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THE OPERATOR THEORY OF GENERALIZED 
BOUNDARY VALUE PROBLEMS 

R. C. BROWN 

1. Introduction. In this paper we develop a theory of maximal and minimal 
operators and their duals associated with the system 

(i.i) Ky) = È <ny(""° = /, 

(1.2) U,(y y0-") = Z f dvnJyU) =0, j = 1, . . . 
t=0 J I 

We assume that the system is defined on an arbitrary interval / = [a, b] in 
the extended reals such that the coefficients at are complex valued functions 
in ^ ( w ~ z ) ( / ) with a0 > 0 on / , and the side conditions {Uj\ are possibly 
infinite in number and represented by complex measures vt which are (at least 
locally) of bounded variation. 

Under these restrictions (1.1), (1.2) is said to determine a Stieltjes boundary 
value (s.b.v.) problem. We call the problem regular if I is compact and the 
set { Uj) is finite; otherwise we say that the problem is singular. Clearly this 
vocabulary generalizes the notions of regular or singular b.v.p. for ordinary 
differential systems. 

It is worth noting here that the class of s.b.v. problems defined above is 
quite large: Let fë^-v (I) be the space of n — 1 fold continuously differentiate 
functions on a compact interval / under the norm 

1/1= Z \f'X-
i=0 

Then by a mild generalization of the Riesz Representation Theorem [7, p. 344], 
every continuous functional U : ^ ( w ) —> C can be represented in the form 
(1.2). In particular, by choosing linear combinations of point evaluation 
measures for the vn-i\ all ordinary multipoint problems may be constructed. 
On the other hand, we exclude ''interface" side conditions where the side 
conditions Uj involve left or right limits of derivatives at interior points of / . 

Elsewhere [4; 5] we have considered the operators on *£v(I), I ^ p < oo, 
arising from the system (1.1), (1.2) in the regular case. In [5] for example, 
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the expression (1.1) was assumed to be vector valued with nonsmooth coeffi
cients (satisfying, however, conditions for the existence of Carathéodory solu
t ions) . Then (1.1), (1.2) natural ly determines an operator i f with domain 
and range in a space of Jzfv integrable functions 1 S P < °° • Two distinct 
characterizations of the adjoint relation i f* (in i f 9(I) X i f * ( / ) , 1/p + 1/q = 1) 
were derived and shown equivalent. 

One useful application of i f* is to determine the s t ructure of various classes 
of generalized splines [6]. 

As mentioned above the previous work dealt only with regular s.b.v. prob
lems. There is need, however, for an approach which would extend the theory 
of singular ordinary differential operators (as developed, for example, by 
Naimark [17] in if2 , and Goldberg [8] in i f v to singular s.b.v. problems. 

Such an extension has so far been only slightly developed. Krall [13; 14], 
Naimark [16], and Kim [12], for example, have investigated the i f 2 theory of 
various second order differential expressions on [0, oo] subject to end point 
conditions [16] and Stieltjes conditions [12; 13; 14]. Recently Coddington [3] 
has considered the selfadjoint extensions of symmetr ic operators defined on 
nondense domains in J£2{I). T h e boundary conditions determining these 
operators are special cases of (1.2). In several of these papers Green's functions 
are derived, adjoint operators are defined, eigenvalues and eigenfunctions are 
found and their convergence properties are discussed. Additional discussion of 
previous work may be found in Krall [15]. 

We present here an outline of the paper. After introducing the notion of an 
infinite dimensional matrix measure and fixing notat ion (§ 2) , we outline in 
§ 3 Arens' theory of linear relations and adjoint relations with respect to a dual 
pairing between two linear spaces. This theory is compatible with the usual 
theory of closed operators and their adjoints on Banach spaces. 

In § 4 we use these ideas to reconstruct the theory of maximal and minimal 
ordinary differential operators on an arbi t rary interval. We prove t h a t each 
is the "adjo in t" of the other. This allows us (§ 5) to define maximal and 
minimal operators and to investigate adjoint relations and Fredholm type 
al ternat ive theorems for s.b.v. problems. At this point, however, we are still 
restricted to the regular case. 

Next (§ 6) the results of § 5 are extended to an impor tant subcategory of 
singular operators. 

Finally, in the last section (§7) we illustrate our theory with a few examples, 
point out some applications to spline and minimum norm problems, and 
suggest some directions for future research. 

2. Pre l iminar i e s . Observe first of all t ha t the set of side conditions { Uv) 
can be writ ten as one "vector valued" side condition 

(2.1) # ( ? , . . . , y'n~l)) = £ f dvn.ty
(i) = r, 

*=0 *> I 
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where vn-t is the 'Vector valued" (v.v.) measure defined by 

Vn-i = O n - * 1 , Ww-l2 , . . . , Wn-t
j, . . . ) ' , 

r is the vector 

Oi, . . . ,rj} . . . ) ' , 

and the integrals 

are defined componentwise. Similarly we consider matrix valued (m.v.) mea
sures with respect to matrix or vector valued functions. Integration is defined 
componentwise provided the measure and the matrix are compatible in the 
sense of matrix multiplication. Notice that it is a matter of indifference whether 
or not such measures are finite or infinité dimensional. The various theorems of 
integration theory—for example, integration by parts, Fubini's theorem etc. 
are valid provided they are valid componentwise. Whenever possible therefore 
we will not distinguish between infinite or finite dimensional m.v. or v.v. 
measures. Since we do not need infinite two dimensional measures, however, 
it will be assumed throughout that all measures have at worst either infinitely 
many rows—"infinite row dimension" or infinitely many columns—"infinite 
column dimension", yet not both at the same time. 

Using the Lebesgue decomposition theorem we write 

vt = vic + vis, 

where vic, vis are respectively absolutely continuous and singular with respect 
to Lebesgue measure; by analogy with the scalar case we will refer to the 
vector valued function obtained by taking the Radon-Nikodym derivatives of 
the components of vic as the Radon-Nikodym derivative of vic, Dvic. Having 
done this, the functional °tt {y, . . . , 3/(w_1)) can be written 

(2.2) <%(y, . . . , y - D ) = <%8(y, . . . , y<»-i>) + <%e(y, . . . , y(«-"), 

where 

^s(3',...,3'("-1))= E fdv^y^, 

and 

®c(y,..., y<n'l)) = E P Dv^uy^dt. 

We introduce the further assumption is that vic is actually in (tfn~i+1[I] 
that is, Dvic G cé?n~i[a, &]). Then by repeated integration by parts (we integrate 
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y and differentiate Dvc), °tt(y, . . . , y{n~l)) can be written in the "almost 
singular' ' form 

(2.3) W(y,. . . , y'-») = g £ dwn^yH) + £ ^ y du, 

where the wn-t, i = 0, . . . , w — 1, are all singular and 

At this point a few notational remarks are appropriate: If T is a linear 
operator or relation, 2)(T), &(T),^V(T) will stand for its domain, range, and 
null space, respectively. If T and M are two linear operators or relations, M is 
an extension of T, in symbols: M D T if ^ (Af) D <^(£) and i f = L on 
3!{L). r* will denote the conjugate transpose, dual, or adjoint of a matrix, 
space operator, or relation depending on the context. (The mere transpose 
will be denoted by llt"). We represent the identity operator on the space X 
by the symbol Ix and the m X m identity matrix by Im. Cm denotes m-dimen-
sional space over the complex field under the standard Euclidean norm. The 
notation \[E] (t) means the characteristic function acting on the set E, and 
u(tt) means the point evaluation measure concentrated at the point tt. We 
employ the symbols Ttj, Tt to stand for the projection mappings which select 
respectively the component a(ii) or the ith row of a matrix M (thus the j th 
column of M can be represented by w^M*)). 

Suppose Vi, . . . , vn are measures, matrices or functions, then the symbol 
v will denote the measure, matrix, or v.v. function (vn, . . . , vi). 

Let y be an n — 1 fold differentiate function. We define y to be the n 
dimensional vector valued function ( ? , . . . , y(n-V)1. 

Employing the notation introduced above, w is the m.v. measure 

- ( . dw° \ 
w = \wn + — , wn-h . . . , wij ; 

and the side condition (2.3) (which is itself equivalent to (1.2), (2.1) and (2.2)) 
may be written 

W(y, . . . , y n _ 1 ) ) = J dwy = 0. 

Notice that 

ws = (wn, . . . , w/i), wc = \-~^ du, 0, . . . , OJ . 

The spaces considered in the paper are the following: J£m(I) is the space of 
locally integrable m dimensional vector valued complex functions on / . 
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BVm
n(I) C ££m(X) is the space of functions such that y, . . . , y(n~l) are locally 

of bounded variation and y{n) exists a.e. Similarly ACm
n(I) is the collection of 

functions y in BVm
n(I) such that y, . . . , y^n~l) are absolutely continuous. 

When the indices n, m are unity they will be omitted. The subscript "0" 
means ''functions of the appropriate class with local support". Thus, 

AC? (I) = {y:y£ ACn(I) ; supp. y C (a, 6)}. 

3. Pairings and formal adjoints. This section reviews certain results in 
Arens [2] and Kelley and Namioka [11]. 

3.1. Definition. A pair of linear spaces X, X' is a dual pair if there exists a 
nontrivial functional (•,•) : X X X' —» C linear in the first argument and 
semi-linear in the second argument. 

3.2. Definition. Sets 5 C X, S' C X' are said to be total if 

(s, %') = 0 for all 5 6 5 =» X ' = 0 
^ • ^ (x, y ) = o for all s' £ S' =ÏX = 0. 

If X, X' are themselves total, we say that the pairing (.,.) distinguishes points. 

3.3. LEMMA. Let Y, Y' be another dual pair over C. Then the form 

(3.2) «x,y),(x',y'))= (x,x')+ (y,y') 

makes X X Y and X' X Y' into a dual pair over C. The pairing distinguishes 
points if and only if the pairings on X X X' and Y X Y' distinguish points. 

Proof. Trivial calculation. 

3.4. Definition. Let S Ç_ X, Sf C X'. We define the annihilators S1- and 
Sf±by 

S1- = {xf : (s,x') = 0 for all 5 Ç S} 

5 / J- = {x : <*,*') = 0 for a l l s ' G 5 ;}. 

3.5. Definition. The closure of 5 is 5J~L. 5 is said to be closed if S-1-1 = S and 
dense if S-1-1- = X (similarly with 5'). 

The following implications are easy to see: S is total implies 5 is dense; 
5 is dense implies S is total if and only if X is total. Thus in J or I ' , dense is 
equivalent to total if and only if (.,.) distinguishes points. 

3.6. LEMMA. Assume there are pairings on X X X' and Y X Y' which dis
tinguish points. Then a finite dimensional subspace S in X, X\ Y or Y' is closed. 

Proof. Without loss of generality we take 5 C ^ . The proof depends on the 
linear dependence principle [11, p. 7]. Let / i , . . . ,fn be a basis of 5 and <j> G S1-1-. 
Define the functional / , : X' -* C by /<(*') = (/<, x') and 0 : X' -» C by 

https://doi.org/10.4153/CJM-1976-050-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-050-4


OPERATOR THEORY 491 

4(x') = <0, xf). Then 

JYQ>) D S 1 and n^(fi) = S\ 

By the linear dependence principle 0 = 2]A*/t-. Consequently 

\ 0 - E W«. V = 0 for all *' G X'. 

But then 0 = X^=i^JV Thus S±A- C S and 5 is closed. 

The closure operation induces a topology on X. Consider the weak topology 
on X with respect to X' induced by the pairing. This topology is locally convex; 
it is not difficult to show that it is the same as the "closure" topology if and 
only if X' is total; thus, in particular a set is "closed" in the sense of Definition 
3.5 if and only if it is weakly closed. Since similar remarks are true in Xf the 
closure and weak topologies in X or X' are identical, locally convex and Hausdorff 
if and only if the pairing distinguishes points. 

What happens if X has a topological structure of its own? We state some 
well known facts. 

3.7. THEOREM. Let X be a locally convex linear topological space. Choose 
X' = X* and define (x, f) by fix). Call a set S C X strongly closed if it is closed 
in the X topology, and a set Sf C X* weakly closed if it is closed in the weak 
topology on X' induced by X. Then 

(i) X* is a locally convex linear topological space; 
(ii) (.,.) distinguishes points; 

(iii) for convex sets in X, closure <=> weak closure <=> strong closure; 
(iv) for convex sets in X', closure <=> weak closure => strong closure; but 

strong closure => weak closure if and only if X is reflexive. 

Proof. See [11, Chapter 17]. 

On occasion we will call the closure introduced in Definition 3.5 the ''alge
braic" or " ± -closure" to distinguish it from the other closures. Whenever 
possible, however, we freely employ the words "closed", "dense", etc. and 
depend on the context to indicate which topology is met. 

3.8. Definition. A linear relation T : X —> Y where X, Y are linear spaces is 
a set valued mapping whose graph & (T) is a subspace of X X Y. 

For a C 3?(T) we denote the image of a in & (T) by T(a). One verifies 
that T(0) is a subspace of S%(T) and that elements ftaf T(a) if and only if 
(3 = a mod T(0). Thus if an arbitrary element in T(a) isaT, T(a) = aT + T(0) 
and 

&(T) = {(a,aT+T(0)) :<*£ 9(T)}. 

To put it another way, the induced mapping T' : X —» X/T(0) is algebraically 
an operator. 
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Let T : X -^ Y, S : Y —> Z be a linear relations. We define 

S o r = {(x, z) : there exists 3; such that ((x,;y) 6 T and (3/, 2;) € S)} 

(we write this simply as 57"). If X G C the relation 

(3.3) XT = {(x, À3/) : (x, 3/) G T}. 

Equivalently this is the composition \T o T, where 

\T = {(x,\x) : x g ^ ( r ) } . 

The addition of two linear relations 5, T may be defined by 

5 + T = {(x, 3O : there exist s, t such that y = s + /, (x, s) G 5, and 

(*,0 e r)}. 
Every relation T has an inverse 2"_1 such that 

r-»(«) = î / 3 : ^ e ^ ( r ) ; « e ros)}. 

A relation is said to be an operator if and only if it is single valued; that is, 
if and only if T(0) = 0. 

The null space <yV(T) of a relation T will be the set in 2) (T) given by T~lT(0). 
This definition is equivalent to the statement 

^V(T) = {a: (a,0) G &(T)}. 

Obviously^V(T) is a subspace of X. 
We call T closed if & (T) is closed in the sense of Definition 3.4. If T is an 

operator, T is said to be closable in case the closure T oi T (i.e., the relation 
determined by & (T)) is also an operator. 

3.9. Definition. The adjoint T* of a relation T is the relation determined by 
the graph 

&(T*) = (^(- r )~ 1 )± , 

where —T— —IT is defined according to (3.3). 

The next theorem lists some properties of the adjoint, all of which are easily 
derived from the definition (for details see [2]). 

3.10. THEOREM. 

(i) &(T*) = {(0,0') : (aT,0) = (a,(l');a£ 2(T);aTe T(a)\; 
(ii) 5 C T implies T* CS*; 
(hi) (r-1)* = (r*)-!_; 
(iv) S CT* implies S C T*;  
(v) T* is an operator if and only if 2) (T) = X; 

(vi) r*(0) = @(T)±\ 
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(vii) T* is closed; 
(viii) T** is the minimal closed extension containing T; 

(ix)jV(T*) = 2%(TY; 
(x )^ ( r*) -L = @(T). 

Suppose T is closed. Then we also have: 
(xi)JS(T) = &(T*)\-

(xn)JY(T)± = &(T*). 
Finally if T, T* are both normally solvable (that is, have closed graphs and closed 
ranges): 

(xii i)^ /(r*)-L = &(T); 
(xiv)J/(T)± = g?(T*); 
(xv)J^(T*) = BUT1-); 

(xv'i)Jf{T) = &(T*y. 

Of course when X' = X*, Y' = F* and X, Y are locally convex, 9{T) = X 
and @(T*) = Y' if and only ïi9(T), @(T*) are total. Moreover by Theorem 
3.6 JV(T) and 3? (T) are closed in X and Y if and only if they are strongly 
closed. If in addition X is reflexive, the closures of & (T) and @ (T*) coincide 
with their strong closures in X X Y and F* X X* respectively (endowed with 
the product topology), and S%'(T*), J^(T*) are closed if and only if they are 
strongly closed. If X, Y are Banach spaces more can be said: 

3.11. THEOREM. (Banach Closed Range Theorem). Let T : X —> F be a 
densely defined closed operator. Then the following statements are all equivalent: 

(i) &(T) is closed; 
(ii) â$(T*) is closed; 

( i i i ) ^ ( r ) = ^(T*)\' 
(iv)3t(T*) = ^V(T)\ 

Proof. See [18, p. 205; 8 p. 95]. 

We now discuss the specific pairing used in the remainder of the paper. 
X, X'', F, Y' are measurable locally integrable (that is, integrable on compact 
subsets of [a, b]) function spaces such that 

(3.4) BVo(I) CX r\X' r\YC\Y' C i ? C O ; 

and 

(3.5) (x,xf) = J x'*xdt < oo, (y,y') = J y'*ydt < oo , 

for all x a . x ' U ' j ^ F, y' G Y'. 
Obvious choices for X, X', F and Y' given the pairings (3.5) are the various 

ifp spaces on /—for example, X = ^V(I), X' = ^Q(I), 1 S p g oo, 
1/p + l/q = 1. Other examples will be discussed in § 7. 

If A is a compact subinterval of I and the notation XA etc., /A denotes the 
restriction of the functions in X or a particular function/ to A. 
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3.12. LEMMA. 

Bvn(A) c ( i n r n r n vr\BV(i))± 
{6 j ACn(A) c (xr\x' r\ vr\ r r\AC(i))A. 

This is an easy exercise using (3.4); we omit the proof. 

3.13. LEMMA. For any integer n the space ACon(I) is a total subspace of X, X', 
F, F ' . 

Proof. Since AC0
n(I) C BVQ(I), 

AC0
n(i) c i n r n vr\ y 

by (3.4). Let A be a compact subinterval of I. Without loss of generality 
suppose 

(s,x) = 0 for all 5 G ACQ
n(I). 

This implies 

(s, x)A = 0 for all s G AC0
n(A). 

Now x, being integrable on A, is in «if1 (A). Since 

AC0
n(A) =^1(A), 

(3.6) implies XA = 0. Because A is arbitrary, x vanishes everywhere, proving 
the lemma. 

Notice that the previous lemma is a modification of the so-called ' 'Funda
mental Lemma of the Calculus of Variations" [1, p. 20]. 

3.14. THEOREM. The pairings (3.5) distinguish points. Moreover, for any 
integer n the spaces BVn(I) H X, BVn{I) C\ X', BVn(I) C\ F, and BVn(I) C\ 
Y' are dense respectively in X, X', F, and Y'. 

Proof. By Lemma 3.13, AC0
n(I) is total, that is, AC J1 (I)1- = {0}. Since 

Xr\Xf C\ YC\ Y' DAC0
n(I), X± etc. C.AC*n(I)\ This shows that the 

spaces X, X\ F, Y' are total. Therefore the pairings separate points. Similarly 
since BVn{I) C\ X' etc. Z) ACon(I), these spaces are all total, hence dense. 

3.15. COROLLARY. AC1 (I) r\ X, ACn(I) C\ X\ ACn(I) H F, and ACn(I) C\ 
Y' are dense in X, X', Y and Y'. 

Proof. Trivial. 

4. Minimal and maximal ordinary differential operators and their 
adjoints. In this section we develop the adjoint theory of minimal and maxi
mal ordinary differential operators on an arbitrary interval / C R with respect 
to a pairing. Our procedures and results resemble closely the Hilbert or ££v 
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space case considered by other writers, for example Naimark [17] or Goldberg 
[8]. 

In what follows / , X, X', F, Y' are as defined at the end of the previous 
section and we employ the pairing (3.5). 

4.1. Definition. Let L denote the operator obtained by restricting the expres
sion l(y) to the domain 

9{L) = {y:y G ACn(I) H X; l(y) G F}, 

and LQ the operator obtained by restricting l(y) to the domain 

9{U) = \y:yeACon(I);l(y) 6 F}. 

In some sense L and LQ
f are ''maximal" and "minimal" operators generated 

by the differential expression l(y). The goal of this section will be to determine 
the adjoints in F ' X X'. 

4.2. Definition. In BVn(I), let lj+(z),j = 0, 1, . . . , n be the n + 1 "partial 
adjoint" expressions: 

h+(z) = a0*z, 

h+(z) = £ (-l)j-\afz)j'\ 
2=0 

1 = 0 

Observe that lj+(z) is simply the formal adjoint of the expression 

(thus in particular ln
+(z) = l*(z)), and that the recursion relation 

lj+i+(z) = - h+(z) + aj+1*z 

holds. By Leibniz's rule and a reordering of the sums we can show that 

where 

« i r = E ( - l ) ^ ( J ~ i ) l ? ' - < - r ( 0 1 * ) . 
*=o \ r / 
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The coefficients ajr of the lj+(z) may then be exhibited by the lower triangular 
matrix 

"aoo 0 • • • 0 
«io an • • • 0 

(4.1) 38-• 

«n-1 ,0 « n - 1 , 1 an-l,n-l. 

Notice that 38 is invertible (since atj = ( — l)%oo and a0 > 0 in R) and that 

The following result is well known: 

4.3. LEMMA (Green's Relation). 

f y*l+(z)dt = [y,2]((8) - [y,z](a) + f l(y)*zdt, 
t / A • ' A 

wfcere [;y, £] (0 = (3§z)*y(t). 

4.4. Definition. Let L+ , L0
+, L0

+/ respectively be the operators obtained by 
restricting l+(z) to 

9+ = {z : z Ç ^LCn(/) H F' ; /+(z) £ X'} ; 

^ o + = {s :z G ^ + ; l i m \y,z](s) - \im [y,z](t) = 0 for all y G ^ } ; 

^ o + ' = {« :s € ACon(I)}. 

4.5. Definition. Let L0 be the restriction of Z(y) to 

@o= {y :y £ 9\Y\m [y,z](s) - lim [y,z](t) = 0 for all z Ç ^ + } . 

We note that if / is compact it follows from the definition of the bilinear 
form [y, z] that equivalent definitions of 90 and 90

+ are 

90 = {y:y G ^;5>(a) = y{b) = 0}, 

^ o + = | 2 : s ^ + ; z(a) = ê(b) = 0}. 

4.6. THEOREM. L, L0, IV, L+, L0
+, L0

+/ are densely defined operators. 

Proof. Since L D L0 D ZV, it is necessary only to show that L0 ' is densely 
defined. By assumption Y D ^4C0(I) and X Z) AC0

n+1(I), where n is the order 
of l(y). Therefore, 9(U) D ACQ

n+1(I). We conclude from Lemma 3.13 that 
9{LQ) is total and dense. It is clear that the same argument works for L+, 
U+, L0+'. 

https://doi.org/10.4153/CJM-1976-050-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1976-050-4


OPERATOR THEORY 497 

4.7. T H E O R E M . 

(i) <L0 ' (?),*> = (y,L+(z)); 
(ii) (L(y),z)= <y fL 0

+ ,(s)>; 

(iii) (L0(y),z) = <y,L+(s)>; 

(iv) (L(y),z) = <:y,£o+00>. 

Proof. Immedia te from Lemma 4.3 and Definitions 4.4 and 4.5. 

We briefly in terrupt our development with a general result on closable 
operators. 

4.8. LEMMA. Let T : X —> Y be an operator. Suppose T+ : Y' —» X' is a 

relation such that £? (T+) is total and T+ C T*. Then T is closable. 

Proof. By definition T is closable if and only if & (T) is the graph of an 
operator. Assume therefore that (0, a) G & (T) for a nontrivial a G Y. Since 

r+cr*, ff(r+) c ^(-r-1)^ This implies ^(-r+-1) c ^(r)-1. But 
then ^ ( - r + " 1 ) - L D ^ ( r ) . Therefore (0, a ) Ç ^ ( - r+~1) J- . Writ ing this out : 

<(0 ,a ) , ( - ? > ( * ) , * ) > = 0 = <a,s> 

for all z in ^ ( T + ) . Since 3> (T+) is total a = 0, contradict ing our assumption. 
T h u s 7* is an operator. 

4.9. T H E O R E M . L, L0 , L</, £+> ^ O + , I V are all closable. 

Proof. By Theorem 4.7 L+ C LQ* C £o'*; L0
+CL*. By Lemma 3.13 

^ o + / = -4Cow(I) is total and thus so is ^ 0
+ D &o+'- From Lemma 4.8 there

fore we conclude t ha t L0 , L</, and L are closable. Similar reasoning shows t h a t 
L 0

+ , L0
+', and L+ are closable. 

At this point we introduce some new notation. Let A = [a, fi] be a fixed 
compact subinterval of / . We have already let /A , XA, etc. signify the restriction 
of a function or space of functions defined on I to A. Now we let ( I V ) A , 
( L 0

+ / ) A , (L)A, etc. denote the restrictions of L0
/ , L 0

+ / , L, etc. to A. On the other 
hand LO,A'> £O,A + , LA, etc. will represent the operators LQ', L 0

+ , L, etc. defined 
on / = A. Also we signify the pairing functional (.,.) on A by (. , .)A-

4.10. T H E O R E M . 

(u)^(Lo)-1 = ^ ( L + ) ; 
(iii) ^(Lo^)1- =J/(L); 
( i v ) ^ ( L 0

+ ) ± = ^ ( L ) . 

Proof. Since there is complete symmetry between (i) and (iii) and (ii) 
and (iv), we need only prove (i) and (ii). L e t / Ç J^(LA+)L. Let {zv} be a basis 
for.yf (Z>A+) such tha t 

(0 v 9* k 
(4.2) z / * - 1 ^ ) = < for 

( l » = ft. 
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Now there exists a unique y G ACn(A) such that l(y) = f and y (a) = 0. 
Since l+(zv) = 0, we have by Lemma 4.3 that [y, zv](/3) = 0. By (4.2) and 
the definition of [y, zt] this can happen if and only if $(/3) = 0. In other words, 
/ G NiL^)1- if and only if/ G ^ ( L 0 , A ) . N o w ^ ( L A

+ ) , being finite dimensional, 
is closed. Hence ^ ( L O . A ) - 1 = ^ / ( L A

+ ) . Next let A' = [«', /3'] be a compact 
subinterval of A. Define 

^ ( Z + ) ( „ , A ^ = { / : / € ^ ( L + ) ^ ; s u p p . / C A ' } . 

Repeating the previous reasoning we see that 

It follows that^/(L+)(o,A')-L C &{UA
f). Because A' is arbitrary in A , ^ ( L A + ) X 

C ^ ( L 0 ( A
/ ) . Hence ^ ( 1 * + ) D à(W)\ But ^ / (L A +) C ^ ( ^ o / ) 1 by 

Theorem 4.7 (i). We conclude t h a t ^ / ( L A
+ ) = ^(LQ^)-1. We have now com

pleted the proof of both (i) and (ii) for a compact subinterval A of / . It is 
easy to see that JV{L^) = ^ / ( L + ) A . 

4.11. COROLLARY. 

W(L7) =W(U); @(Lo'+) = &(LQ+). 

Moreover if the operators L0, L0
+ are regular, their ranges are closed. 

4.12. THEOREM. L0'* = L+; L0* = L+. 

Proo/. By Theorem 4.7, L+ C V * and L+ C L0*. 
To prove the reverse inclusions, we begin with a compact subinterval A of / . 

Let £ G ^ ( £ O , A ' * ) . Put g = L 0 ,A '* (£) . (It is clear that L0 IA'* is a n operator 
because ^(LQ) is dense). We can choose z G ^ ( L 0

+ ) such that /+(z) = g. 
Since (2, /+(*)) G &(Lo/*) and g G ^ ( L o / * ) , (* - É, 0) G ^ ( L 0 / * ) , i.e., 
2 - ? e ^ ( L o / * ) . Thus (Theorem 3.10 (xi)) z - £ G @(UA')\ But then 
from the previous theorem s — J G « ^ ( L A + ) . Since ^f /(LA

+) C ^4CW(A) and 
z G ^CW(A), so does £. Thus g = L0 ,A*(£) is just /+(£). Since £ was arbitrary, 
we conclude that L0,A* C £ A + . Hence L0A* = £ A + . TO show that L0,A* = 
LA+ , choose £ G <^(£O,A*). Repeating the reasoning above, we find that 
z — £ G ^ (LO.A)" 1 . Again from the previous theorem, z — £ G-/(/(i>A+)- We 
leave the remaining steps to the reader. 

We now proceed to extend (i) and (ii) to the noncompact case. Let z G 
@{U*) and y G 9{L,A

f). Since 9(UA') C 9{U), clearly 

{U(y),z) = (y,U'*(z)) = (L0A'(y),zA)A. 

From what we have just shown ZA G &(LA+); i.e., s G ^4CW(A) and 
CZV*(S))A = /+(z). Since A is arbitrary, z G ACn{I) and L0'*(z) = /+(z). 
Therefore L0'* C £ + and the two operators are equal. Repeating the argu
ment with z G &(LQ*) shows that L0* C L+. We omit the details. This com
pletes the proof of the theorem. 
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4.13. COROLLARY. 

(i) Z,o+'* = L; 
(ii) Lo+* = L; 

(iii) L+* = L0; 
(iv) L* = L0+; 
(v) L0/ = L0; 

(vi) L0
+ ' = £o+. 

Proof. By interchanging L0 ' and L0 with L0
+/ and L0

+ and reproving Theorem 
4.12 it is possible to show (i) and (ii). In a similar way (iii), (iv) and (v), 
(vi) are each dual pairs of statements. Since L+ D L0

+, L+* C L; in particular 
S(L+*) C S(L). From Lemma 4.3 and the fact that Green's relation must 
be satisfied S(L+*) C S(L0). Obviously, however, L0 C L+*. Therefore the 
two operators are equal. This proves (iii) and thus, by "duality", (iv). We 
have shown that L0

f* = L+, L+* = L0'. Hence L0' = L0 proving (v). The 
"dual" argument gives (vi). 

4.14. COROLLARY. W(L) = Y; W(L+) = X'. 

Proof. Again by duality we need only deal with the first statement. From 
Corollary 4.13 (ii) and Theorem 3.10 (xi) it follows that S%(L)-1 =J/(U+). 
Since Lo* = I T 7 , J^(L,+) = J/(L^'). But J/{L^') = {0}. Therefore 
/K(L0

+/) = {OJJ-L = {0}. Hence 

WÇL) = ^(L)-LJ-

= Y, 

as was to be shown. 

Much simpler to prove is 

4.15. THEOREM. Lf I is compact, 3$(L) = Y and@(L+) = X'. 

Proof. If g(t, s) is the Green's function for l(y) and f(s) G Y, 

J g(t,s)f(s)ds 

exists and is in Si (Li), The same argument (using g(s, /)) works for the second 
assertion. 

5. Regular generalized differential operators and their adjoints. We 
are finally in a position to study the adjoint theory of operators determined by 
the system (1.1) and (1.2). 

Again throughout this section I, unless otherwise stated, is an arbitrary 
interval [a, b] in the extended reals. 
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5.1. Definition. Let i f denote the operator obtained by restricting l(y) to 
the domain 

&(&) = {y:y e ACn(I) H X r\jV[<%(y, . . . , y - i ) ] ; l(y) Ç Y}. 

££ (or any restriction thereof) is called a generalized differential operator-, 
it is said to be regular or singular according to whether or not the system (1.1), 
(1.2) is a regular or singular s.b.v. problem. 

5.2. Definition. If co is the row dimension of the measure w, define 

(5.1) i>6C~ 
9* = U \z :z € BVn{I)C\ 7';forallT,/(r € (a, b) and t > r 

z(t) + @-1W*\T, t\4> € ACn[r, &)); l+{z) + ^£- <j> € X'j , 

and the relation Jẑ + C Y' X X' such that 

g?(i?+) = {(*, l+(z) + ̂ £- <j>) : z € ^*} • 

From the definition of ^ (see (4.1)) it is not difficult to show that an 
alternative characterization of £^* is 

9* = U i s : z G £ F n ( / ) H F ' ; for all r, f (T 6 (a, 6) and * > r 

( 5 . 2 ) => h+(z)[t] + wjs*[r, t]4> € 4 C [ T , 6)); Z+(s) + - ~ </> C x j . 

In the context of the s.b.v. problem (1.1), (1.2), .if and i f + are the maximal 
operators (or relations) corresponding to L and L+. 

5.3. Definition. Let J^j, ^ : ^Cw(7) X ^ * -> C be the bilinear forms 

•^[y.sKs.O = [/;-l+*W - « W ^ ' ^ ) - [l^*{z) 
(5.3) +**w„[/]]y(^j)(/), i = 1 , . . . ,» , 
where </> is the (not necessarily unique) element in O corresponding to z in (5.1). 

From Lemma 4.3 we see thatJ^[y, 2] (5, £) can be written: 

([y, *](*) - <t>*w[s]y[s]) - ([y, z](t) + 0*w>[*MO) 

ThusJ^can be thought of as a "generalized bilinear concomitant." With it we 
construct the Stieltjes analogues of L0 and L0

+. 

5.4. Definition. Let i f 0 C i f be the operator defined by l(y) on 

(5.4) ®{&ù = {y :y (E ̂ ( i f ) ;jT[y, z](6~, a+) = 0, for all 2 G ^ * } . 

5.5. Definition. Let 

(5.5) ^ 0 * = Utt {* :* € ^ * ; J ^ [ y , *](&", a+) = 0, for all y G 0 ( i ? ) } ; 
0€G 
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and i f 0
+ : Y' -> X' be the relation such that 

&&o+) = {(z,?{z) + ^ *) ;z 6 ^ 0 * } . 

Since LQ
+ C i f o+ and L+ C i f + it is obvious that i f 0

+ and J£+ are defined 
on total sets and thus dense. Under what conditions are i f + and i f 0

+ operators? 

5.6. THEOREM. QSf+ and&\+ are operators if and only if 

(5.6) O ^ f e * [ r , ! ] ) C ^ ( ^ « ) a . e . 
a<r<t<b \ aU I 

Proof. Clearly i f + and i f 0
+ can fail to be operators if and only if there exists 

distinct elements <j> and tf in CM corresponding to a given z in £^* or &o*. The 
definition of these domains and the singularity of the measure ws forces 

<}>- <t>' e n ^(w,*(T,t]). 
a<T<t<b 

If 4> - <j>' tJS(dwc*/du (0) a.e., then i f o + 0 ) and ^+(z) are single valued. 
On the other hand if the operators are single valued for z then 

which implies 

dwc* 

5.7. COROLLARY. 

i f + (0 ) = i V ( 0 ) = &Ç- 0; 0 6 O ^ > s * [ r , o } • 

Note that (5.6) is not unduly restrictive; for example it is automatically 
satisfied if the measures Vj are singular. On the other hand if the Vj have no 
singular parts, it is clear that ££+, <$£0

+ are never operators. 

5.8. LEMMA. 

</<y),«>= (P{*),y)+Jeb,x]QT,a+)- (4>*W(y,...,y(^)) 

for all y Ç 9(L), 0 Ç G° such that 4>*$/{y, . . . , y»-D) < oo. 

Proof. Let A = [a, 0] C / be compact. Then 

fy<*-fi%+(z)dt= - fV""''*^!^*)+«>,.*[«, *M' 
(5.7) , / " ^ p 

(since w^* is singular, wis*'[a, t] = 0 a.e.). We integrate the first term on the 
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right by parts. Then the right side of (5.7) becomes 

v a 

+ P y(*-»v*wj,*[a,t]4>dt+ P {a^n-»)*zdt. 
J a J a 

Integrating the third term of the above expression by parts (and simplifying 
a bit) we get 

- J f 3 * [ y , 2 ] ( / r , a + ) - £ (dwisy
n-1)*<t> 

(5.8) a r-p pp 
+ y^-i+X)*lj^{z)dt+ {a^-^Yzdt. 

J a J a 

Combining (5.7) and (5.8) we derive 

£y<*-*%+{z)dt = - ( J f ,* ty , s ]G3- a+) 
(5.9) " pp pp r» 

(dwjsy'n~i)y<t>+ y*,-3+l)*lj^
+(z)dt+ {a^Yzdt. 

J a J a J a 

(5.9) is a recursion relation. Applying it successively for j = n, . . . , 1 the 
identity 

fy*?(z)dt = - £ ^ b , z ] 0 3 - , a + ) 
(5.10) Ja ' - 1 + p n 

- E (dw3sy'n-i))*<t>+ l(y)*zdt 
j=l U a U a 

immediately follows. By (5.3) 

t^Ày^Kt)^^[y,z](t). 

As /3 —» b and a —•> a the integrals 

fby*l+(z) = (l+(z),y) and 

f\(y)*zdt = (z,l(y)) 
J a 

exist because y ^ ( L ) C I , l+(z) £ X', l(y) G F, and z e @* C F' . The 
last term of (5.10) tends to °ll(y, . . . , ^ _ 1 ) * 0 . This forces 

Jfb,s](r,a+) 
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to exist. Taking transposes of both sides of (5.10) we arrive at the identity 
stated in the lemma. 

From Lemma 5.8 combined with (5.4) and (5.5) we have immediately 

^•U) (Jfo(y),z)= <y,if+(*)>. 

5.9. THEOREM. IfJ^o+, <^+ are operators, they are closable. 

Proof. Since ^ * , 9f are total and i f 0+ C -Sf*, i ^ + C i V by (5.11), the 
hypotheses of Lemma 4.8 are satisfied. 

In the remainder of this section we assume that ^£ is regular. 

5.10. LEMMA, i f+* = i f 0. 

Proof. Since i f+ D L+,^+* C £+* C£.Let ;y 6 ^ ( i f + * ) , and* 6 ^ 0 * . By 
the above inclusion, the definition of ^ 0 * (5.4), and Lemma 5.8, it follows that 

4>*<%(y,. . . ,y(n~1)) = 0 . 

Now 0 is arbitrary over Cw since JV(^+) C ^ * contains all functions of the 

form 

«w. (dw(s)g(s, t))*4> 

(verification of this fact is a tedious computation similar to [5, Theorem 5.1]. 
Hence °tt{y, . . . , y^n~l)) vanishes and y £ ( if o). The theorem is proved. 

5.11 COROLLARY. ^?(if+)J- =J/(£P
0)-

The interesting question, however, is to determine circumstances under 
which J^* = i f 0

+ and ££ * = J£+. In this section we show that this is always 
the case for regular operators; and in the next section we shall extend our results 
to a large subclass of singular operators. 

5.12 LEMMA. Let T+ : Y' -* X', T : X -> Y be relations such that (T+)* = 
T and & (T+) = Xf. Then the following statements are equivalent: 

(i).yV{T+) is closed; 
(ii) r* = r+; 

(iii) T+ is closed; 

Proof. The implications (ii) =» (iv) and (iv) => (i) are trivial, (ii) implies 
(iii) by (vii) of Theorem 3.10. One easily checks that the closure of a relation 
implies the closure of its null space so (iii) implies (i). Finally, (i) implies (iv) 
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because 

(7+)* = T implies T+ = T* = @(T)L =<J/(T+) =J/(T+). 

Therefore to complete the argument it is required only to show (iv) implies 
(ii). 

Let £ be an arbitrary member of «^(T*) and put g G r*(£). Since S% (T+) = 
X\ there exists a function z in Of (T+) such that g G r + ( z ) . Because T+ C T*, 
it follows that (2 - £, 0) G ^ ( r*) , that is, that z - £ G ^K(r*) . By Theorem 
3.10 (x), s - ? G ^ ( j y . But then (iv) implies z - £ G ^ ( r + ) C @(T*). 
Since 2 G &(T+), so does £. Therefore (£, r (£)) G T+. Since £ was arbitrary, 
this shows that T* C ^ + . However, (T+)* = T by assumption. Hence T* = 
r + (Theorem 3.10 (viii)), that is, T+ C T*. We conclude that the two operators 
are equal. 

5.13. LEMMA. Dim<yK(o£f+) ^ w(n + 1), wftere m (assumed }z 1) is the row 
dimension of the measure w. 

Proof. Under the hypothesis that ££ is regular and m is the row dimension 
of w, 

^ ( i f + ) = \z : z + SS-xw*\a, t]4> G AC(I)\ l+(z) + ~ - <j> = o j , 

where 0 G Cm. 
Let 

^ ( i f + ) = | 2 : ê + &-lws*[a, t]et G AC(I)]l+(z) + ~ et = 0 

i = 1, . . . , w, 

where e* is the ith unit basis vector in Gm. We show first that dim^V (J£ t
+) ^ 

n + 1. To see this, note that if 21, 22 G ^V{^i+) with 21 ^ 22, then 21 — 22 G 
i4C(J) H Y' (equivalently zx - z2 G ^Cw(7) H F ) , and 

(5.12) 21 = 22 m o d ^ ( i f <fC+), 

whereof i tC
+ is the operator determined by the restriction of J?f+ to ACn(I) C\ 

@*. If dim^V(J?i
+) > n + 1, there exists {s,}*i? linearly independent ele

ments m<yV(J^i+). By (5.12) 21 — 2w+2, 2w+i — 2w+2, . . . are all elements of 
/K(oêf z>c

+). Since <j£fz>c
+ is an "ordinary" differential operator, it follows from 

standard theory that dim J/(S£i>c
+) ^ n (the order of l+). Therefore there 

exist constants Ci, . . . , cn+1 not all zero such that 

n+l n I n+1 \ 

2 3 Ci(2i - 2n+2) = X) C*Z* + ( — 22 C</3iH-2 = 0 
i=\ i= l \ z =l / 

contradicting the assumption that the {2^ were linearly independent. This 
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contradiction implies tha t dim ̂  ( i f* + ) ^ n + 1. Because 

m 

JY&+) = £ ^( i f+ ) ( i ) , 

dim «yK ( i f + ) ^ m(n + 1) and the lemma is proved. 

Note t ha t in case m = 0, i.e., if no side condition is present, ^ + = L+ so 
tha t d i m ^ ( i f + ) = d i m ^ ( i f + ) = n. 

5.14. T H E O R E M , i^7* = i f 0
+ and^0* = ^ + -

Proof. Since / is compact, L+ is surjective (Corollary 4.16) and thus so is i f + . 
Also i f + * = i f 0 (Lemma 5.10 (i)). By Lemma 5.13 ̂ ( i f + ) is finite dimen
sional and hence closed (Lemma 3.6). The second par t of the theorem now 
follows from Lemma 5.12. We only sketch a proof for the first s ta tement : 
observe tha t «Sf Z) i f o implies ££* C ^o* = i f + . Then using Lemma 5.8 we 
argue tha t i f 0* = i V . 

5.15 COROLLARY. i f + and i f 0
+ are operators if and only if ££ and J£Q are 

densely defined. Thus Theorem 5.6 yields a test for the density of Q) (f£) and 
i ^ ( i f o) in the ±-topology. 

6. Local ly regular operators . Here we extend Theorem 5.14 from the 
regular case to a certain class of singular operators. 

6.1. Definition. A singular operator i f is said to be locally regular on a set 
5 C / if on every compact subinterval A C S the set 

TA = { j : s u p p . TJ(W)^A * {</>}} 

is finite. 

T h e above definition is another way of saying tha t the side condition 
&(y, . . . , y{n~l)) may be represented by measures which are locally finite 
dimensional. 

If <if is locally regular and A = [a, /3] is any compact subinterval of / — S, 
definei^o.A as the restriction of L 0 ,A satisfying the side condition 

(6.1) I dwAy = 0, 
J A 

where 

WA = Wniw), . . . , Tjk(w)Y 

for ji £ TA. Observe tha t i f 0 , A is regular; in fact it is the minimal i f - t y p e 
operator defined in A with Stieltjes side condition (6.1). 

By viewing functions in ^ ( L O . A ) as defined on / bu t having support on A, 
i f O,A is natural ly associated with a new operator i f [0,A] which is a restriction of 
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<if. More precisely, i f [0,AI C i f and 

^ ( ^ [ O , A ] ) = | y : ^ ^ ( c ^ ) ; supp. y C A). 

dwA
c* f /W*\ /W*\] 

Let "̂ ~ = r n^ r / • • • • ' Vi\i^)J • 
Since Jzf 0,A is regular, using Theorem 5.14 it is not hard to see tha t 

where z 6 £F W (A) and s(/) + ^ - % A s * [ a : , *]0 G ^C W (A) . Since BVn(A) = 

(BVn(I)r\ F ) A and ACn(A) = (ACn(I) H F ' ) A (cf. 3.5), ^ ( ^ O , A * ) is in 

fact the restriction of ^(=£f+ ) to A. We call the relation determined by this 

graph the restriction of oSf+ to A, ( J ^ + ) A . 

Having thus characterized jSf0,A*, wha t isJ$f[0>A]? 

6.2. L E M M A JZ?[0>A] = °^[A]+, wfe^rg 

^ ( ^ [ A ] + ) = { ^ : ^ C Y'XX';yA = ^ ( ^ + ) A } . 

Proof. We outline the main steps of the proof bu t omit details. Observe first 
of all t h a t i f [ A ] + D L+. Hence ( i f [ A 1

+ )* C U. Let y 6 @{U), u 6 ^ ( i f tA]+) 
and v £ ^ ( i f [ A ] + ) - Then (/(y), u) = (y, v). Now by definition 

â?(J$? [A]+)7_A = ( F ' X X ' ) . - A . 

T h e ajdoint of this " re la t ion" with respect to the pairing ( . , . ) 7 _ A is trivial. 
Hence 

y / - A = % ) / -A = 0. 

Since y £ ^ ( i ? o ) C AC1 (I), 

jr[y,u±\{lT,a+) = 0. 

This implies t ha t y(/3) = y (a) = 0, in other words t h a t supp. y C A . Because 
the pairing is bi-additive we can write 

(l(y), tt)j_A + (l(y), u)A = (y, Î ; ) 7 _ A + (y,V)A 

or 

(6.2) <Z(y),w>7_A - (y, «;) /_A = (Ky),u)A + (y, V)A. 

Since, restricted to A, (u, v) £ & ( ^ 0 , A * ) , by Lemma 5.8 the right side of (6.2) 
can be replaced by 

(6.3) Jt?[y}uA](p-,a+) - I dwrf. 
J A 
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Then, because (6.3) and the left side of (6.2) are defined on disjoint intervals, 

(6.4) <Z(y),«>7_A - <y,v)j-à = 0, 

(6.5) Jf[y,uA](0~,a+) - I dwrf = 0. 
J A 

Furthermore, from our characterization of «if [A]+, 

^(<if [A]+) = [v : u e F , «A £ ^ [ ( i f + ) A ] } . 

No w ^ f («if+)A] is closed (Lemmas 3.6, 5.13). It is left as an exercise to see that 
jV(<£m+) is too. From (6.4), (6.5) and (6.6) we conclude that 

/ . 
dwAj = 0. 

A 

These facts together mean that y £ i^(«if [0>A]), proving that 

^(Sf[0,A]) D^(^ t A] + )*. 

Because the reverse inclusion is trivial, («if [A]+)* = «5f [O,A]- TO finish the lemma 
we observe that ££[A]+ is surjective (trivial from its definition). Applying 
Lemma 5.14 the desired conclusion££[O,A]* = =Sf [A]+ follows. 

6.3. LEMMA. L<?£ S be a closed set of measure zero. Then 

^ ( ^ + ) = n #(i?[41
+)a.e. 

A C / - S 

Proof. Since 

^(if[A]+) = { ^ : ^ C r X - X ^ A = ^ ( < = ^ + ) A } , 

and 5 is closed (so that I — S is the union of open intervals), we deduce that 

A c / A c i— S 

Also ^ ( i f + ) can differ from 

A C / - S 

at most on the points of S. Since 5 has measure zero, the lemma follows. 

6.4. THEOREM. If ^£ is locally regular on I — S where S is a closed set of 
measure zero, j£f 0* = ~£f+ and ££* — «if 0

+ 

Proof. Let A C I — S. Then «if 0,A is regular and «if [0,A] C «if o- Thus 
<if [O,A]* D^ifo*. Since this holds for a// A in / — S, 

&W)c n â?(jsf[0.4]*). 
AC / - £ 

By Lemma 6.2 «if [O,A]* = <if[A]+, and by Lemma 6.3 

AC / _ £ 
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Therefore, & (J£0*) C ^(<if+) . Since the reverse inclusion is trivial (cf. 5.11), 
the first statement of the theorem is proved. The proof of the second statement 
is the same as in Theorem 5.16. 

7. Conclusion. This paper has been a preliminary effort to develop some 
apparatus for a theory of singular operators under Stieltjes side conditions 
which would be analogous to the theory of singular ordinary differential 
operators. We have purposely chosen to work in the framework of "dual 
pairings" rather than in particular spaces to make the results as widely ap
plicable as possible. This approach also has the advantage of showing that 
the whole theory of differential operators (ordinary or generalized) in whatever 
space rests on an appropriate Green's Relation and a principle related to the 
"Fundamental Lemma of the Calculus of Variations" (cf. Lemmas 5.8, 3.13 
and Theorem 3.14). 

We now close the paper with some examples designed to make the theory 
developed in the previous sections more concrete. W7e also develop a few 
applications to the theory of splines and suggest a few areas that might be 
profitably developed. 

7.1. Examples. 
1. Let 

X = &*[0, l],X' = &*[0, 1], 

F = J&?"[0, 1], Y' = i f «'[(), l ] , 

where 1 ^ p, p' < oo , 1/p + I/o = 1, \/p' + 1/q' = 1. We choose l(y) = 
y^ and 

^ ( y , . - . , : v ( n - 1 ) ) =y(h), 

where T = {/*} is an infinite set of points (/0 = 0, h = 1) with finitely many 
limit points {ttj} in [0, 1]. Then in the sense of Definition 6.1 the operator ^£ 
generated by this system is locally regular. Now 

w = 

dwe 

du 

u(to) 
0 

0. 

u(tt) 
0 0 

Also 31 is a diagonal matrix with entries atj = ( —1);". Hence from (5.2) it is 
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readily seen that 

Z+(2) = ( - l ) V n > 

(7.1) @* = {z:z £ ^ ^ [ 0 , l];2C«-D ç. BV[0, 1]; 

2(»-i)(^+) - 2c»-i)(/ r) = 0 < ; z w G if*[0, 1]}, 

for arbitrary scalar parameters </>*. Since ££ is denned on a compact interval, 
by (5.5), by the definition oi3ti?\yf z] it is not difficult to see that 

3?o* = {z:z £ @*;z(n-v(0+) = - 0 O ; z ^ (1~) = * i } . 

By Theorem 6.4 

Since J??o+, ° ^ + are surjective (see Theorem 5.14), it follows from the Banach 
Closed Range Theorem (Theorem 3.11) that the ranges of «Sf and «Sf o are 
closed. 

What a r e ^ ( i f + ) and^K(cSf 0
+)? It is clear from (7.1) t h a t ^ / ( i f + ) consists 

of functions in null space of l+{z) on I — {£*}-in this case polynomials of 
degree n — 1-in (^7(n-2)(7), and such that 

2(»-i)( /<+) _ 2(n-D(^ r) = «„ /< e r - {*„}. 

^K($f0
+) C«-^(=Sf+) consists of functions satisfying the additional end point 

conditions 

2«>(0+) = s ^ U " ) = 0, i = 0, . . . , » - 2. 

Functions of this type are also known as polynomial splines of order n. 

2. Let / = R, T be a countable point set, X, X', Y, and l(y) as in the 
previous example. For each tt £ T assign an integer 1 S j t ^ n — 1. Put 

^ ( y , . . . , ^ - 1 » ) = (y(M y(*>('«))' = 0, 

that is, the firsts derivatives of y are set equal to zero. The measure w may 
be written as a matrix of infinite row dimension with the jth row having its 
first j i entries the point evaluation measure u(tj) and the rest zero measures. 
In this case, z £ ^ ^ - D on the intervals between successive tj. At tj however, 
z has n — 1 — (jt + 1) successive smooth derivatives. The null spaces 
*À'(J£?+),<sVÇ£fo+) consist of polynomial splines with Hermite ties at the knot 
set {tj}. 

3. Let I be arbitrary. Take 

X = AC1 (I), Y=&(I), 

X' = i f o ( / ) , Y' = AC0
n(I), 

and l(y) a regular operator on / . Then pairings can be naturally defined on 
XXX' and Y X Y'. If L, L+, etc., are constructed according to Definitions 
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4.1 and 4.4, 

@+ = {z:z € ^Co"(/); /(«) G =^o(/)}. 

Since every function in @>+ has compact support 

Iim[y,8](s) - l i m [?,*](*) = 0 

for all y in 2iï(L) and 2 in <^+. This shows that L = L0 and that L+ = L0
+. 

Moreover, Z, = L0 ' and L+ = Z0
+ / . 

4. Let I = [0, 2TT], X = X ' = F = 7 ' = i f 2 ( R ) , and Z(y) = / ' . Instead 
of imposing a singular side condition we let 

/

»2TT 

y cos ( 0 * = 0. 
0 

Here ^ * possesses no interior point discontinuities. Indeed 

^ * = &(L) = {y:y e AO{I)iy" G ^ 2 ( / ) } . 

Since £&(<&) is not dense, Jzf+ is a relation rather than an operator and 

g?(if+) = i(y,y" - sin t<t>): y G @(L)',<t>e C}. 

<yK(o£f+) is one dimensional and spanned by sin t. The equation y = / has a 
solution satisfying (7.2) if and only if 

/ , 

2TT 

/ sin t dt = 0. 
0 

In the first two examples above we have shown tha.t*A'(J£?+),^(J£?o+) are 
structurally ''spline functions". There is a more striking connection, however, 
between the operators i f , J$f 0 and their duals and the theory of splines. Splines 
are often (e.g. Jerome and Schumaker [10]) defined as solutions to the mini
mization of a differential operator l(y) in a suitable Hilbert space norm 
subject to the constraint 

(7.3) <%(y, . . . , 3 ' ( n - 1 ) ) = r . 

If I is compact, X = Y = <if 2(7), and «if,, denotes the nonlinear translate of «if 
satisfying the nonhomogenous condition (7.3), then it can be shown that the 
equation 

(7.4) <£*&T\S\ = 0 

characterizes the solution (or "spline") / to the minimization problem. Using 
(7.4) it is then possible to analyze the local and global smoothness prospect 
in terms of the measure w and the coefficients of l(y). This analysis gives 
many known results as special cases as well as new ones which would be hard 
to prove using existing methods (see [6] for the derivation of (7.4) and details). 
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To consider the noncompact case (7 = R, for example), we need to generalize 
slightly our notion of an adjoint operator. Let us put 

à{L) = {y:y£AC>(I);l(y) G i ^ ( R ) } . 

There is no pairing now on Sf (IS). However, an operator i f may still be defined 
on 9(L) C\JY(!%(y, . . . , y(n~»)) with range in i f 2(R). A "formal adjoint" 
i f o + : BVn(I) —>if (7) can also be defined having the same structure as i f 0

+. 
Green's relation no longer holds. However, if we consider the if2 solutions of 
i fo + , that is, the collection of functions z in i^(ifo+) P \ i f 2 ( R ) satisfying 
ifo+(z) = 0, it is possible to repeat the argument of Lemma 5.8. We then 
obtain 

(7.5) (Ly,z) = -**«T(y , . . . , : y ( ' , - 1 ) ) , 

for all y in Êf (IS) such that <t>*^(y, . . . , y(n~u) exists. (7.5) now implies by 
essentially the same argument used in Theorem 5.10 and elsewhere that 

(7.6) <^( iO = (</K(<^o+) H i f 2 ( R ) ) ^ . 

Thus i f 0
+ may be considered the "adjoint" of££ in the sense that the Fredholm 

Alternative (7.6) holds. Also ^ ( i ? ) is closed (in i f 2(R) as well as with respect 
to the _L operation) and a version of (7.4) remains valid: 

7.2. THEOREM. A necessary and sufficient condition that f minimize l(y) in 
i f 2 ( R ) for all y G 2ûf(L) satisfying condition (7.3) is that 

£*£t{S) = o. 
Saying this in a slightly different way, 

where z is an Jzf2 solution of S£o+. 
Since we have made no use of "local regularity," Theorem 7.2 is true for a 

general singular operator. As an illustration of the theorem it is clear that the 
solution of the minimization problem associated with Examples 1 and 2 
(assuming X = Y = i f 2 (R)) , whether or not {/*} has limit points, is a poly
nomial spline of order 2n — 1 with Hermite ties at the knots. 

Similar minimization problems have also been treated by Golomb and 
Jerome [9]. 

7.3 Remarks. We have only scratched the surface in this paper. The nature 
of the spectrum, resolvents, eigenfunctions, and their dependence on the under
lying spaces and measures etc. are all open problems. In the singular if2 case 
it would be particularly interesting to determine boundary values and to 
characterize the operators intermediate between i f 0 and i f which are solvable. 
Also if l(y) = l+(y), if0 C i f + and if0 is formally symmetric in if2. By 
suitably restricting i f + one might obtain precise characterizations of the 
selfadjoint extensions of i f 0, generalizing the results of Coddington. 
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In another area, deeper applications to the theory of splines than those 
given here would be desirable. 

In subsequent papers we hope to explore these directions in more detail. 
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