Hence $\log\left(1-\frac{1}{n}\right) > -\frac{1}{n-1}$.

We have, therefore,

$$\begin{vmatrix} \log \prod_{p \leq x} \left(1 - \frac{1}{p}\right) + \sum_{p \leq x} \frac{1}{p} \end{vmatrix} < \sum_{p \leq x} \frac{1}{p(p-1)} < \sum_{2 \leq n \leq x} \left(\frac{1}{n-1} - \frac{1}{n}\right) < 1.$$
Also
$$\begin{vmatrix} \sum_{p \leq x} \frac{1}{p} - \log \log x \end{vmatrix} < c_5.$$
Hence
$$\begin{vmatrix} \log \prod_{p \leq x} \left(1 - \frac{1}{p}\right) + \log \log x \end{vmatrix} < c_6, \text{ which proves the theorem.}$$

TRINITY COLLEGE, DUBLIN.

A note on some networks of polygons

By W. BARRETT.

Given an infinity of polygons which form the boundary of a finite number of polyhedra, we shall consider the complex K consisting of the polyhedra, and of the faces, edges and vertices of the polygons. We consider only those cases in which the Eulerian Characteristic N of K is finite. Then if the mean number of sides meeting at a vertex is p, and the mean number of sides of a polygon is q, then

$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$$

The complex K is considered as the limit of a complex K' having a finite number v_0 of points, v_1 of edges, v_2 of polygons, and v_3 of polyhedra, when v_2 tends to infinity in a definite manner. Since $v_2 \leq \sum_{r=1}^{v_1} {v_1 \choose r}$, which is finite if v_1 is finite, it follows that v_1 is infinite if v_2 is infinite.

xxiii

Now by the definition of N,

$$N = v_0 - v_1 + v_2 - v_3$$

$$\therefore \frac{v_0}{v_1} - 1 + \frac{v_2}{v_1} = \frac{N + v_3}{v_1}$$
 which tends to zero as v_1 tends to infinity.

So for K, $\frac{v_0}{v_1} + \frac{v_2}{v_1} = 1$.

But $v_0 p$ = the number of lines counted twice = $2v_1$, and similarly $v_2 q = 2v_1$.

Therefore
$$\frac{1}{p} + \frac{1}{q} = \frac{1}{2}$$
.

Corrollary. In particular the theorem applies to networks of polygons in a plane, whether the plane be considered as a numberplane, with a point at infinity (N = 1) or as a projective-plane with a line at infinity (N = 0).

Note. If the theorem is to be applied to nets of polygons on a polyhedron in cases where the network has a boundary (and in particular to plane networks of this kind) the polyhedron must be completed by the addition of a polygon whose boundary is the boundary of the net. Consider for example a circle with n radii OP_1, OP_2, \ldots, OP_n and let n tend to infinity. Then to find p we have n lines meeting at O and 3 lines meeting at each P, *i.e.*, $p = (3n + n)/(n + 1) \rightarrow 4$; to find q we have n triangles and one n-gon, *i.e.*, $q = (3n + n)/(n + 1) \rightarrow 4$, verifying the theorem.

2 LONG DRIVE, SOUTH RUISLIP.

xxiv