Hence $\log \left(1-\frac{1}{n}\right)>-\frac{1}{n-1}$.
We have, therefore,

$$
\left|\log \prod_{p \leqq x}\left(1-\frac{1}{p}\right)+\sum_{p \leqq x} \frac{1}{p}\right|<\sum_{p \leqq x} \frac{1}{p(p-1)}<\sum_{2 \leqq n \leqq x}\left(\frac{1}{n-1}-\frac{1}{n}\right)<1
$$

Also $\left|\sum_{p \leqq x} \frac{1}{p}-\log \log x\right|<c_{5}$.
Hence $\left|\log \prod_{p \leqq x}\left(1-\frac{1}{p}\right)+\log \log x\right|<c_{6}$, which proves the theorem.

Trinity College, Dubling.

A note on some networks of polygons

By W. Barrettr.

Given an infinity of polygons which form the boundary of a finite number of polyhedra, we shall consider the complex K consisting of the polyhedra, and of the faces, edges and vertices of the polygons. We consider only those cases in which the Eulerian Characteristic N of K is finite. Then if the mean number of sides meeting at a vertex is p, and the mean number of sides of a polygon is q, then

$$
\frac{1}{p}+\frac{1}{q}=\frac{1}{2}
$$

The complex K is considered as the limit of a complex K^{\prime} having a finite number v_{0} of points, v_{1} of edges, v_{2} of polygons, and v_{3} of polyhedra, when v_{2} tends to infinity in a definite manner. Since $v_{2} \leqq \sum_{r=1}^{v_{1}}\binom{v_{1}}{r}$, which is finite if v_{1} is finite, it follows that v_{1} is infinite if v_{2} is infinite.
xxiv
Now by the definition of N,

$$
N=v_{0}-v_{1}+v_{2}-v_{3}
$$

$\therefore \frac{v_{0}}{v_{1}}-1+\frac{v_{2}}{v_{1}}=\frac{N+v_{3}}{v_{1}}$ which tends to zero as v_{1} tends to infinity.
So for $K, \frac{v_{0}}{v_{1}}+\frac{v_{2}}{v_{1}}=1$.
But $v_{0} p=$ the number of lines counted twice $=2 v_{1}$, and similarly $v_{2} q=2 v_{1}$.

Therefore $\quad \frac{1}{p}+\frac{1}{q}=\frac{1}{2}$.
Corrollary. In particular the theorem applies to networks of polygons in a plane, whether the plane be considered as a numberplane, with a point at infinity ($N=1$) or as a projective-plane with a line at infinity ($N=0$).

Note. If the theorem is to be applied to nets of polygons on a polyhedron in cases where the network has a boundary (and in particular to plane networks of this kind) the polyhedron must be completed by the addition of a polygon whose boundary is the boundary of the net. Consider for example a circle with n radii $O P_{1}, O P_{2}, \ldots, O P_{n}$ and let n tend to infinity. Then to find p we have n lines meeting at O and 3 lines meeting at each P, i.e., $p=(3 n+n) /(n+1) \rightarrow 4$; to find q we have n triangles and one n-gon, i.e., $q=(3 n+n) /(n+1) \rightarrow 4$, verifying the theorem.

2 Long Drive,
 South Ruislip.

