numerically equal. For if $\mathrm{T}_{k}=\mathrm{T}_{k+1}=-\mathrm{T}_{k+2}$, then $\frac{|x|}{|x|+1}(n+1)=k$ and $\frac{|x|}{|x|-1}(n+1)=k+1$; solving these equations simultaneously we obtain the above values of $|x|$ and $n$. Thus

$$
(1+5)^{7}=1+7+7-7+14-\ldots
$$

Finally, for all values of $n$ the first term is the greatest if $|n x|<1$.
D. M. Y. Sommerville

An Experiment in Light.-Let ABCD be a horizontal section of a rectangular slab of glass. A pin is set up vertically at $P$, close to the face $A B$, or at a short distance from it. It is possible to see the pin $P$ through the glass if we look through the face $C D$; but the pin is invisible if we look through the face AD. If, however, we look through the face CD , into the face AD , we shall see an image of the pin in AD , which acts like a mirror. The experiment illustrates total reflection of light; the explanation is easy. Let PO be a ray of light which after passing into the glass will be incident on $A D$ at $O^{\prime}$. Let $N O N^{\prime}$ be the normal to $A B$ at $O$,

( 77 )
and $\mathrm{KO}^{\prime} \mathrm{K}^{\prime}$ be normal to AD at $\mathrm{O}^{\prime}$. The critical angle for glass being $41^{\circ} 45^{\prime}$ approximately,
the $\angle \mathrm{N}^{\prime} \mathrm{OO}^{\prime} \ngtr 41^{\circ} 45^{\prime}$;
$\therefore$ the $\angle 0^{\prime} \mathrm{K}^{\prime} \nless 48^{\circ} 15^{\prime}$;
i.e. the $\angle O O^{\prime} K^{\prime}>41^{\circ} 45^{\prime}$;
$\therefore$ the ray $\mathrm{OO}^{\prime}$ will not emerge through AD , but will be reflected in the direction $O^{\prime} Q$, and will emerge at $Q$ in the direction QS.
W. A. Lindsay

Note on Fermat's Theorem.-The Theorem that $a^{n}-a$ is exactly divisible by $n$, if $n$ be a prime number, may be established as follows from the Binomial Theorem.

We have

$$
\begin{align*}
& \quad(a+b)^{n}=a^{n}+\mathrm{C}_{n}{ }^{1} a^{n-1} b+\mathrm{C}_{n}{ }^{2} a^{n-2} b^{2}+\ldots+\mathrm{C}_{n}^{r} a^{n-r} b^{r}+\ldots+b^{n} \\
& \text { where } \quad \mathrm{C}_{n}^{r}=\frac{n(n-1)(n-2) \ldots(n-r+1)}{\frac{\mid r}{2}} ; \\
& \begin{aligned}
& \therefore(a+b)^{n}-a^{n}-b^{n}=\mathrm{C}_{n}^{1} a^{n-1} b+\mathrm{C}_{n}^{2} a^{n-2} b^{2}+\ldots+\mathrm{C}_{n}^{r} a^{n-r} b^{r} \\
&+\ldots+\mathrm{C}_{n}^{n-1} a b^{n-1}
\end{aligned}
\end{align*}
$$

Now since $\mathrm{C}_{n}{ }^{r}$ is an integer, the product

$$
n(n-1)(n-2) \ldots(n-r+1)
$$

must contain as a factor the product $1.2 .3 \ldots r$; but if $n$ is a prime number it cannot contain as a factor any one of the integers $2,3,4, \ldots r$, each of which is $<n$;
$\therefore$ the product $\mid r$ must be contained in $(n-1)(n-2) \ldots(n-r+1)$, and $\therefore n$ is a factor of $\mathrm{C}_{n}{ }^{n}$.

This is true for all values of $r$ from 1 to $n-1$.
It follows from (1) that $(a+b)^{n}-a^{n}-b^{n}$ is exactly divisible by $n$.
Hence $(a+1)^{n}-a^{n}-1$ is exactly divisible by $n$. (2)
i.e. $(a+1)^{n}-(a+1)-\left(a^{n}-a\right)$ is exactly divisible by $n$; which shows that if $a^{n}-a$ is exactly divisible by $n$ so will $(a+1)^{n}-(a+1)$.

Now from (2) it follows that $2^{n}-2$ is exactly divisible by $n$, (putting $a=1$ );
$\therefore 3^{n}-3$ is exactly divisible by $n$,
$\therefore 4^{n}-4$ is exactly divisible by $n$, and so on.
We might also reason as follows:-
To show that $a^{n}-a$ is exactly divisible by $n$, let $a=y+1$.

