonlinear simulations of the pitching aerofoil use the same set-up as Negi et al.
(2018), using the open-source high-order spectral element code Nek5000 (Fischer,
Lottes & Kerkemeier 2008). The numerical domain is divided into hexahedral elements
inside which the governing equations are discretised by Galerkin projection onto a set
of Lagrange interpolants on Gauss–Lobatto–Legendre points following the PN–PN−2
formulation of the spectral element method (Maday & Patera 1989) using 11th (9th)
order polynomial bases for the velocity (pressure) expansion in each coordinate direction
within each element. The equations are integrated in time using a third-order backward
differencing scheme (BDF3) treating the viscous term implicitly. The nonlinear terms
are computed explicitly via a third-order extrapolation (EXT3) with over-integration. The
highest frequencies in the solution are filtered using a relaxation-term filtering (Schlatter,
Stolz & Kleiser 2004) to ensure stability, in particular in the far field, but there is
no modelling of subgrid stresses, which are resolved in the near-wall regions. In the
boundary layers and in the regions of transitional flow close to the LSB, the mesh is
fine enough such that the filtering is negligible and the simulations are equivalent to
a direct numerical simulation in all relevant aspects (Negi et al. 2018). The aerofoil
motion is included using the arbitrary Lagrangian–Eulerian framework (Ho & Patera
1990) with local mesh deformation involving a smooth radial blending function to

988 A8-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.407


Onset of absolute instability on a pitching aerofoil

transition from the solid-body rotation of the aerofoil to the stationary far-field boundaries.
The C-type mesh of the domain extends radially 2 chords upstream and 4 chords
downstream of the aerofoil. The spanwise extent is 0.25 chords with periodic boundary
conditions, whereas the energy-stabilised boundary condition due to Dong (2015) is used
at the outflow. The inlet boundary conditions are extracted from an auxiliary unsteady
RANS calculation superimposed with turbulent fluctuations corresponding to a turbulence
intensity Tu = 0.1 % generated using Fourier modes with random phase shifts similar to
the method used in Brandt, Schlatter & Henningson (2004). Details of the numerical set-up
are given in Negi et al. (2018).

The spanwise extent of the computational domain is comparatively large, corresponding
to about 25 times the boundary layer thickness. This domain size is more than sufficient
to capture boundary layer instabilities that typically have spanwise extents of the same
order as the boundary layer thickness, but may not be able to accurately resolve larger
spanwise coherent structures such as stall cells (see e.g. Broeren & Bragg 2001). Although
the flow evolution involves an LSB that extends over up to 20 % of the chord, as well as
trailing-edge separation (in particular over the last 20 % of the aerofoil chord), both of
which are typical in pre-stall flows, the present aerofoil configuration is far from stall such
that the corresponding structures are not expected to appear. The facts that the boundary
layer dynamics and the associated aerodynamic loads over the entire oscillation cycle are
predicted accurately by the simulations in Negi et al. (2018), and the linear instabilities
computed in the present work match the nonlinear behaviour of the baseflow, serve as an
a posteriori confirmation of the adequacy of the computational domain.

The baseflow simulations are repeated using full restarts from the simulations of Negi
et al. (2018) in order to compute the linearisation around the time-dependent trajectory
maintaining the third-order accuracy in time. The discretisation of the three-dimensional
baseflow problem leads to a total of 200 × 106 spatial degrees of freedom. The large size of
the problem implies that saving the baseflow field or the linearisation to disk for a separate
integration of the linear equations is inefficient. Therefore, linearisation of the nonlinear
baseflow and solution of the associated perturbation equations are performed on the fly
by solving the nonlinear and linear problems simultaneously to avoid storing intermediate
data, and improving efficiency and reducing the data storage footprint.

The focus of the present analysis is the dynamics of the LSB on the aerofoil suction
side. Therefore, the OTD basis is not constructed for the entire baseflow domain but is
instead restricted to a small region of interest close to the leading edge of the aerofoil,
concentrating the available computational resources on the relevant part of the domain,
and considerably reducing the overall cost of the linear solves. This separation is achieved
using the segregated simultaneous coupled nonlinear and linear framework developed in
Kern et al. (2021) that was successfully applied to open aerodynamic flows in Kern (2023).
Based on the idea of the overlapping grid methodology of NekNek (Merrill et al. 2016), the
nonlinear and linear problems are solved in separate instances of Nek5000. The segregation
of the problems allows for topologically different meshes for each session under the
condition that the linear domain is a subset of the nonlinear domain. The baseflow
solution is interpolated onto the linear subdomain using the standard spectrally accurate
interpolation routines available in Nek5000, and communicated to the twin session using
the efficient communication protocols provided in NekNek. Since the present application
solves different problems in each session, there is only a one-way dependence from the
baseflow to the linear problems, thus avoiding the costly iterations at each step between
the sessions, which are required within the NekNek framework to converge the solution of
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the same problem on separate overlapping meshes. The linear problems are solved using
the same spectral element formulation and polynomial order as the nonlinear simulation.

The method as well as the implementation are in principle able to handle an arbitrary
number of basis vectors. In practice, the size of the OTD subspace is limited by
the computational cost of computing and storing these vectors. The localised mesh
for the linear simulations contains about 90 % fewer elements than the mesh for the
baseflow computations. As the memory footprint scales approximately linearly with the
mesh size, the present simulations have an approximate memory requirement of 2 TB
(800 GB nonlinear, 16 × 80 GB linear). The linear and nonlinear simulations were run
simultaneously on 64 nodes of the Tetralith cluster from National Supercomputer Centre in
Linköping, Sweden, with a 40/24 split of the nodes between the nonlinear/linear instances
to obtain good load balancing. Each compute node has 32 cores and 96 GB of memory
(6 TB in total).

3.2. Meshing and initial conditions for the linear domain
The mesh for the baseflow domain is the same as in Negi et al. (2018). The hexahedral
linear subdomain is meshed using a high-quality body-fitted mesh covering the suction
side of the aerofoil in the streamwise interval x/c ∈ [0.01, 0.4], including the full LSB
at all considered time instants. The linear mesh covers the full span of the nonlinear
simulation, and inherits the spanwise periodicity. Homogeneous Dirichlet boundary
conditions are enforced on all other boundaries. The wall-normal extent of the mesh
orthogonal to the surface was chosen to vary smoothly from �y = 0.05c at the inlet to
�y = 0.1c at the outlet in order to minimise the boundaries at which the baseflow exits
the domain, which can lead to non-physical reflections. At the boundaries at which outflow
is unavoidable, in a similar fashion to comparable global stability analyses (Peplinski,
Schlatter & Henningson 2015; Chauvat et al. 2020), a sponge region is introduced
to smoothly force the perturbations to zero towards the boundary. Extensive tests on
two-dimensional precursor simulations of the same aerofoil geometry were used to design
the mesh resolution for the linear domain and ensure independence of the results from the
sponge parameters. The spatial domain for the linear solves in comparison to the baseflow
mesh is shown in figure 1, indicating also the extent of the sponge region. The spatial
resolution within the domain is chosen similar to or higher than that of the baseflow
domain, to maintain accuracy. The mesh in the subdomain has 90 % fewer elements than
the baseflow mesh, and can be optimised for performance so that the cost per time step for
each linear solve is 25 times lower than for the nonlinear step. A roughly equal time per
time step in both sessions running in tandem is achieved by tuning the distribution of the
allocated computational cores between the sessions. In order to avoid the initial transients
from overshadowing the dynamics of interest, the OTD basis initialised with random noise
is first integrated for approximately 30 % of the total simulation time to allow the subspace
to align to the tangent space, and then re-injected at the initial time. The OTD basis needs
to be periodically re-orthonormalised to maintain accuracy in spite of the errors due to
finite-precision arithmetic inherent in numerical integration.

3.3. Recovering the OTD modes
The discretised evolution equations for the OTD basis Q = [q1 | · · · | qr] ∈ Rn×r, where
n denotes the number of spatial degrees of freedom, can be written compactly in matrix
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Figure 1. Sketch of the three-dimensional bounding box and mesh of the subdomain (red) relative to the
aerofoil. The shaded area in the subdomain mesh indicates the location of the sponge region covering the entire
span. Only spectral elements are shown, and both simulations are run at polynomial order N = 11.

form as
∂Q

∂t
= LQ − Q(QTLQ − Φ), (3.1)

where L ∈ Rn×n is the discretised full linear operator, and Φ = [ϕ1 | · · · |ϕr] ∈ Rr×r is
the skew-symmetric internal rotation matrix (2.7).

As part of the time-integration of the basis vectors, we compute the orthogonal
projection of the full operator L onto the subspace spanned by the columns of Q, defining
the reduced operator

Lr = QTLQ ∈ R
r×r, (3.2)

which is a dynamically consistent reduction of the full operator (Farazmand &
Sapsis 2016). Since the basis vectors themselves have no physical interpretation, we
extract physically relevant spatial structures from the OTD subspace by performing an
eigendecomposition of the reduced operator as a proxy for the full linear dynamics, to
obtain

Lr = VΛV−1, (3.3)

where V = [v1 | · · · | vr] ∈ Cr×r contains the eigenvectors, and Λ = diag(λi) ∈ Cr×r is
the diagonal matrix of associated eigenvalues ordered by decreasing real part, and
subsequently projecting the basis vectors onto the resulting eigendirections. The columns
of the projection matrix U = [u1 | · · · | ur] ∈ Cn×r computed as

U = QV (3.4)

are the OTD modes that capture the spatial structure of physically relevant instabilities
within the OTD subspace.

In order to follow specific modes during the simulation, it is useful to track the
corresponding eigenpairs over time. Since eigenvalue algorithms generally do not produce
spectra in any particular order, but the reduced operator is sufficiently small to compute
all eigenvalues at negligible cost, the eigenvalues can be tracked as a post-processing step.
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(a) (b)

Figure 2. Visualisation of the boundary layer transition at two different instants using λ2-structures coloured
by streamwise velocity (Ux ∈ [−0.6, 1.8], blue to red): (a) t/Tosc = 3.19, α = 7.91◦, and (b) t/Tosc = 3.34,
α = 7.75◦.

By computing the eigenvalue spectra of the reduced operator every 10 time steps, the
frequency is high enough compared to the variation of the spectra in time, so that a
linear-extrapolation-based nearest neighbour search is sufficient to accurately track the
eigenvalues in the complex plane.

4. Results

4.1. Overview of the baseflow
In this subsection, we give a brief overview of the nonlinear dynamics of the baseflow
in the time interval considered in this work. For a more detailed analysis of the full
oscillation, we refer to Negi et al. (2018).

The present simulation covers the formation, growth and ultimately breakdown of
an LSB close to the leading edge of the aerofoil. Over the course of this evolution,
both the transition location on the suction side as well as the mechanism changes, as
shown by the snapshots of the baseflow in figure 2. While the transition is initially
typical of boundary layers in low free-stream disturbance environments, involving the
breakdown of quasi-two-dimensional rolls developing downstream, the transition towards
the end of the simulation is very abrupt and localised close to the reattachment point
of the LSB. To put the visualisations into context, the space–time diagram of the
span-averaged wall shear-stress over the suction side of the aerofoil is shown in figure 3.
The spanwise-coherent rolls are a dominant feature and appear progressively farther
upstream throughout the simulation. Simultaneously, the evolution of the LSB close to the
leading edge is very prominent. The breakdown of the LSB and abrupt transition visible
in the snapshot is also reflected in the increased level of unsteadiness in the wall shear at
the rear of the LSB towards the end of the simulation. The figure also shows the domain
in which the linear equations are solved, covering the extent of the bubble centred around
the streamwise location of the average LSB reattachment point. The rest of the paper will
focus exclusively on the domain covered by the linear simulation.

A visualisation of the complete nonlinear baseflow evolution considered in this paper,
including the variation of the instantaneous angle of attack compared with the oscillation
period and the span-averaged wall shear-stress on the aerofoil suction side, is available in
the supplementary movie available at https://doi.org/10.1017/jfm.2024.407.

4.2. Evolution of the OTD subspace
Over the entire considered time interval, a 16-dimensional OTD basis is evolved alongside
the nonlinear baseflow. The spectrum of the reduced operator, as well as its instantaneous
numerical abscissa, are computed with high frequency to track the evolution of the OTD
subspace over the course of the simulation. The resulting time histories of the growth
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Figure 3. Space–time plot of the span-averaged wall shear-stress distribution on the aerofoil suction side.
The black line indicates vanishing wall shear-stress. The black box indicates the space–time extent of the
subdomain, and the shaded area at the outlet corresponds to the sponge region. The dashed lines indicate the
instants corresponding to the snapshots in figure 2.

rates within the 16-dimensional OTD subspace are shown in figure 4 together with
the space–time plot of the wall shear-stress within the subdomain, revealing complex
dynamics that very clearly reflect the changes in the baseflow. Note that the orientation
of the space–time plot is changed to have time along the x-axis, and that the plots are
separated into two consecutive parts for improved readability.

The first point to make is that the most unstable subspace is always globally unstable
with at most a few stable modes. Care must be taken when relating the OTD growth
rates to the full system. There is indeed a risk for misinterpretation of non-modal growth
with respect to the full operator as modal growth within the subspace that is unaware
of non-orthogonal eigendirections of the full linear operator that it does not span. This
topic is considered in more detail in Kern et al. (2022) for the case of pulsatile plane
Poiseuille flow. Especially, the modal growth rates recovered by a small OTD subspace
should therefore not be considered accurate values, in particular in the context of the
necessary spatial truncation of the subdomain that does not fully contain the modes.
Nevertheless, the relative variations of the growth rate as well as the spatial structure
of the recovered OTD modes are representative of the true linear dynamics of the flow.
The initial slow stabilisation of the subspace prior to the formation of the LSB is likely
due to transients related to the injection of the OTD basis vectors aligned with the linear
dynamics at t/Tosc ≈ 3.2.

For a few selected time instants, the leading OTD mode is visualised in figure 5 in order
to reconstruct the events leading up to the breakdown of the LSB. Before the formation of
the bubble, all OTD modes are concentrated near the outlet (t1) and correspond to oblique
waves. At t2, the leading mode begins to move upstream, heralding the imminent formation
of the LSB. By t3, we can see the formation of strongly amplified quasi-two-dimensional
wavepackets in the middle of the subdomain, soon followed by the emergence of the LSB
as the boundary layer separates at approximately 10 % chord but rapidly reattaches before
transition. As the LSB grows, the leading OTD mode follows the reattachment point. By
t4, the core of all modes lies downstream of the reattachment point, and their structure
consists mainly of quasi-two-dimensional rolls with considerably increased spatial growth
rate. Interestingly, already at this time, the OTD modes extend all the way to the initial
separation point and exhibit spanwise inhomogeneity within the LSB in spite of its small
wall-normal extent. This loss of two-dimensionality in the LSB is very similar to the
global instabilities studied by Theofilis, Hein & Dallmann (2000). At t5, the growth of the
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Figure 4. Time traces of the real growth rates of the eigenvalues of Lr as well as the numerical abscissa
compared to the span-averaged wall shear-stress in the subdomain (the flow is from bottom to top). The time
series has been split in two segments for clarity. The shaded area in the wall shear-stress plots indicates the
extent of the sponge region. Note the different scalings of the y-axis for the plots of the eigenvalue traces. For
the time instants marked by solid vertical lines, the leading OTD mode is shown in figure 5. The dashed line
marks the onset of absolute instability according to Negi et al. (2018).

spanwise rolls in the nonlinear solution leads to considerable unsteadiness in the baseflow
at the rear of the subdomain, evidenced by the appearance of vortices identified by
λ2-structures. In this period, the OTD modes intermittently localise on the nonlinear rolls,
but return to the LSB once the rolls are swept out of the subdomain. After t6, the primary
quasi-two-dimensional instability waves are always present within the linear subdomain,
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t1/Tosc = 3.138, α = 7.69° t2/Tosc = 3.151, α = 7.76°

t3/Tosc = 3.156, α = 7.78° t4/Tosc = 3.185, α = 7.89°

t5/Tosc = 3.221, α = 7.98° t6/Tosc = 3.282, α = 7.97°

t7/Tosc = 3.298, α = 7.94° t8/Tosc = 3.345, α = 7.77°

t9/Tosc = 3.351, α = 7.75° t10/Tosc = 3.360, α = 7.70°

(a) (b)

(c) (d )

(e) ( f )

(g) (h)

(i) ( j)

Figure 5. Isosurfaces of the u-velocity (red/blue, u = ±20) of the leading OTD mode at time instants marked
in figure 4, together with a slice showing |u| > 0.5 to indicate the extent of the mode. The black surface is the
isocontour of zero streamwise baseflow velocity (Ux = 0) as a proxy for the LSB location, and for x/c > 0.25,
the λ2-structures of the baseflow are shown (beige). The flow is from left to right.

and begin to break down. The OTD modes now also capture secondary instabilities of
the nonlinear rolls (t7), leading to considerably more spatial complexity. The coexistence
of the two types of instability within the subdomain leads to more variability in the
instantaneous growth rates and increased non-modal growth potential within the OTD
subspace, although the average growth rate is not affected.

The local analyses of spanwise-averaged boundary layer profiles in Negi et al. (2018)
found that the reverse flow profiles at the rear of the LSB become absolutely unstable
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at approximately t/Tosc = tabs = 3.32. It is at approximately this time (t > t7) that the
amplitude of the mode increases enough within the LSB to be apparent in the isosurfaces
of the streamwise velocity, showing that a significant part of the instability is localised on
the LSB. Note that the perturbations within the bubble have essentially the same spatial
structure dictated by the size of the bubble, with negligible wall-normal component, but
differ mainly in their growth rate. There is no discernible change in the OTD subspace
near tabs. The higher growth rates are due to intermittent localised secondary instabilities
on the transitioning rolls just before they are swept out of the domain, and do not seem to
be related to the bubble. In Negi et al. (2018), the streamwise wavenumber for which the
extension along the imaginary axis passes through the pinch point corresponds to kx ≈ 80,
i.e. a wave with a streamwise wavelength of λx ≈ 8 % chord. This wavelength is similar
to the streamwise extent of the mode within the bubble (the entire separated region spans
approximately 18 % of the chord). This similarity indicates that the OTD mode is likely
the global counterpart of the absolutely unstable local mode found in the reference that
leads to an accelerated growth of disturbances within the bubble.

Within a very short time span, the core of the dominant mode in the LSB grows
considerably, and its three-dimensional structure becomes more complicated. Beginning
just before t8, a very localised structure emerges, emanating from the rear of the LSB in the
middle of the span initiating the bubble breakdown. By t9, the leading mode is completely
focused on the region of rapid transition due to the bubble breakdown and the instabilities
that grow on top of the resulting flow patterns. The radically different structure of this
highly amplified mode indicates that it represents a very different mechanism compared
to the previous instabilities in the bubble. Indeed, these growth rates are much higher than
those predicted in the reference for the absolute instability that generated the disturbances
on top of which these modes develop. The instability seems to form simultaneously from
single vortical filaments, one of them clearly evolving into a hairpin-like structure (t9).
The growth rate spike is due to a single mode that seems largely orthogonal to the rest
of the modes, judging by the low numerical abscissa in comparison to the modal growth.
Once the LSB breakdown has begun, the transition is near instantaneous at the location
of the instability core, and the spatial structure of all OTD modes becomes very complex
while being localised away from the outflow. Interestingly, the growth rates within the
subspace drop after the spike at t9 and stabilise at about half three times the value of
the previous average. At this point, the transition in the bubble is very rapid, as we can see
from the spatial distribution of turbulence kinetic energy shown for t10 in figure 6(a). From
t8 to t9, the entire OTD subspace concentrates on the bubble reattachment point, with few
structures downstream and virtually no growth in the front of the bubble. It is likely that
the previous instabilities in this region still exist but are outperformed in terms of growth
rate by the absolute instability, and thus drop out of the (small) OTD subspace.

4.3. Characterisation of the LSB breakdown
The transient linear instability analysis using the OTD framework can be complemented
by analyses of the nonlinear baseflow dynamics. Figure 6(a) shows the evolution of
the span-averaged size of the separation bubble by tracking the wall-normal distance
of the point of vanishing tangential velocity component. Comparing the size of the
LSB at different instants, we can clearly see the gradual thickening of the bubble,
which accelerates after t7. A spatial Fourier analysis in the spanwise direction of the
velocity signal in the bubble shown in figure 6(b) further clarifies the picture. The figure
shows the space–time diagram of the magnitude of the Fourier component corresponding
to the fundamental spanwise wavenumber (kz = 1) of the vertical velocity close to
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Figure 6. Evolution of the size of the LSB and energy content in the fundamental spanwise Fourier component
of vertical velocity over time. (a) Span-averaged turbulence intensity at t10 (colour, after the onset of
breakdown) and LSB size over time (colour-coded lines of zero tangential velocity, if present). Axes not to
scale. The turbulence intensity is computed based on an average over the span and a short time window
(�t = 1.6 × 10−4 Tosc). The cross indicates the location at which the data for figure 7 are collected. (b)
Space–time plot of the magnitude of the fundamental spanwise Fourier component of Uy along the dotted
line in (a). The flow is from left to right. The time instants t1, . . . , t10 and tabs in figure 4 (black lines) as well
as the contour of zero span-averaged wall shear-stress (grey line) are shown for reference.

the reattachment point of the LSB, a choice motivated by the fact that the flow at
the considered location is essentially spanwise independent prior to the growth of the
instability, and the fundamental wavenumber component is dominant in the corresponding
mode throughout the considered time interval (see figure 7b). The plots for other
wavenumbers are qualitatively similar. The data initially show downstream propagation
of disturbances modulated by the spanwise rolls, whereas the disturbances are also seen
to propagate upstream after tabs, which further supports the conclusion that the instability
becomes absolute at this point. Figure 7 shows the evolution in time of the magnitude
of selected Fourier components of the baseflow velocity. In an effort to remove the
modulation by the spanwise rolls, the plotted signals are moving averages over one
period of the fundamental vortex shedding. Note that the component corresponding to
kz = 0 (dotted line, spanwise average) is dominant in the baseflow at all times, which
confirms the overall spanwise invariance of the flow in the LSB. The dip in the data at
approximately t/Tosc = 3.27 corresponds to the interval between t5 and t6 when the rear
shear layer of the rapidly growing LSB, which exhibits considerable unsteadiness and
spanwise modulation, passes through the point of analysis (see figure 6). The spanwise
modulation of the baseflow begins slowly with the formation of the LSB, mainly confined
to the low wavenumbers that are also visible in the OTD modes. The magnitude of
the Fourier components corresponding to the fundamental spanwise wavenumber grows
steadily past tabs for all velocity components, with average growth rates consistent with the
exponential modal growth rates within the OTD subspace. Indeed, the dominant spanwise
structure in the OTD modes is similar within the LSB. Note here that the precise spanwise
wavenumber distribution is dictated by the width of the computational domain. The results
here suggest that there is a considerable propensity for very long wavelength instabilities
(compared to the LSB height) within the separation bubble. Near tabs, we observe an
acceleration of the growth at higher spanwise wavenumbers, starting from insignificant
amplitudes of the order of the pressure tolerance quickly filling up the spectrum. Indeed,
within 3 % of the oscillation period, the highest considered wavenumbers experiencing

988 A8-17

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

40
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.407


J.S. Kern, P.S. Negi, A. Hanifi and D.S. Henningson

100

10–2

10–4

10–6

10–8

10–10

102

100

10–2

10–4

10–6

10–8

10–10

3.15

3.15

3.20 3.25 3.30 3.35

M
ag

n
it

u
d
e

3.20 3.25 3.30 3.35tabs

tabs
t/Tosc

kz = 0

kz = 1

kz = 4

kz = 8

kz = 12

kz = 16

kz = 20

kz = 0
n |ũ|n
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Figure 7. Time traces of spatial Fourier components of the baseflow and leading OTD mode at the location
marked with a cross in figure 6(a). A moving average with a window corresponding to the period of the
dominant vortex shedding time scale (�tw = 8.9 × 10−3 Tosc) is applied to the data. The vertical line in each
plot indicates the onset of absolute instability according to Negi et al. (2018). (a) Variation over time of the
magnitude of selected spanwise Fourier components (wavenumber kz) of the streamwise baseflow velocity
(Ux). The grey lines indicate exponential growth rates σ for reference. (b) Variation over time of the relative
magnitude of selected spanwise Fourier components (wavenumber kz) of the streamwise component of the
leading OTD mode (u1) with respect to the total magnitude (dashed line).

near-exponential growth that is an order of magnitude faster than that of the fundamental
amplify to turbulent saturation during the LSB breakdown.

The exponential growth together with the fact that the fastest growing wavenumber
range, kz ∈ [16, 32], corresponds to wavelengths λz ≈ 0.8–1.6 % chord, which compares
very well with the height of the LSB at this instant (see figure 6a), may suggest that the
growth is due to secondary instability of the baseflow in the LSB, which is undergoing
in situ modulation due to the onset of absolute instability. The hypothesis of secondary
instability is further supported by the fact that the accelerated growth begins shortly after
the fundamental spanwise velocity fluctuations of the baseflow reaches amplitudes of
1 % of the free-stream velocity. For Tollmien–Schlichting-type instabilities that are also
present in the LSB, this is a common threshold for the onset on secondary instability
(Herbert 1988). Furthermore, the leading OTD mode reflects the gradual change of the
dominant instability. At the same point as for the baseflow, figure 7(b) shows the spatial
Fourier analysis of the streamwise velocity component of the leading OTD mode over time.
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Onset of absolute instability on a pitching aerofoil

The magnitudes of each wavenumber component (colours) are normalised by their sum
(dashed line), showing how the mode evolves over time. We observe that the fundamental
spanwise wavenumber is dominant throughout, in line with the visualisations in figure 5,
and that the leading mode increasingly localises at the rear of the LSB as the simulation
progresses, revealed by its increasing amplitude. At approximately t/Tosc = 3.3, higher
wavenumbers up to kz ≈ 16 are increasingly represented, while, interestingly, the highest
considered wavenumbers appear in the perturbation only after t/Tosc = 3.34, when they
also appear in the baseflow.

The increased spanwise modulation, which changes the baseflow at the location
where it becomes absolutely unstable, sets off a cascade of instabilities that accelerates
the disturbance growth at higher wavenumbers. These instabilities rapidly lead to the
inevitable breakdown of the LSB, and abrupt transition to turbulence.

4.4. Interpretation of the OTD modes on time-dependent baseflows
Classical linear stability analysis is applied to steady nonlinear basic states, which typically
require artificial stabilisation. If the baseflow is linearly unstable, then the resulting modes
describe the initial spatial structure of perturbations that would appear in the nonlinear
simulation if it were left to evolve unimpeded. This situation is fundamentally different
from the transient linear stability analysis performed in this study. Here, the basic state
is the naturally evolving nonlinear flow, which reacts to instabilities as they appear and
develop. As a consequence, in particular in the case of absolute instabilities, their direct
impact on the evolving basic state needs to be considered when interpreting the linear
stability results. In this context, the instantaneous linear instabilities captured by the OTD
modes can be used as predictors of the spatio-temporal evolution of the baseflow. By
definition, they describe the development of instabilities from arbitrarily small amplitudes,
long before they appear in the nonlinear basic state, where they are often difficult to isolate
and analyse.

During the initial stages of the simulation, the boundary layer close to the leading edge
is laminar, and its change with time is largely a result of the changing pressure gradient due
to the pitching motion. In this regime, the OTD modes describe primary linear instabilities.
Early on, the leading OTD mode detects increased instability due to the adverse pressure
gradient that subsequently leads to the formation of the LSB (see figure 5b). As the OTD
modes localise close to the reattachment point of the newly formed LSB, their structure
resembles the convectively growing spanwise rolls that indeed dominate the attached
boundary layer flow downstream.

As the LSB increases in size, also the instability within the LSB grows and finally
becomes absolutely unstable. Since the disturbances now grow in place without being
convected away, they soon pollute the laminar baseflow at the location of the bubble. The
instabilities captured by the OTD modes therefore increasingly contain also secondary
instabilities of these disturbances, evidenced by the relative increase of the amplitude of
higher wavenumbers shown in figure 7(b). This path of instabilities leading up to the
breakdown of the LSB is strikingly similar to results of Rodríguez, Gennaro & Souza
(2021), who consider the classical linear stability of a steady LSB. The mixing of primary
and secondary instabilities, which makes the interpretation much less straightforward, is
exacerbated by the breakdown of the nonlinear rolls within the OTD domain, themselves
also linearly unstable. At this point, the baseflow changes rapidly, and the competing
mechanisms can no longer be clearly separated.
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5. Conclusions

The nonlinear evolution of flow around the ED36F128 natural laminar flow aerofoil subject
to small-amplitude pitch oscillations was computed using a well-resolved large-eddy
simulation capturing the formation, growth and breakdown of an LSB in the boundary
close to the leading edge on the aerofoil suction side. Simultaneously, the instantaneous
global linear dynamics of the most unstable part of the tangent space with respect to
the resulting time-dependent nonlinear baseflow trajectory was tracked using the OTD
framework. A 16-dimensional linear subspace was computed alongside the basic state
trajectory using a localised formulation of the OTD framework considering only the flow
in the vicinity of the LSB.

The global transient linear stability analysis via the OTD modes complements and
expands upon earlier efforts studying the linear instabilities of the evolving LSB using
local analysis, which determined that the span-averaged velocity profiles close to the
reattachment point of the LSB become absolutely unstable shortly before the bubble
breaks down (Negi et al. 2018). The global nature of the OTD framework relaxes
the assumptions on spatial homogeneity needed for local analysis, in particular during
the breakdown, and allows the spatial structure of the instabilities to be tracked more
accurately.

At the instant at which Negi et al. (2018) predicts the onset of absolute instability, the
leading OTD mode at the rear of the LSB is likely the global counterpart of the absolutely
unstable local mode. This conclusion is based on similarities in the wavelengths as well
as the good agreement between the corresponding linear growth rate of the OTD mode
and the actual growth of velocity disturbances in the fundamental spanwise wavenumber
in the basic state. The prediction of absolute instability is further supported by the fact
that disturbances are seen to propagate upstream from the pocket of instability. The in
situ growth of disturbances in the LSB quickly generates the necessary conditions for
secondary instability of the baseflow. The rapid growth of higher disturbance harmonics
that they entail within the separation bubble is hypothesised to be the catalyst for the rapid
breakdown of the LSB shortly after the onset of absolute instability.

The present study shows how the transient linear stability analysis using the OTD
subspace reveals valuable information about the precursor instabilities in space and time
that subsequently bring about changes in the nonlinear baseflow. The leading modes
identify both the imminent formation of the LSB and the spanwise rolls that grow in the
boundary layer. Also, the spanwise inhomogeneity of the LSB is predicted early on by the
OTD modes, which also reflect the rapid appearance of higher spanwise harmonics once
the LSB is absolutely unstable. The OTD framework allows the linear instabilities to be
traced back to their origins so that the emergence of complicated flow structures can be
explained, which is often impossible using only the nonlinear basic state.

Supplementary movie. A supplementary movie is available at https://doi.org/10.1017/jfm.2024.407.
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