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1. Let f{x,y,z) be an indefinite ternary quadratic form of signature
(2,1) and determinant d ^ 0. Davenport [3] has shown that there exist
integral x, y, z with

(1.1) <></(*, y,*)

the equality sign being necessary if and only if / is a positive multiple of
fx(x, y, z) = x2 + yz.

I consider here the problem of finding the best possible result of this form,

(1.2) 0<f(x,y,z)

(the exponent ^ being dictated by homogeneity) when x, y, z are congruent
modulo 1 to arbitrarily assigned real numbers x0, y0, z0.

Since the choice x0, y0, z0 = 0, 0, 0 gives integral x, y, z, it is clear from
Davenport's result that any result (1.2) must have X ̂  4. I prove that in
fact (1.2) is always soluble when X = 4, and that the equality sign is also
necessary for a further class of forms.

THEOREM. / / f{x, y, z) has signature (2,1) and determinant d ^ 0, then for
any x0, y0, z0, there exist x,y,z=xo,yo, z0 (mod 1) satisfying

(1.3) 0<f(x,y,z)^{4\d\)i.

The equality sign is necessary if and only if f is equivalent to a positive multiple
of either

(1.4) fx{x, y, z) = x2 + yz with x0, y0, zQ = 0, 0, 0 (mod 1), or

(1.5; f2(x, y, z) = x* + y* - 2z* with x0, y0, z0 = f, f, f (mod 1).

For the proof, we begin by choosing coprime integral x, y, z satisfying
(1.1). By applying a suitable integral unimodular transformation to the
variables (and also to x0, y0, z0), we can ensure that

(1.6) /(I, 0, 0 ) = a , 0 < a ^
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Completing the square, we write

(1.7) g{x, y, z) = - / ( * , y, z) = (x + py + yz)* + h(y, z),

say, where /S, y are real and h is indefinite.
Let h have discriminant A2(A > 0), so that, by (1.6),

We write for convenience

(1.8) k = Ai ^ 1,

;] if & is not integral
lA — 1 if A is integral,

so that k — \ ^. K < k. We note for later reference that, by Davenport's
result, we may suppose that k > 1 if / is not equivalent to a positive multiple
of fx.

Now we may satisfy (1.2) with strict inequality and X = 4 if and only if
we can satisfy

(1.10) 0 < g(x, y, z) < k with x, y, z = x0, y0, z0 (mod 1).

2. The next step in the proof is to show that (1.10) is soluble if we can
choose y, z ^= y0, z0 so that h(y, z) lies in a certain interval. We need the
following simple result:

LEMMA 1. For any real X, there exists an integer u with

(2.1) 0 < {u+X)* - a g p{x),

where

(2.2a) /•!— a if a < 0

(2.2b)*(a)= (-£ +

For each a, <Ae equality sign is needed in (2.1) *'/ and only if

(2.3a) A E= |(mod 1) */ (2.2a) holds,

(2.3b) A = — ( m o d i ) */ (2.2b) holds.

PROOF. The result, with the gloss (2.3a), is obvious if a < 0, since we may
choose u with \u + X\ ^ -|.

Suppose then that a 22 0, and let n be the non-negative integer satisfying
(2.2b). We choose the integer u with

| (« + 1) ^ l« + X\ ^ |(« + 2)
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and immediately obtain (2.1); there is inequality in (2.1) unless \u + A| =
= *n + 1, i.e. unless (2.3b) holds.

Conversely, if (2.3b) holds, then for all integral u

either \u + A| ^ \n or \u + A| ^ -|w + 1,
whence

either (u + A)2 — a ^ 0 or '(« + A)2 — a ^ £(a).

The equality sign in (2.1) is therefore necessary when (2.3b) holds.

LEMMA 2. Suppose that k 2; 1 and that « satisfies

(2.4) | - A < a < £/c2,

wAere K is defined by (1.9). TAerc, in the notation of Lemma 1,

(2.5) p{a) < k.

PROOF. If a < 0, then p{<x.) = i — a < k.

If a 2: 0, choose the integer n to satisfy (2.2b). Then

| « 2 ^ a < | /c2, M < K;

since » and K are both integral, it follows that n + 1 5g *. Hence, by (2.2b),

/>(a) = (|« + I)2 - a ^ (|» + I)2 - i » 2 = n + 1 ^ K;

this implies (2.5), since always K < k.
The following result now reduces our problem to one involving inhomo-

geneous binary forms:
LEMMA 3. The inequality (1.10) is soluble if there exist y, z = y0, z0 (mod 1)

satisfying

(2.6) - | K 2 < h(y, z)<k - i .

PROOF. We choose y,z = y0, z0 to satisfy (2.6), and write

h(y, z) = —a, x = u + x0.

Then a satisfies (2.4) and

g(x, y, z) = (x + Py + yzY + h{y, z) = (« + W - «,
where A = x0 -\- fty -\- yz and u is integral when x = «0(mod 1). It now follows
at once from Lemmas 1 and 2 that we may choose u so that (1.10) holds.

3. Turning now to the question of the solubility of (2.6) we prove

LEMMA 4. The inequality (2.6), where h(y, z) is an indefinite form of
discriminant kz(k 7> 1), is soluble unless either k = 1 or

(3.1) k = 2 and h(y, z) ~ y2 - 2z2 with y0, z0 ~ | , i (mod 1).

PROOF. We may suppose that k > 1, so that K ^ 1. We use Theorems 1
and 2 of Blaney [2], which state (in a slightly different notation) that the
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inequality

(3.2) - 1 < <f>(y, z) <m, y, z = y0, z0 (mod 1),

where <f>(y, z) has discriminant A2 > 0, is soluble if

(3.3) m > 0, A2 < 16m

or if

(3.4) w ^ 3 , A*< (•»+ l)(«i + 9),

unless w = 4« — 1 for some integer n 2̂  1, J 2 = (m + l)(w + 9), and
, z) is equivalent to

(3.5) 2ny2 - 2(n + 2)z2 with y0, z0 = \, £ (mod 1).

Now (2.6) may be written in the form (3.2) with
4£ \

) m =

and, since h has discriminant k3, <f> has discriminant A2 = 16k3/K*.
Using (3.3), we see that therefore (2.6) is soluble if

(3.6) A3 < K2(4£ - 1).

If 2 < & ^ 3, then K = 2, and (3.6) is easily verified; if k > 3, the stronger
inequality ka < (k — l)a(4& — 1) is easily found to hold. Thus (2.6) is
certainly soluble if k > 2.

If 1 < k g; 2, we have

(3.7) K = 1, m = 4* — 1, «£(y, 2) = 4A(y, z).

Since now w > 3, we may use the criterion (3.4), which reduces to

16AS ^ 4A(4£ + 8),
i.e.

k2^k + 2, (k-2)(k+ 1) ^0,

and this holds, with strict inequality, unless k = 2. Hence (2.6) is also soluble
if 1 < k ^ 2 unless & = 2 and, from (3.5) with n = ft = 2,

) ~ 4y* - 8z2

with y0, z0 = \, ± (mod 1).

This completes the proof of the lemma.

4. Proof of the Theorem. Lemmas 3 and 4 assert that, apart from the
two exceptional cases stated, we may satisfy (1.10), and so (1.1) with strict
inequality. It remains to show that the exceptional cases arise only when / is
equivalent to a positive multiple of one of the forms (1.4), (1.5), and that
then (1.3) may be satisfied (but not with strict inequality).
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Suppose first that k = 1; then, as noted in § 1, f(x, y, z) is equivalent to a
positive multiple of fx{x, y, z) = x2 -f- yz. Without loss of generality, we
may suppose that

fix, y, z) = f^x, y, z) =x2 + yz, d = —J,

For any y0, z0, we may choose y, z = y0, z0 (mod 1) so that

whence
- | < yz ^ £•

If now —i < y^ 5S 0, we choose a; = xQ (mod 1) with i ^ |a;| ^ 1, and

0 < / ^ 1;

if 0 < yz SS |-, we choose a; = cc0 (mod 1) with |a;| 5g i , and then

thus in either case we may satisfy

0 < / ^ 1 = (4|i|)i.

Clearly the equality sign is necessary only if yz = 0, x = 1, i.e. when
xo>yo>zo = 0, 0, 0 (mod 1). But in this case x, y, z are integral, so that
clearly (1.3) cannot be satisfied with strict inequality. This disposes of the
exceptional case (1.4) of the theorem.

Suppose next that (3.1) holds so that, after a suitable equivalence trans-
formation, we may take

(4.1) /(*, y, Z)=(x + Py + yz)* + y* - 2z\ yo,zo = \, | (mod 1), d = - 2.

By a further transformation of the type x^-x -\- ky + lz (k,l integral),
we may suppose that

(4.2) 0 ^ £ < l , 0 ^ y < l .

Choosing y = | , z = \ and x = x0 (mod 1) with \x + |-/S + | y | 5£ ^,
we obtain at once

| ^ /(*, y, z) ^ 2 = (4|i|)i,

so that (1.3) may certainly be satisfied. Also, the choices

(for all combinations of ± ) give

0 5g /(», y, ,) = (x ± |/3 ± iy)« - i ^ |

it follows that, if (1.3) cannot be satisfied with strict inequality,

*o ± |/3 ± \y = | (mod 1).

https://doi.org/10.1017/S1446788700026586 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700026586


132 E. S. Barnes [6]

From these four relations, with (4.2), we obtain at once

/3 = y = 0, x0 = | (mod 1),

so that we are led to the exceptional case (1.5) of the theorem.

Finally, if / is the form /2 of (1.5) with x0, y0, z0 = -|, ^, i (mod 1), we have

4/ = X* + Y2 - 2Z* with X, Y, Z odd integers;

thus 4/ is integral and

4 / = 1 + 1 — 2 = 0 (mod 8),
so that 4/ ^ 0 or 4/ ^ 8 for all choices of x, y, z. Hence (1.3) cannot be
satisfied with strict inequality.

This completes the proof of the theorem.

5. Conclusion. The result of the theorem represents a first step (possibly
the easiest one) in the general problem of finding best-possible asymmetric
inequalities for inhomogeneous ternary quadratic forms. The corresponding
problem for binary forms is essentially solved (see for example [1]); and by
using the general methods above, together with more precise techniques
for binary forms, one may expect to establish further results. In particular,
it is not difficult to show (by using sharper forms of (1.1) and (3.4)) that the
result (1.3) is isolated.
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