ON A GENERALIZATION OF A RESULT OF WALDSPURGER

JIANDONG GUO

Abstract

We consider a generalization of a trace formula identity of Jacquet, in the context of the symmetric spaces $\mathrm{GL}(2 n) / \mathrm{GL}(n) \times \mathrm{GL}(n)$ and G^{\prime} / H^{\prime}. Here G^{\prime} is an inner form of $\mathrm{GL}(2 n)$ over F with a subgroup H^{\prime} isomorphic to $\operatorname{GL}(n, E)$ where E / F is a quadratic extension of number field attached to a quadratic idele class character η of F. A consequence of this identity would be the following conjecture: Let π be an automorphic cuspidal representation of $\mathrm{GL}(2 n)$. If there exists an automorphic representation π^{\prime} of G^{\prime} which is related to π by the Jacquet-Langlands correspondence, and a vector ϕ in the space of π^{\prime} whose integral over H^{\prime} is nonzero, then both $L(1 / 2, \pi)$ and $L(1 / 2, \pi \otimes \eta)$ are nonvanishing. Moreover, we have $L(1 / 2, \pi) L(1 / 2, \pi \otimes \eta)>0$. Here the nonvanishing part of the conjecture is a generalization of a result of Waldspurger for GL(2) and the nonnegativity of the product is predicted from the generalized Riemann Hypothesis. In this article, we study the corresponding local orbital integrals for the symmetric spaces. We prove the "fundamental lemma for the unit Hecke functions " which says that unit Hecke functions have "matching" orbital integrals. This serves as the first step toward establishing the trace formula identity and in the same time it provides strong evidence for what we proposed.

0 . Introduction. Let F be a number field, E a quadratic extension field of F. We use F_{A} and E_{A} to denote the adele rings of F and E. Let η be the quadratic character of the idele class group F_{A}^{*} / F^{*} attached to E. For a positive integer m, we denote by G_{m} the linear group $\mathrm{GL}(m)$. Let G be $G_{2 n}(F)$ and let H be $G_{n}(F) \times G_{n}(F)$. We embed H into G in the following way:

$$
\left(g_{1}, g_{2}\right) \mapsto\left(\begin{array}{cc}
g_{1} & 0 \\
0 & g_{2}
\end{array}\right)
$$

Let Z be the center of G. For a character χ of $H\left(F_{A}\right)$ trivial on $Z\left(F_{A}\right) H(F)$, we say that an automorphic cuspidal representation π of $G\left(F_{A}\right)$ is (H, χ)-distinguished if π has trivial central character and there exists a vector ϕ in the space of the automorphic realization of π such that the integral

$$
\begin{equation*}
\int_{H(F) Z\left(F_{A}\right) \backslash H\left(F_{A}\right)} \phi(h) \chi(h) d h \tag{0.1}
\end{equation*}
$$

is not zero. If π is $(H, 1)$-distinguished, we will simply say that it is H-distinguished.
We denote by $X(E: F)$ the set of the isomorphic classes of pairs (G^{\prime}, H^{\prime}), where G^{\prime} is an inner form of G over F and $H^{\prime} \subset G^{\prime}$ is an algebraic subgroup which is isomorphic to $G_{n}(E)$ over F. Let Z^{\prime} be the center of G^{\prime}. Then we can define the notion of H^{\prime} distinguished representation of G^{\prime} in a similar way. We say that an automorphic cuspidal

[^0]representation π of $G\left(F_{A}\right)$ satisfies Waldspurger's condition if there exists a pair (G^{\prime}, H^{\prime}) in $X(E: F)$ and an automorphic cuspidal representation π^{\prime} of $G^{\prime}\left(F_{A}\right)$, which is related to π under the Jacquet-Langlands (Deligne-Kazhdan) correspondence, such that π^{\prime} is H^{\prime}-distinguished. When $n=1$ we have the following remarkable result of Waldspurger.

THEOREM (WALDSPURGER). Let π be an automorphic cuspidal representation of $G_{2}\left(F_{A}\right)$. Then π is both H-distinguished and (H, η)-distinguished if and only if π satisfies Waldspurger's condition.

Here we regard η as a character of $H\left(F_{A}\right)$ by setting

$$
\eta(h)=\eta(\operatorname{det} h)
$$

for $h \in H\left(F_{A}\right)$.
It is natural to ask for a generalization of this result to $G_{2 n}$. Here we conjecture a partial generalization:

CONJECTURE. If an automorphic cuspidal representation π of $G_{2 n}\left(F_{A}\right)$ satisfies Waldspurger's condition, then π is both H-distinguished and (H, η)-distinguished. In the case that n is odd, the converse is also true.

Waldspurger first proved his theorem by using the machinery of the Weil representation. But this method is limited to low rank cases. Another approach to the problem of proving the conjecture is the relative trace formula of Jacquet. We proceed to explain this as follows. Let f be a smooth function with compact support on $G\left(F_{A}\right) / Z\left(F_{A}\right)$. We denote by $L_{c}(G)$ the subspace of cusp forms of the Hilbert space $L^{2}\left(G(F) Z\left(F_{A}\right) \backslash G\left(F_{A}\right)\right)$. Then f induces an operator $\rho_{c}(f)$ on $L_{c}(G)$. Let $K_{c}(x, y)$ be the kernel of $\rho_{c}(f)$. We define a distribution $I(f)$ by

$$
I(f)=\int_{Z\left(F_{A}\right) H(F) \backslash H\left(F_{A}\right)} \int_{Z\left(F_{A}\right) H(F) \backslash H\left(F_{A}\right)} K_{c}(x, y) \eta(x) d x d y
$$

The kernel $K_{c}(x, y)$ admits a spectral decomposition of the form

$$
K_{c}(x, y)=\sum_{\pi} K_{\pi}(x, y)
$$

where the sum is over all the irreducible cuspidal representations π. Let $\left\{\phi_{i}\right\}$ be an orthonormal basis of π. Then we have

$$
K_{\pi}(x, y)=\sum_{i}\left(\rho_{c}(f) \phi_{i}\right)(x) \bar{\phi}_{i}(y)
$$

From this expression we find

$$
\begin{aligned}
I_{\pi}(f) & =\iint K_{\pi}(x, y) \eta(x) d x d y \\
& =\sum\left[\int\left(\rho_{c}(f) \phi_{i}\right)(x) \eta(x) d x\right]\left[\int \bar{\phi}_{i}(y) d y\right]
\end{aligned}
$$

So $I_{\pi}(f)$ is not zero only if π is both H-distinguished and (H, η)-distinguished. In other words only such representations contribute to $I(f)$.

Similarly for $\left(G^{\prime}, H^{\prime}\right) \in X(E: F)$ and $f^{\prime} \in C_{c}^{\infty}\left(G^{\prime}\left(F_{A}\right) / Z^{\prime}\left(F_{A}\right)\right)$, we define a distribution $I^{\prime}\left(f^{\prime}\right)$ by

$$
I^{\prime}\left(f^{\prime}\right)=\int_{Z^{\prime}\left(F_{A}\right) H^{\prime}(F) \backslash H^{\prime}\left(F_{A}\right)} \int_{Z^{\prime}\left(F_{A}\right) H^{\prime}(F) \backslash H^{\prime}\left(F_{A}\right)} K_{c}^{\prime}(x, y) d x d y
$$

where $K_{c}^{\prime}(x, y)$ is the kernel representing the operator $\rho_{c}\left(f^{\prime}\right)$ on $L_{c}\left(G^{\prime}\right)$ induced by f^{\prime}. As before only H^{\prime}-distinguished representations contribute to $I^{\prime}\left(f^{\prime}\right)$.

Then if n is odd, we should have the following trace formula identity

$$
\begin{equation*}
I(f)=\sum_{\left(G^{\prime}, H^{\prime}\right) \in X(E: F)} I^{\prime}\left(f^{\prime}\right) \tag{0.2}
\end{equation*}
$$

if the corresponding local components of the function f and the functions $\left\{f^{\prime}\right\}$ have "matching orbital integrals".

If n is even, then for a given pair $\left(G^{\prime}, H^{\prime}\right) \in X(E: F)$, the trace formula identity we expected reads:

$$
\begin{equation*}
I(f)=I^{\prime}\left(f^{\prime}\right) \tag{0.3}
\end{equation*}
$$

if the local components of f and f^{\prime} have "matching orbital integrals".
Here the difference in formulating the trace formula identities between the case when n is odd and the case when n is even is suggested by the comparison of the double cosets $H \backslash G / H$ with the double cosets $H^{\prime} \backslash G^{\prime} / H^{\prime}$ for $\left(G^{\prime}, H^{\prime}\right) \in X(E: F)$ (see Lemma 1.8 in Section 1.1).

Once these identities are established, the above conjecture can be proved by analyzing the spectral decomposition of both sides. When $n=1$ this is what Jacquet has done in [J1] where he established (0.2) for GL(2) and reproved the result of Waldspurger. Further exploiting this identity, we proved in [G] that

$$
L(1 / 2, \pi) L(1 / 2, \pi \otimes \eta) \geq 0
$$

for an automorphic cuspidal representation π of $\mathrm{GL}\left(2, F_{A}\right)$ with trivial central character. When combining with some known result concerning the positivity of certain average of $L(1 / 2, \pi \otimes \eta)([\mathrm{HF}])$, this implies $L(1 / 2, \pi) \geq 0$.

Generally for $f=\otimes_{v} f_{v} \in C_{c}^{\infty}\left(G\left(F_{A}\right) / Z\left(F_{A}\right)\right)$, then we have a finite set S of the places of F such that each $v \notin S$ is unramified in E and f_{v} is the unit Hecke function of $G\left(F_{v}\right)$. The same is true for the function in the other side. Thus in trying to establish (0.2) or (0.3) for $G_{2 n}$, we should first show that locally the unit Hecke functions have "matching orbital integrals". The purpose of the present paper is to prove that this is the case (see Section 1.2). So we may regard it as the first step toward the generalization of the result of Waldspurger. In the same time it also provides evidence that the identities (0.2) and (0.3) will work for $G_{2 n}$, hence our conjecture.

The distinguishedness of a representation has a strong relation with the properties of L-functions. To explain this we recall a result of Friedberg-Jacquet ([FJ]) as suggested by the work of Bump-Friedberg ([BF]). Let χ be a character of F_{A}^{*} / F^{*}. If an automorphic
cuspidal representation π of G is (H, χ)-distinguished, then the exterior square L-function $L\left(s, \pi, \wedge^{2} \rho\right)$ has a pole at $s=1$ and

$$
\int_{H(F) Z\left(F_{4}\right) \backslash H\left(F_{1}\right)} \phi\left(\operatorname{diag}\left(g_{1}, g_{2}\right)\right) \chi\left(\frac{\operatorname{det} g_{1}}{\operatorname{det} g_{2}}\right) d\left(g_{1}, g_{2}\right)=L(1 / 2, \pi \otimes \chi)
$$

for some cusp form ϕ in the space of π. So we could derive the following result from our conjecture:

If π satisfies Waldspurger's condition, then $L\left(s, \pi, \wedge^{2} \rho\right)$ has a pole at $s=1$ and $L(1 / 2, \pi) L(1 / 2, \pi \otimes \eta) \neq 0$.

Furthermore by the trace formula identity (0.2) or (0.3), we could relate the product $L(1 / 2, \pi) L(1 / 2, \pi \otimes \eta)$ to, roughly speaking, the square of a integral

$$
\int_{H^{\prime}(F) Z^{\prime}\left(F_{A}\right) \backslash H^{\prime}\left(F_{A}\right)} \phi(h) d h
$$

for a pair $\left(G^{\prime}, H^{\prime}\right) \in X(E: F)$ and a cusp form ϕ in the space of a H^{\prime}-distinguished representation π^{\prime} of $G^{\prime}\left(F_{A}\right)$. This in turn should provide information concerning the positivity and some other properties of $L(1 / 2, \pi) L(1 / 2, \pi \otimes \eta)$.

To end the introduction, we mention that a necessary tool, which concerns the multiplicity one of the subgroup H in G and H^{\prime} in G^{\prime}, in carrying on the project we described above becomes available recently ([JR], [G2]). To explain this, we assume that F is a nonarchimedean local field. Suppose π is an irreducible admissible representation of G. Let $\operatorname{Hom}(\pi, \mathbb{C})$ be the dual space of π, and let $\operatorname{Hom}_{H}(\pi, \mathbb{C})$ be the set of the H-invariant elements in $\operatorname{Hom}(\pi, \mathbb{C})$. Then we have ([JR])

$$
\operatorname{dim} \operatorname{Hom}_{H}(\pi, \mathbb{C}) \leq 1
$$

Similarly we have ([G2])

$$
\operatorname{dim} \operatorname{Hom}_{H^{\prime}}\left(\pi^{\prime}, \mathbb{C}\right) \leq 1
$$

where $\left(G^{\prime}, H^{\prime}\right) \in X(E: F)$ and π^{\prime} is an irreducible admissible representation of G^{\prime}.
The material in this paper is part of my Ph.D thesis in Columbia University. I would like to express my deep gratitude to my thesis advisor Professor Herve Jacquet for his generous guidance and help, and continuous encouragement over the years. I also want to thank Columbia university and Sloan foundation for their support.

1. Symmetric spaces and orbital integrals.

1.1. In this section, F is a field of characteristic 0 . We will study the correspondence between the double classes $H \backslash G / H$ and the double classes $H^{\prime} \backslash G^{\prime} / H^{\prime}$ for $\left(G^{\prime}, H^{\prime}\right) \in$ $X(E: F)$. For this purpose, we first recall the description of the geometric structure of the H-conjugacy classes in the symmetric space G / H, as given by Jacquet and Rallis in [JR].

We denote by ϵ_{n} the matrix

$$
\left(\begin{array}{cc}
I_{n} & 0 \\
0 & -I_{n}
\end{array}\right) .
$$

Let θ_{n} be the involution of G defined by $\theta_{n}(g)=\epsilon_{n} g \epsilon_{n}$. Then we have

$$
H=\left\{g \in G \mid \theta_{n}(g)=g\right\} .
$$

We consider the variety

$$
S_{n}=\left\{g \epsilon_{n} g^{-1} \epsilon_{n} \mid g \in G\right\}
$$

which is contained in the space

$$
P_{n}=\left\{g \in G \mid g \epsilon_{n} g \epsilon_{n}=I_{2 n}\right\}
$$

In what follows, we often write ϵ, θ, S and P for $\epsilon_{n}, \theta_{n}, S_{n}$ and P_{n} respectively if no confusion arises. The group G acts on S by the twisted conjugation

$$
(g, s)=g s \theta\left(g^{-1}\right), \quad g \in G, s \in S
$$

In particular H acts on S by conjugation $(h, s)=h s h^{-1}$ for $h \in H$. The surjective map $\rho: G \rightarrow S$ defined by

$$
\begin{equation*}
\rho(g)=g \epsilon g^{-1} \epsilon, \quad g \in G \tag{1.1}
\end{equation*}
$$

satisfies

$$
\rho(x g h)=x \rho(g) \theta(x) .
$$

So it induces an isomorphism between the symmetric space G / H and the space S as G-spaces. The map ρ also induces a one to one correspondence between the H-double cosets in G and H-orbits in S.

Thus we are reduced to study the H-conjugacy classes in S. For $x \in S$, let $x=x_{s} x_{u}=$ $x_{u} x_{s}$ be its Jordan decomposition in G, where x_{s} is semisimple and x_{u} is unipotent. Then both x_{s} and x_{u} are in S ([R] and [JR]). Our task is to analyze the semisimple elements in S. We note that an element

$$
g=\left(\begin{array}{ll}
A & B \tag{1.2}\\
C & D
\end{array}\right) \in G
$$

where A, B, C, D are of size $n \times n$, is in P_{n} if and only if

$$
A^{2}=I_{n}+B C, \quad D^{2}=I_{n}+B C, \quad A B=B D, \quad D C=C A
$$

So when A and D have no eigenvalues ± 1, then B and C are nonsingular. In this case we have:

Lemma 1.1. Let $s \in S$ be an element of the form (1.2) where A and D has no eigenvalues ± 1. The s is H conjugate to an element of the form

$$
s\left(A_{1}\right)=\left(\begin{array}{cc}
A_{1} & A_{1}-I_{n} \\
A_{1}+I_{n} & A_{1}
\end{array}\right)
$$

where A_{1} has no eigenvalues ± 1. Two such element $s\left(A_{1}\right)$ and $s\left(A_{2}\right)$ are H conjugate if and only if A_{1} and A_{2} are conjugate. Furthermore $S\left(A_{1}\right)$ is semisimple if and only if A_{1} is semisimple.

This is essentially the Lemma 4.3 of [JR]. They actually proved that s is conjugate to an element of the form

$$
t\left(A_{1}\right)=\left(\begin{array}{cc}
A_{1} & I_{n} \\
A^{2}-I_{n} & A_{1}
\end{array}\right) \in S
$$

But it is easily seen that $s\left(A_{1}\right)$ is H conjugate to $t\left(A_{1}\right)$. In fact we have

$$
\operatorname{diag}\left(\left(A_{1}-I_{n}\right)^{-1}, I_{n}\right) s\left(A_{1}\right) \operatorname{diag}\left(\left(A_{1}-I_{n}\right), I_{n}\right)=t\left(A_{1}\right)
$$

Let n_{1} and n_{2} are two integers such that $0 \leq n_{1} \leq n_{1}+n_{2} \leq n$ and let A be an element in $M\left(n_{1}, F\right)$ without eigenvalues ± 1. We denote by $s\left(A, n_{1}, n_{2}\right)$ the matrix

$$
\left(\begin{array}{cccccc}
A & 0 & 0 & A-I_{n_{1}} & 0 & 0 \tag{1.3}\\
0 & I_{n_{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & -I_{n-n_{1}-n_{2}} & 0 & 0 & 0 \\
A+I_{n_{1}} & 0 & 0 & A & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n_{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & -I_{n-n_{1}-n_{2}}
\end{array}\right)
$$

If $n_{1}=n, n_{2}=0$, we will simply write $S\left(A, n_{1}, n_{2}\right)$ as $s(A)$. Then the result of JacquetRallis on the H conjugacy classes of semisimple elements in S can be summarized as follows (cf. Proposition 4.1 of [JR]):

Proposition 1.1. Each semisimple element $s \in S$ is H conjugate to an element of the form $s\left(A, n_{1}, n_{2}\right)$. The set of the H conjugacy classes of semisimple elements of S is in bijective correspondence with the set of all triples $\left(n_{1},\left\{A_{1}\right\}, n_{2}\right)$ where $0 \leq n_{1} \leq n$ is an integer, $\left\{A_{1}\right\}$ a semisimple conjugacy class in $M(n, F)$ without the eigenvalues ± 1 and n_{2} is an integer with $0 \leq n_{2} \leq n-n_{1}$.

We say that an element $s \in S$ is θ-regular if it is semisimple and the H orbit of s has the maximal dimension among all the H conjugacy classes in S. This is the same as saying that s is semisimple and the centralizer H^{s} of s in H has the minimal dimension. We denote by S^{r} the set of the θ-regular elements of S.

Lemma 1.2. A semisimple element $s \in S$ is θ-regular if and only if it is H conjugate to an element of the form

$$
s(A)=\left(\begin{array}{cc}
A & A-I_{n} \\
A+I_{n} & A
\end{array}\right)
$$

where A is a regular element (in the usual sense) in $M(n, F)$ without eigenvalues ± 1. The set of H conjugacy classes of S^{r} is in one to one correspondence to the conjugacy classes of the regular elements in $M(n, F)$ without eigenvalues ± 1.

Proof. We first consider an element of the form $s(A)$ where $A \in M(n, F)$ has no eigenvalues ± 1. We have that

$$
\left(\begin{array}{cc}
h_{1} & 0 \\
0 & h_{2}
\end{array}\right) s(A)\left(\begin{array}{cc}
h_{1}^{-1} & 0 \\
0 & h_{2}^{-1}
\end{array}\right)=s(A)
$$

if and only if

$$
h_{1} A h_{1}^{-1}=A=h_{2} A h_{2}^{-1}, \quad h_{1}\left(A-I_{n}\right) h_{2}^{-1}=A-I_{n}, \quad h_{2}\left(A+I_{n}\right) h_{1}^{-1}=A+I_{n} .
$$

It is easily seen that these conditions are equivalent to

$$
h_{1} A h_{1}^{-1}=A, h_{1}=h_{2} .
$$

So if we identify $G_{n}(F)$ with the subgroup

$$
\left\{\operatorname{diag}(g, g) \mid g \in G_{n}(F)\right\}
$$

of H, then $H^{s(A)}=G_{n}(F)^{A}$, the centralizer of A in $G_{n}(F)$. It is well known that $\operatorname{dim} G_{n}(F)^{A} \geq n$ and $\operatorname{dim} G_{n}(F)^{A}=n$ if and only if A is regular.

Generally, by the above proposition, we can assume that $s=s\left(A, n_{1}, n_{2}\right)$ where A has no eigenvalues $1,-1$ and $0 \leq n_{1} \leq n_{1}+n_{2}$. Then by an easy computation, we find that H^{s} is the set of the elements of the form

$$
\operatorname{diag}\left(A_{1}, A_{2}, A_{3}, A_{1}, A_{4}, A_{5}\right)
$$

where $A_{1} \in G_{n_{1}}(F)^{A}, A_{2}, A_{4} \in G_{n_{2}}(F)$ and $\left.A_{3}, A_{5} \in G_{n_{3}}(F)\right\}$ with $n_{3}=n-n_{1}-n_{2}$. Thus we have

$$
\operatorname{dim} H^{s}=\operatorname{dim} G_{n_{1}}(F)^{4}+2 n_{2}^{2}+2 n_{3}^{2} \geq n_{1}+n_{2}+n_{3}=n
$$

The equality occurs if and only if $\operatorname{dim} G_{n_{1}}(F)^{4}=n_{1}=n$ and $n_{2}=n_{3}=0$. The assertion of the lemma follows.

It is clear that if $s(A) \in S^{r}$, then $H^{s(A)}=G_{n}(F)^{A}$ which is a torus in H. We say that an element $s \in S^{r}$ is θ-regular elliptic if H^{s} is a elliptic torus (i.e., H^{s} / Z is compact). This is equivalent to saying that s is H conjugate to an element of the form $s(A)$ where A is a regular elliptic element in $M(n, F)$. We denote by S^{e} the set of the θ-regular elliptic elements in S.

Let G^{r} (resp. G^{e}) be the set of elements in G whose images under ρ are in S^{r} (resp. S^{e}). We say the elements in G^{r} are θ-regular and the elements in G^{e} are θ-regular elliptic. For $a \in G_{n}(F)$ such that $\operatorname{det}\left(I_{n}-a\right) \neq 0$, we denote by $g(a)$ the matrix

$$
\left(\begin{array}{cc}
I_{n} & a \\
I_{n} & I_{n}
\end{array}\right)
$$

which is in G. Then we have:
Lemma 1.3. Each θ-regular element of G is in the same H double coset as an element of the form $g(a)$ where a is a regular element in $G_{n}(F)$ such that $\operatorname{det}\left(I_{n}-a\right) \neq 0$. It is θ-regular elliptic if and only if a is regular elliptic. The set $H \backslash G^{r} / H$ is in bijective correspondence with the conjugacy classes of regular elements in $G_{n}(F)$ without eigenvalue 1.

Proof. We consider the inverse Cayley map λ from the set

$$
W=\left\{a \in G_{n}(F) \mid \operatorname{det}\left(I_{n}-a\right) \neq 0\right\}
$$

to the set

$$
U=\left\{A \in M(n, F) \mid \operatorname{det}\left(I_{n}+A\right) \operatorname{det}\left(I_{n}-A\right) \neq 0\right\}
$$

defined by

$$
\lambda(a)=\left(I_{n}+a\right)\left(I_{n}-a\right)^{-1} .
$$

Clearly λ is bijective and induces a one to one correspondence between the $G_{n}(F)$ conjugacy classes of W and the $G_{n}(F)$ conjugacy classes of U, which maps regular classes (elliptic regular classes) in W to regular classes (elliptic regular classes) in U. On the other hand it is easy to check that

$$
\rho(g(a))=s(\lambda(a))
$$

for $a \in W$. Here $s(\lambda(a))$ is θ-regular (θ-regular elliptic) if and only if $\lambda(a)$ is regular (regular elliptic), which is equivalent to saying that a is regular (regular elliptic). Recall that ρ induces a bijective correspondence between the H-double classes in G and the H conjugacy classes in S. The assertion of the lemma follows immediately from Lemma 1.2.

Next we consider the double cosets of the pairs in $X(E: F)$. Given $\left(G^{\prime}, H^{\prime}\right) \in X(E: F)$, we can find a central simple algebra L^{\prime} of dimension $4 n^{2}$ over F and a subalgebra $M^{\prime} \subset L^{\prime}$ isomorphic to $M(n, E)$ over F such that $G^{\prime}\left(\right.$ resp. $\left.H^{\prime}\right)$ is the multiplicative group of L^{\prime} (resp. $\left.M^{\prime}\right)$. For $\gamma \in F^{*}$, we use $L_{\gamma, n}$ to denote the algebra

$$
\left\{\left.\left(\begin{array}{cc}
\alpha & \gamma \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right) \right\rvert\, \alpha, \beta \in M(n, E)\right\} .
$$

Then $L_{\gamma, n}$ is a central simple algebra of dimension $4 n^{2}$ over F with the subalgebra

$$
M_{E, n}=\{\operatorname{diag}(\alpha, \bar{\alpha}) \mid \alpha \in M(n, E)\}
$$

isomorphic to $M(n, E)$. In particular if $\gamma \in N E^{*}$ then $\left(L_{\gamma, n}, M_{E, n}\right)$ is isomorphic to $(M(2 n, F), M(n, E))$ over F. Let $N(E: F)$ be a set of representatives of $F^{*} / N E^{*}$. It is easily seen that there exists one and only one $\gamma \in N(E: F)$ such that (L^{\prime}, M^{\prime}) is isomorphic to ($L_{\gamma, n}, M_{E, n}$) over F. Let $G_{\gamma, n}$ be the multiplicative group of $L_{\gamma, n}$ and let $H_{E, n}$ be that of $M_{E, n}$. Thus we find that

$$
\left\{\left(G_{\gamma, n}, H_{E, n}\right) \mid \gamma \in N(E: F)\right\}
$$

gives us a set of representatives of $X(E: F)$. Therefore we just need to study the $H_{E, n}$-double cosets of $G_{\gamma, n}$.

Let $E=F(\sqrt{\tau})$ where $\tau \in F^{*}$ is not a square. We denote by $\epsilon_{E, n}$ the matrix

$$
\left(\begin{array}{cc}
\sqrt{\tau} I_{n} & 0 \\
0 & -\sqrt{\tau} I_{n}
\end{array}\right) .
$$

Let $\theta_{\gamma, n}$ be the involution on $G_{\gamma, n}$ defined by

$$
\theta_{\gamma, n}(g)=\epsilon_{E, n} g \epsilon_{E, n}^{-1}, \quad g \in G_{\gamma, n} .
$$

Then $H_{E, n}=\left\{g \in G_{\gamma, n} \mid \theta_{\gamma, n}(g)=g\right\}$. As before we consider the variety

$$
S_{\gamma, n}=\left\{g \theta_{\gamma, n}\left(g^{-1}\right) \mid g \in G_{\gamma, n}\right\} \subset G_{\gamma, n}
$$

In what follows, we will drop the second index n from the notations if no confusions arises. Then it can be proved (see [G2]) that

$$
S_{\gamma}=\left\{g \in G_{\gamma} \mid\left(g \epsilon_{E}\right)^{2}=I_{2 n}\right\}
$$

So an element

$$
g=\left(\begin{array}{cc}
A & \gamma B \\
\bar{B} & \bar{A}
\end{array}\right) \in G_{\gamma}
$$

is in S_{γ} if and only it satisfies the following conditions:

$$
\begin{equation*}
A^{2}=I_{n}+\gamma B \bar{B}, \quad A B=B \bar{A} \tag{1.4}
\end{equation*}
$$

As before G_{γ} operates on S_{γ} by the twisted conjugation

$$
(g, x)=g x \theta_{\gamma}\left(g^{-1}\right), \quad g \in G_{\gamma}, x \in S_{\gamma}
$$

and in particular the subgroup H_{E} of G_{γ} operates on S_{γ} by conjugation. The surjective map $\rho_{\gamma}: G_{\gamma} \rightarrow S_{\gamma}$ defined by

$$
\rho_{\gamma}(g)=g \epsilon_{E} \theta_{\gamma}\left(g^{-1}\right)
$$

induces an isomorphism between the symmetric space G_{γ} / H and S_{γ} as G_{γ}-spaces. It also induces a bijective correspondence between the H_{E} double cosets in G_{γ} and the H_{E} conjugacy classes in S_{γ}.

Before describing the H_{E} conjugacy classes in S_{γ}, we first recall some facts about the twisted conjugation in $G_{n}(E)$. Two elements $g_{1}, g_{2} \in G_{n}(E)$ are called twisted conjugate if there is a $g \in G_{n}(E)$ such that $g_{1}=g g_{2} \bar{g}^{-1}$. If $g \in G_{n}(E)$, we will write $N(g)$ for $g \bar{g}$ and call it the norm of g.

Lemma 1.4 ([AC], Lemma 1.1 in Chapter 1). (l) If $g \in G_{n}(E)$, then $N g$ is conjugate to an element h of $G_{n}(F) ; h$ is uniquely determined modulo conjugation in $G_{n}(F)$.
(2) If $N g_{1}$ and $N g_{2}$ are conjugate in $G_{n}(E)$, then g_{1} and g_{2} are twisted conjugate.

In other words, the norm map is an injection from the set of twisted conjugacy classes in $G_{n}(E)$ to the set of conjugacy classes in $G_{n}(F)$. We will write $\mathcal{N}(g)$ for the conjugacy class in $G_{n}(F)$ so obtained. We denote by $N G_{n}(E)$ the subset of the elements $h \in G_{n}(F)$ which are conjugate in $G_{n}(E)$ to $N g$ for some $g \in G_{n}(E)$. In fact, if $h \in N G_{n}(E)$, we can find a $g \in G_{n}(E)$ such that $h=N g$. Let $g \in G_{n}(E)$ such that $N g$ is conjugate to $h \in G_{n}(F)$. Then we say g is twisted regular (twisted regular elliptic) if h is regular (regular elliptic) in $G_{n}(F)$.

We are back to the symmetric space. For $x \in S_{\gamma}$, let $x=x_{u} x_{s}=x_{s} x_{u}$ be its Jordan decomposition where x_{s} is semisimple and x_{u} is unipotent. Then we also have that $x_{s} \in S_{\gamma}$ and $x_{u} \in S_{\gamma}([\mathrm{R}])$.

Lemma 1.5. Let

$$
s=\left(\begin{array}{cc}
A & \gamma B \\
\bar{B} & \bar{A}
\end{array}\right)
$$

be an element in S_{γ} such that A has no eigenvalues ± 1. Then s is H_{E}-conjugate to an element of the form

$$
s_{\gamma}\left(A_{1}, B_{1}\right)=\left(\begin{array}{cc}
A_{1} & \gamma B_{1} \\
\bar{B}_{1} & A_{1}
\end{array}\right)
$$

where $A_{1} \in M(n, F)$ has no eigenvalues ± 1 such that $A_{1}^{2}-I_{n}=\gamma B_{1} \bar{B}_{1}$ and $A_{1} B_{1}=B_{1} A_{1}$. Furthermore s is semisimple if and only if A_{1} is semisimple. Two such elements $s_{\gamma}\left(A_{1}, B_{1}\right)$ and $s_{\gamma}\left(A_{2}, B_{2}\right)$ are H_{E} conjugate to each other if and only if A_{1} and A_{2} are conjugate to each other.

Proof. The first assertion is proved in [G2]. Now we assume that

$$
s=\left(\begin{array}{cc}
A & \gamma B \\
\bar{B} & A
\end{array}\right)
$$

where $A \in M(n, F)$ has no eigenvalues ± 1 such that $A^{2}-I_{n}=\gamma B \bar{B}$ and $A B=B A$. We have that

$$
\operatorname{diag}\left(\gamma B, I_{n}\right)^{-1}\left(\begin{array}{cc}
A & \gamma B \\
\bar{B} & A
\end{array}\right) \operatorname{diag}\left(\gamma B, I_{n}\right)=\left(\begin{array}{cc}
A & I_{n} \\
A^{2}-I_{n} & A
\end{array}\right)=t(A) \in S .
$$

In other words s is conjugate to $t(A)$ in $\mathrm{GL}(2 n, E)$. Applying the Lemma 4.3 of [JR], we find that s is semisimple if and only if A is semisimple. To prove the last assertion, we note that for two such elements $S_{\gamma}\left(A_{1}, B_{1}\right)$ and $S_{\gamma}\left(A_{2}, B_{2}\right)$, if we set $\alpha_{i}=\gamma^{-1} B_{i}\left(A_{i}+I_{n}\right)^{-1} \in$ $G_{n}(E)(i=1,2)$, then

$$
A_{i}=\left(I_{n}+\alpha_{i} \bar{\alpha}_{i}\right)\left(I_{n}-\alpha_{i} \bar{\alpha}_{i}\right)^{-1}, \quad B_{i}=2 \gamma \alpha_{i}\left(I_{n}-\alpha_{i} \bar{\alpha}_{i}\right)^{-1} .
$$

It is easy to check that if $h \in G_{n}(E)$, then

$$
\operatorname{diag}(h, \bar{h}) s_{\gamma}\left(A_{1}, B_{1}\right) \operatorname{diag}\left(h^{-1}, \bar{h}^{-1}\right)=s_{\gamma}\left(A_{2}, B_{2}\right)
$$

if and only if $h \alpha_{1} \bar{h}^{-1}=\alpha_{2}$. In other words, $s_{\gamma}\left(A_{1}, B_{1}\right)$ is H_{E} conjugate to $S_{\gamma}\left(A_{2}, B_{2}\right)$ if and only if α_{1} is twisted conjugate to α_{2}. By Lemma 1.3, this last condition is equivalent to the condition that $\alpha_{1} \bar{\alpha}_{1}$ is conjugate to $\alpha_{2} \bar{\alpha}_{2}$, which is the same as saying that A_{1} is conjugate to A_{2}. We are done.

Let n_{1}, n_{2} be two integers such that $0 \leq n_{1} \leq n_{1}+n_{2} \leq n$ and let A be an element in $M\left(n_{1}, F\right)$ such that $A^{2}-I_{n_{1}} \in \gamma N G_{n_{1}}(E)$. Then we denote by $s_{\gamma}\left(A, n_{1}, n_{2}\right)$ the matrix

$$
\left(\begin{array}{cccccc}
A & 0 & 0 & \gamma B_{A} & 0 & 0 \tag{1.5}\\
0 & I_{n_{2}} & 0 & 0 & 0 & 0 \\
0 & 0 & -I_{n-n_{1}-n_{2}} & 0 & 0 & 0 \\
\bar{B}_{A} & 0 & 0 & A & 0 & 0 \\
0 & 0 & 0 & 0 & I_{n_{2}} & 0 \\
0 & 0 & 0 & 0 & 0 & -I_{n-n_{1}-n_{2}}
\end{array}\right)
$$

where B_{A} is a fixed matrix such that $A^{2}-I_{n}=\gamma B_{A} \bar{B}_{A}, B_{A} A=A B_{A}$. We will write $s_{\gamma}(A, n, 0)$ simply as $s_{\gamma}(A)$. We have:

Proposition 1.2. Each semisimple elements $\in G_{\gamma}$ is conjugate to an element of the form $s_{\gamma}\left(A, n_{1}, n_{2}\right)$ where A is semisimple. The set of H conjugacy classes of semisimple elements of S_{γ} is in one to one correspondence with the set of all triples $\left(n_{1},\{A\}, n_{2}\right)$, where $0 \leq n_{1} \leq n$ is an integer, $\{A\}$ a semisimple conjugacy classes in $M(n, F)$ with $A^{2}-1 \in \gamma N G_{n}(E)$, and n_{2} is an integer with $0 \leq n_{2} \leq n-n_{1}$.

Proof. In [G2], we have proved each element $s \in S_{\gamma}$ is H_{E} conjugate to an element of the form

$$
\left(\begin{array}{cccccc}
A_{1} & 0 & 0 & \gamma B_{1} & 0 & 0 \tag{1.6}\\
0 & A_{2} & 0 & 0 & \gamma B_{2} & 0 \\
0 & 0 & A_{3} & 0 & 0 & \gamma B_{3} \\
\bar{B}_{1} & 0 & 0 & A_{1} & 0 & 0 \\
0 & \bar{B}_{2} & 0 & 0 & \bar{A}_{2} & 0 \\
0 & 0 & \bar{B}_{3} & 0 & 0 & \bar{A}_{3}
\end{array}\right),
$$

where if we set

$$
s_{i}=\left(\begin{array}{cc}
A_{i} & \gamma B_{i} \\
\bar{B}_{i} & \bar{A}_{i}
\end{array}\right) \in G_{\gamma, n_{i}},
$$

then $s_{i} \in S_{\gamma, n_{i}}$ such that $A_{1} \in M(n, F)$ with $A_{1}^{2}-I_{n}=\gamma B_{1} \bar{B}_{1}, A_{1} B_{1}=B_{1} A_{1}$, and both s_{2} and $-s_{3}$ are unipotent elements. Observing that in this case the element s is in fact conjugate to $\operatorname{diag}\left(s_{1}, s_{2}, s_{3}\right)$ in $\operatorname{GL}(2 n, E)$, we have that s is semisimple if and only if s_{1}, s_{2}, s_{3} are semisimple. Equivalently A_{1} is semisimple by the above lemma, $s_{2}=I_{2 n_{2}}$ and $s_{3}=-I_{2 n_{3}}$. Hence s is semisimple if and only if it is H_{E} conjugate to an element of the form $s_{\gamma}\left(A, n_{1}, n_{2}\right)$ where A is semisimple. The last assertion of the proposition follows immediately from Lemma 1.5.

As before we say that a semisimple element $s \in S_{\gamma}$ is θ_{γ}-regular if the H_{E} conjugacy class of s has the maximal dimension among all the H_{E} conjugacy classes in S_{γ}. We denote by S_{γ}^{γ} the set of θ_{γ}-regular elements in S_{γ}.

Lemma 1.6. Each element in S_{γ}^{γ} is H_{E} conjugate to an element of the form $s_{\gamma}(A)$ where A is regular. The H_{E} conjugacy classes is in a bijective correspondence with the conjugacy classes in $M(n, F)$ of those elements A such that $A^{2}-I_{n} \in \gamma N G_{n}(E)$.

Proof. We first consider an element of the form $s_{\gamma}(A)$ in S_{γ}. We set

$$
\alpha_{A}=\gamma^{-1} B_{A}\left(I_{n}+A\right)^{-1} \in G_{n}(E) .
$$

Then as in the proof of Lemma 1.5, we have that

$$
\operatorname{diag}(h, \bar{h}) s_{\gamma}(A) \operatorname{diag}\left(h^{-1}, \bar{h}^{-1}\right)=s_{\gamma}(A), \quad h \in G_{n}(E)
$$

if and only if $h \alpha_{A} \bar{h}^{-1}=\alpha_{A}$. Thus if we identify H_{E} with $G_{n}(E)$ in the natural way, then $H_{E}^{\delta_{E}^{(A)}}$ is the twisted centralizer $G_{n}(E)_{-}^{\alpha_{A}}$ of α_{A} in $G_{n}(E)$. Hence we have $\operatorname{dim} H_{E}^{\delta_{\gamma}(A)} \geq n$ and $\operatorname{dim} H_{E}^{s_{E}(A)}=n$ if and only if α_{A} is twisted regular which means that $\alpha_{A} \bar{\alpha}_{A}$, hence $A=\left(I_{n}+\alpha_{A} \bar{\alpha}_{A}\right)\left(I_{n}-\alpha_{A} \bar{\alpha}_{A}\right)$, is regular. If this is the case, we have $H_{E}^{\delta(A)}=G_{n}(F)^{A}$ if we regard $G_{n}(F)$ as a subgroup of H_{E}.

Generally, for a semisimple element $s \in S_{\gamma}$, we can assume that $s=s_{\gamma}\left(A, n_{1}, n_{2}\right)$ where $A \in M\left(n_{1}, F\right)$ such that $A^{2}-I_{n_{1}}=\gamma B_{A} \bar{B}_{A}$ and $0 \leq n_{1} \leq n_{1}+n_{2} \leq n$. Then we have

$$
\operatorname{dim} H_{E}^{s}=\operatorname{dim} H_{E, n_{1}}^{s_{\gamma}(A)}+2 n_{2}^{2}+2 n_{3}^{2} \geq n_{1}+n_{2}+n_{3}=n
$$

and the equality occurs if and only if $n_{1}=n, n_{2}=n_{3}=0$ and A is regular. Hence the assertion of the lemma.

We say that an element $s \in S_{\gamma}^{r}$ is θ_{γ} - regular elliptic if H_{E}^{s} is an elliptic torus. We denote by S_{γ}^{e} the set of such elements. Then for $s \in S_{\gamma}$, it is easily seen that $s \in S_{\gamma}^{e}$ if and only if s is conjugate to an element $s_{\gamma}(A) \in S_{\gamma}$ such that A is regular elliptic in $M(n, F)$.

We say that an element $g \in G_{\gamma}$ is θ_{γ}-regular (resp. θ_{γ}-regular elliptic) if $\rho_{\gamma}(g) \in S_{\gamma}^{r}$ (resp. S_{γ}^{e}). We use G_{γ}^{r} and G_{γ}^{e} to denote the set of the θ_{γ}-regular elements and the set of the θ_{γ}-regular elliptic elements respectively. For $\alpha \in G_{n}(E)$ with $\operatorname{det}\left(I_{n}-\gamma \alpha \bar{\alpha}\right) \neq 0$, we denote by $g_{\gamma}(\alpha)$ the matrix

$$
\left(\begin{array}{cc}
I_{n} & \gamma \alpha \\
\bar{\alpha} & I_{n}
\end{array}\right)
$$

LEMMA 1.7. Each element $g \in G_{\gamma}^{r}$ is in the same double coset as an element $g_{\gamma}(\alpha)$ where $\alpha \bar{\alpha}$ is a regular element in $G_{n}(F)$ such that $\operatorname{det}\left(I_{n}-\gamma \alpha \bar{\alpha}\right) \neq 0$. Furthermore g is θ_{γ}-regular elliptic if and only if $\alpha \bar{\alpha}$ is elliptic. The double classes $H_{E} \backslash G_{\gamma}^{r} / H_{E}$ is in one to one correspondence with the twisted conjugacy classes of twisted regular elements in $G_{n}(E)$ whose norms have no eigenvalue γ^{-1}.

Proof. Let $W_{\gamma}=W \cap \gamma N G_{n}(E)$ and $U_{\gamma}=U \cap\left\{A \in M(n, F) \mid A^{2}-I_{n} \in \gamma N G_{n}(E)\right\}$. (See the proof of Lemma 1.4 for the notations.) For $a \in W$, we have

$$
\lambda(a)^{2}-I_{n}=4 a\left(I_{n}-a\right)^{-2}
$$

Here $4\left(I_{n}-a\right)^{-2} \in N G_{n}(E)$. So $\lambda(a)^{2}-I_{n} \in \gamma N G_{n}(E)$ if and only if $a \in \gamma N G_{n}(E)$. Hence the inverse Cayley map λ induces a bijective correspondence between W_{γ} and U_{γ}. For $\alpha \in G_{n}(E)$ such that $\gamma \alpha \bar{\alpha} \in W_{\gamma}$, we have

$$
\rho_{\gamma}\left(g_{\gamma}(\alpha)\right)=s_{\gamma}(\lambda(\gamma \alpha \bar{\alpha}))
$$

Here $s_{\gamma}(\lambda(\gamma \alpha \bar{\alpha}))$ is θ_{γ}-regular (θ_{γ}-regular elliptic) if and only if $\lambda(\gamma \alpha \bar{\alpha})$ is regular (regular elliptic), which is the same as saying that α is twisted regular (twisted regular elliptic). Then the first and the second assertions follow from Lemma 1.6.

It is easily seen that $g_{\gamma}\left(\alpha_{1}\right)$ and $g_{\gamma}\left(\alpha_{2}\right)$ are in the same double coset if and only if α_{1} and α_{2} are twisted conjugate. Recall that we have a bijective map \mathcal{N} between the twisted conjugacy classes in $G_{n}(E)$ and the conjugacy classes in $N G_{n}(E)$. The the map $\mathcal{N} G$ defined by $\mathcal{N}(\alpha)=\gamma \mathcal{N}(\alpha)$ is a bijective map between the twisted conjugacy classes in $\left\{\alpha \in G_{n}(E) \mid \operatorname{det}\left(I_{n}-\gamma \alpha \bar{\alpha}\right) \neq 0\right\}$ and the conjugacy classes in W_{γ}. Hence the last assertion of the lemma.

We now consider the correspondence between the H_{E} conjugacy classes in S_{γ} and the H conjugacy classes in S. We note that both S_{γ} and S are subsets of $G_{2 n}(E)$. The following simple fact will be used repeatedly. Let

$$
g_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right), \quad g_{2}=\left(\begin{array}{cc}
A_{2} & B_{2} \\
C_{2} & D_{2}
\end{array}\right)
$$

are two elements in $G_{2 n}(E)$ where A_{i} are elements in $M(n, E)$. If g_{1} is $H(E)$ conjugate to g_{2}, then A_{1} is conjugate to A_{2}.

We first consider the H_{E} conjugacy class of $s_{\gamma}(A)$ where, as usual, $A \in M(n, F)$ and $A^{2}-I_{n} \in \gamma N G_{n}(E)$. We have

$$
\left(\begin{array}{cc}
\left(A-I_{n}\right) B_{A}^{-1} & 0 \\
0 & I_{n}
\end{array}\right) s_{\gamma}(A)\left(\begin{array}{cc}
B_{A}\left(A-I_{n}\right)^{-1} & 0 \\
0 & I_{n}
\end{array}\right)=s(A)
$$

In other words $s_{\gamma}(A)$ is $H(E)$ conjugate to $s(A)$. Now suppose $s_{\gamma}(A)$ is $H(E)$ conjugate to another element

$$
s_{1}=\left(\begin{array}{ll}
A_{1} & B_{1} \\
C_{1} & D_{1}
\end{array}\right) \in S
$$

Then A_{1} is conjugate to A. Thus by Lemma 1.1, we have that s_{1} is H conjugate to $s(A)$. On the other hand if

$$
s_{2}=\left(\begin{array}{cc}
A_{2} & \gamma B_{2} \\
\bar{B}_{2} & \bar{A}_{2}
\end{array}\right) \in S_{\gamma}
$$

is also $H(E)$ conjugate to $s(A)$. Then A_{2} is conjugate to the element A. So by Lemma $1.5, s_{2}$ is H_{E} conjugate to $s_{\gamma}(A)$. Combining this considerations with Proposition 1.1 and Proposition 1.2, we get:

Proposition 1.3. Supposes is a semisimple element of S_{γ}. Then there is $g \in H(E)$ such that $\mathrm{gsg}^{-1} \in S$. This establishes an injection of the H_{E} semisimple conjugacy classes in S_{γ} into the H semisimple conjugacy classes in S which carries the conjugacy class of $s_{\gamma}\left(A, n_{1}, n_{2}\right)$ in S_{γ} to the conjugacy class of $s\left(A, n_{1}, n_{2}\right)$ in S where $A \in M(n, F)$ such that $A^{2}-I_{n} \in \gamma N G_{n}(E)$ and $0 \leq n_{1} \leq n_{1}+n_{2} \leq n$.

We can in fact define an injection of the general H_{E} conjugacy classes in S_{γ} into the H conjugacy classes in S in exactly the same way. Recall that each element in S_{γ} is H_{E} conjugate to an element of the form (1.6). The same thing is true for an element in S. So we are reduced to study the element $s \in S_{\gamma}$ such that s or $-s$ is unipotent. The point here is that in this case we can find $h \in H_{E}$ such that $h s h^{-1}$ is in $S_{\gamma} \cap S$ (see [G2]), and we can also prove that this induces an injection of the H_{γ} conjugacy classes of elements in S_{γ} of this type into the H conjugacy classes of the same kind of elements in S. Since this will not be used in this paper, we omit the details.

Finally we study more especially the θ-regular elliptic elements. We denote by Y_{γ}^{e} the subset

$$
\left\{\{s(A)\} \mid A \text { is regular elliptic such that } A^{2}-I_{n} \in \gamma N G_{n}(E)\right\}
$$

of the set of the H conjugacy classes $\left\{S^{e}\right\}$ in S, which is the image of the set of the H_{E} conjugacy classes $\left\{S_{\gamma}^{e}\right\}$ in S_{γ}. Then we have

LEMMA 1.8. When n is odd, the subsets Y_{γ}^{e} and $Y_{\gamma_{1}}^{e}$ are disjoint if $\gamma \gamma_{1}^{-1}$ is not in $N E^{*}$. Furthermore we have

$$
\bigcup_{\gamma \in F^{*} / N E^{*}} Y_{\gamma}^{e}=\left\{S^{e}\right\}
$$

So we have a bijective correspondence between the disjoint union $\bigsqcup_{\gamma \in F^{*} / N E^{*}}\left\{S_{\gamma}^{e}\right\}$ and $\left\{S^{e}\right\}$.

When n is even, then for each γ we have

$$
Y_{\gamma}^{e}=\left\{\{s(A)\} \mid A \text { is regular elliptic in } G_{n}(F) \text { with } \operatorname{det}\left(A^{2}-I_{n}\right) \in N G_{n}(E)\right\}
$$

which does not depend on γ.
Proof. We consider the element $S(A) \in S$ where $A \in U$ (see the proof of Lemma 1.3). Then there exists $a \in W$ such that

$$
A=\lambda(a)=\left(I_{n}+a\right)\left(I_{n}-a\right)^{-1}
$$

It is clear that A is regular elliptic if and only if a is regular elliptic. Then as in the proof of Lemma 1.7, we have

$$
A^{2}-I_{n}=4 a\left(I_{n}-a\right)^{-2}
$$

Since $4\left(I_{n}-a\right)^{-2} \in N G L_{n}(E)$, so $A^{2}-I_{n} \in \gamma N G_{n}(E)$ if and only if $a \in \gamma N G_{n}(E)$. It is well known that if a is regular elliptic, then $\gamma^{-1} a \in N G_{n}(E)$ if and only if $\operatorname{det} \gamma^{-1} a \in N E^{*}$ (Lemma 1.3, Chapter 1 in [AC]). This implies that if A is regular elliptic, then $A^{2}-I_{n} \in$ $\gamma N G_{n}(E)$ if and only if

$$
\begin{equation*}
\gamma^{n} \operatorname{det}\left(A^{2}-I_{n}\right) \in N E^{*} \tag{1.7}
\end{equation*}
$$

Now if n is odd, then the condition (1.7) is equivalent to

$$
\gamma \operatorname{det}\left(A^{2}-I_{n}\right) \in N E^{*} .
$$

Note that we also have

$$
\bigcup_{\gamma \in F^{*} / N E^{*}} N E^{*}=F^{*} .
$$

Then we obtain the first part of the lemma.
If n is even, then the condition (1.7) is equivalent to

$$
\operatorname{det}\left(A^{2}-I_{n}\right) \in N E^{*}
$$

The second part of the lemma follows.
By this lemma, we can also find easily that, if n is odd, then we have a injection from the disjoint union $\bigsqcup_{\gamma \in F^{*} / N E^{*}}\left\{S_{\gamma}^{r}\right\}$ to $\left\{S^{r}\right\}$. But it is not surjective except for $n=1$.
1.2. We now assume that F is a non-archimedean local field, E is a quadratic extension field of F. Let η be the quadratic character of F^{*} attached to E. We use $\left|\left.\right|_{F}\right.$ to denote the
absolute value on F for which we have $|\varpi|_{F}=q^{-1}$ where ϖ is a uniformizer of F and q is the number of the elements of the residue field of F.

We call an element $s \in S$ relevant if $\left.\eta\right|_{H^{s}}=1$. It is easily seen that a semisimple element $s\left(A, n_{1}, n_{2}\right)$ is relevant if and only if $n_{1}=n, n_{2}=0$ (see the proof of Lemma 1.2). Recall that the H conjugacy class of a semisimple element in S is closed ([R]). Then for $f \in C_{c}^{\infty}(S)$ and a relevant semisimple element $s \in S$, the following orbital integral is well defined

$$
\begin{equation*}
H(s ; f ; \eta)=\int_{H / H^{3}} f\left(h s h^{-1}\right) \eta(\operatorname{det} h) d h \tag{1.8}
\end{equation*}
$$

If $s=s(A)$, we will simply denote $H(s(A): f ; \eta)$ by $H(A ; f ; \eta)$.
Remark. For a relevant semisimple element $s \in S$ and $h \in H$, we have

$$
H\left(h s h^{-1} ; f ; \eta\right)=\eta(\operatorname{det} h) H(s ; f ; \eta)
$$

So our orbital integral is not constant on a double coset. But for a semisimple element $A \in M(n, F)$ without eigenvalues ± 1 and an element $h \in G_{n}$, we have that

$$
H\left(h A h^{-1} ; f ; \eta\right)=\eta\left(\operatorname{det} h^{2}\right) H(A ; f ; \eta)=H(A ; f ; \eta)
$$

Hence $H(A ; f ; \eta)$ depends only on the conjugacy classes of A under G_{n}.
For $g \in G$, we let

$$
\begin{equation*}
H_{g}=H \cap g^{-1} H g=\left\{h \in H \mid h g=g h^{\prime} \text { for some } h^{\prime} \in H\right\} . \tag{1.9}
\end{equation*}
$$

We call g relevant if $\left.\eta\right|_{H_{g}}=1$. It is easy to check that $g \in G$ is relevant if and only if $\rho(g)$ is relevant in S. For a function $f \in C_{c}^{\infty}(G)$ and a relevant element $g \in G$ such that $\rho(g)$ is semisimple (this is the same as saying that HgH is closed [R]), the following orbital integral is convergence

$$
\begin{equation*}
H(g ; f ; \eta)=\int_{H / H_{g}} \int_{H} f\left(h_{1} g h_{2}\right) \eta\left(\operatorname{det} h_{1}\right) d h_{1} d h_{2} \tag{1.10}
\end{equation*}
$$

If $g=g(a)$ where a is an element in G_{n} without eigenvalue 1 , then we simply denote $H(g ; f ; \eta)$ by $H(a ; f ; \eta)$. If for $f \in C_{c}^{\infty}(G)$, we define a function $\rho(f) \in C_{c}^{\infty}(S)$ by the formula

$$
\rho(f)(\rho(g))=\int_{H} f(g h) d h
$$

then we have

$$
H(g ; f ; \eta)=H(\rho(g) ; \rho(f) ; \eta)
$$

for $g \in G$, and

$$
H(a ; f ; \eta)=H(\lambda(a) ; \rho(f) ; \eta)
$$

for $a \in W$. So $H(g ; f ; \eta)$ is not constant on the double cosets, but $H(a ; f ; \eta)$ depends only on the conjugacy classes of a in G_{n}.

Let f be a smooth function with compact support on S_{γ}. We define an orbital integral for f at a semisimple element $s \in S_{\gamma}$ by

$$
H_{\gamma}(s ; f)=\int_{H_{E} / H_{E}^{S}} f\left(h s h^{-1}\right) d h .
$$

If $s=s_{\gamma}(A)$, we use $H_{\gamma}(A ; f)$ to denote $H_{\gamma}(s ; f)$. In this case, $H_{\gamma}(s ; f)$ depends only on the H_{E} conjugacy classes of s. Hence $H_{\gamma}(A ; f)$ depends only on the conjugacy classes of A.

For $g \in G_{\gamma}$ such that $\rho_{\gamma}(g)$ is semisimple, then $H_{E} g H_{E}$ is closed. So we can also define an orbital integral of $f \in C_{c}^{\infty}(G)$ at g as follows

$$
\begin{equation*}
H_{\gamma}(g ; f)=\int_{H_{E} /\left(H_{E}\right)_{g}} \int_{H_{E}} f\left(h_{1} g h_{2}\right) d h_{1} d h_{2} \tag{1.11}
\end{equation*}
$$

where $\left(H_{E}\right)_{g}=H_{E} \cap g^{-1} H_{E} g$. If $g=g_{\gamma}(\alpha)$ where $\alpha \in G_{n}(E)$ such that $\operatorname{det}\left(I_{n}-\gamma \alpha \bar{\alpha}\right) \neq 0$, we will denote $H_{\gamma}(g ; f)$ by $H_{\gamma}(\alpha ; f)$. As before we have

$$
H_{\gamma}(g ; f)=H_{\gamma}\left(\rho_{\gamma}(g) ; \rho_{\gamma}(f)\right), \quad \text { and } \quad H_{\gamma}(\alpha ; f)=H_{\gamma}\left(\lambda(\gamma \alpha \bar{\alpha}) ; \rho_{\gamma}(f)\right)
$$

where

$$
\rho_{\gamma}(f)\left(\rho_{\gamma}(g)\right)=\int_{H_{E}} f(g h) d h
$$

If $\gamma=1$, then G_{1} is isomorphic to G over F. For convenience, we will denote (G_{1}, H_{E}) by (G^{\prime}, H^{\prime}), and denote the orbital integral $H_{1}(g ; f)$ by $H(g ; f)$ in all cases. Let R_{F} and R_{E} be the rings of the integers of F and E. We set $K=G\left(R_{F}\right)$ and $K^{\prime}=G_{2 n}\left(R_{E}\right) \cap G^{\prime}$. They are maximal compact subgroups of G and G^{\prime} respectively. Suppose F has odd residual characteristic and E is unramified over F. Then as usual, one of the ingredients in the comparison of trace formulas is the "fundamental lemma" which involves matching the orbital integrals of Hecke functions. In our case, the (conjectural) fundamental lemma has the following form.

Fundamental Lemma. Let f be a Hecke function on G and let f^{\prime} be the corresponding Heckefunction on G^{\prime}. Thenfor a regular element $a \in G_{n}(F)$ without eigenvalue 1, we have

$$
H(a ; f ; \eta)= \begin{cases}H\left(\alpha ; f^{\prime}\right), & \text { if } a=\alpha \bar{\alpha} \tag{1.12}\\ 0, & \text { if } a \notin N G_{n}(E)\end{cases}
$$

The main result of this paper is that the fundamental lemma is true for unit Hecke functions. More precisely we have:

THEOREM. Let f_{0} and f_{0}^{\prime} be the characteristic functions of K and K^{\prime} respectively. Then the identity (1.12) is true when f and f^{\prime} are f_{0} and f_{0}^{\prime} respectively.

This theorem is the initial step in our project described in the introduction. We also expect that we can deduce the fundamental lemma for general Hecke functions from this
result for the unit Hecke functions following the ideas of Clozel [C] or Labesse [L] for stable base change.

Another local result we need is the existence of the transfer of smooth function f with compact support on G to the smooth function f_{γ} with compact support on G_{γ} where f and $\left\{f_{\gamma}\right\}$ have "matching" orbital integrals at regular elements. In the case $G=G_{4}$, this was done by the author in an unpublished note.

The remaining part of the paper is arranged as follows. In Section 2 we prove a reduction formula that can be used to reduce the comparison of orbital integrals of Hecke functions to the case of elliptic orbital integrals. Then for a regular elliptic element $r=\alpha \bar{\alpha}$ in $G_{n}(F)$, we construct a Hecke function Ψ_{r} of $G_{n}(F)$ and a Hecke function Φ_{α} of $G_{n}(E)$ such that $H\left(r ; f_{0} ; \eta\right)$ and $H\left(\alpha ; f_{0}^{\prime}\right)$ are represented by the usual conjugate orbital integral of Ψ_{r} at r and the usual twisted conjugate orbital integral of Φ_{α} at α. We then prove that Ψ_{r} and Φ_{α} are related by the base change map. These are done in Section 3. In conclusion we prove our theorem in Section 4.
2. A reduction formula. In this section we will prove a reduction formula which relates the orbital integrals on $G(F)$ to the orbital integrals on the Levi subgroups of $G(F)$. This formula can be used to reduce the comparison of the orbital integrals of Hecke functions to the case of elliptic orbital integrals.
2.1. We first introduce some notations. Let $\left(m_{1}, m_{2}, \ldots, m_{l}\right)$ be a partition of a positive integer m. Let T_{i} be a subgroup of $G_{m_{i}}(F)$. For $t_{i} \in T_{i}(i=1,2, \ldots, l)$, we use $\left(t_{1}, \ldots, t_{l}\right)$ to denote the element $\operatorname{diag}\left(t_{1}, \ldots, t_{l}\right)$ of $G_{m}(F)$. Then $T_{1} \times \cdots \times T_{l}$ is the subgroup of $G_{m}(F)$ consisting of such elements.

Given a regular semisimple element r of $G_{n}(F)$, we may assume

$$
\begin{equation*}
r=\left(r_{1}, \ldots, r_{l}\right) \tag{2.1}
\end{equation*}
$$

up to a conjugation. Here r_{i} is a regular elliptic element of $G_{n_{i}}(F)$. Let P_{1} be the standard parabolic subgroup of $G_{n}(F)$ associated to the partition $n=n_{1}+\cdots+n_{l}$. We have a decomposition

$$
P_{1}=M_{1} N_{1}=N_{1} M_{1}
$$

where M_{1} is the standard Levi subgroup and N_{1} is the unipotent radical of P_{1}.
We use P to denote the standard parabolic subgroup of $G(F)$ of type $\left(2 n_{1}, \ldots, 2 n_{l}\right)$. Let M and N be the standard Levi subgroup and the unipotent radical respectively of P. Then we have

$$
\begin{equation*}
M=G_{2 n_{1}}(F) \times \cdots \times G_{2 n_{l}}(F) \tag{2.2}
\end{equation*}
$$

We now define an automorphism θ of G by

$$
\left(\begin{array}{ll}
\left(A_{i, j}\right)_{1 \leq i, j \leq l} & \left(B_{i, j}\right)_{1 \leq i, j \leq l} \tag{2.3}\\
\left(C_{i, j}\right)_{1 \leq i, j \leq l} & \left(D_{i, j}\right)_{1 \leq i, j \leq l}
\end{array}\right) \mapsto\left(Q_{i, j}\right)_{1 \leq i, j \leq l}
$$

where $A_{i, j}, B_{i, j}, C_{i, j}, D_{i, j}$ are $n_{i} \times n_{j}$ matrices and

$$
Q_{i, j}=\left(\begin{array}{ll}
A_{i, j} & B_{i, j} \tag{2.4}\\
C_{i, j} & D_{i, j}
\end{array}\right)
$$

is $2 n_{i} \times 2 n_{j}$ matrix. Let

$$
x_{0}=\left(\begin{array}{cccccccc}
1_{n_{1}} & 0 & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 1_{n_{1}} & 0 & \cdots & 0 \\
0 & 1_{n_{2}} & \cdots & 0 & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 1_{n_{2}} & \cdots & 0 \\
\vdots & \vdots & \cdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
0 & 0 & \cdots & 1_{n_{l}} & 0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 & 0 & 0 & \cdots & 1_{n_{l}}
\end{array}\right)
$$

The map θ is actually the inner automorphism defined by $\theta(g)=x_{0} g x_{0}^{-1}$. Since $x_{0} \in K$, We have $\theta(K)=K$. We remind that $P_{1} \times P_{1}$ is regarded as a subgroup of $G_{2 n}$ in the way that it is a subgroup of $G_{n} \times G_{n} \subset G_{2 n}$. Let H_{M} be the image of $M_{1} \times M_{1}$ under the map θ. Then H_{M} is the subgroup

$$
\begin{equation*}
G_{n_{1}}(F) \times G_{n_{1}}(F) \times \cdots \times G_{n_{l}}(F) \times G_{n_{l}}(F) \tag{2.5}
\end{equation*}
$$

of M. We can extend the definition of our orbital integrals to (M, H_{M}) in a natural way. Let N_{2} be the subgroup $\theta\left(N_{1} \times N_{1}\right)$. It is easy to see that each element of N_{2} has the form

$$
\left(\begin{array}{cccc}
1_{2 n_{1}} & \left(U_{12}, U_{12}^{\prime}\right) & \cdots & \left(U_{1 l}, U_{1 l}^{\prime}\right) \\
0 & 1_{2 n_{2}} & \cdots & \left(U_{2 l}, U_{2 l}^{\prime}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right)
$$

where $U_{i j}$ and $U_{i j}^{\prime}$ are $n_{i} \times n_{j}$ matrices and $\left(U_{i j}, U_{i j}^{\prime}\right)$ is used to denote

$$
\left(\begin{array}{cc}
U_{i j} & 0 \\
0 & U_{i j}^{\prime}
\end{array}\right)
$$

It is clear that N_{2} is contained in N.
In order to state our proposition we need to introduce another notation. For a Hecke function f on G, we define a function $f^{(P)}$ on M as follows:

$$
\begin{equation*}
f^{(P)}(m)=\delta_{P}(m)^{\frac{1}{2}} \int_{N} f(m n) d n \tag{2.6}
\end{equation*}
$$

Here δ_{P} is the usual module on P. We have

$$
\begin{equation*}
\delta_{P}(m)=\frac{d m n m^{-1}}{d n}=\prod_{i<j} \frac{\left|\operatorname{det} m_{i}\right|^{m_{j}}}{\left|\operatorname{det} m_{j}\right|^{m_{i}}} \tag{2.7}
\end{equation*}
$$

for $n \in N$ and $m=\left(m_{1}, \ldots, m_{l}\right) \in M$. The function $f^{(P)}$ is actually a Hecke function of M and the map

$$
f \mapsto f^{(P)}
$$

is an isomorphism from $H(G, K)$ to $H(M, M \cap K)$. In particular $f^{(P)}$ is the unit Hecke function of M if f is the unit Hecke function of $G(F)$.

Back to the element r given in (2.1). Let F_{1} be a finite Galois extension field of F such that r splits in $G_{n}\left(F_{1}\right)$. Let $r_{i m_{i}}\left(1 \leq m_{i} \leq n_{i}\right)$ be the eigenvalues of r_{i} in $G_{n_{i}}\left(F_{1}\right)$ ($1 \leq i \leq l$). Then the element

$$
\prod_{\substack{1 \leq m_{i} \leq n_{i} \\ 1 \leq m_{j} \leq n_{j}}}\left(r_{i m_{i}}-r_{j m_{j}}\right)
$$

is in F. We use $\lambda(r)$ to denote the value

$$
\begin{equation*}
\prod_{1 \leq i<j \leq l} \frac{\left|\operatorname{det}\left(1_{n_{i}}-r_{i}\right)\right|_{F}^{n_{j}}\left|\operatorname{det}\left(1_{n_{j}}-r_{j}\right)\right|_{F}^{n_{i}}}{\left|\prod_{\substack{1 \leq m_{i} \leq n_{i} \\ 1 \leq m_{j} \leq n_{j}}}\left(r_{i m_{i}}-r_{j m_{j}}\right)\right|_{F}} . \tag{2.8}
\end{equation*}
$$

2.2. We have:

Proposition 2.1. Let $f \in H(G, K)$ and let $r \in G_{n}(F)$ be as in (2.1), then:

$$
H(r ; f ; \eta)=\lambda(r) H\left(\left(\left(\begin{array}{ll}
1_{n_{1}} & r_{1} \tag{2.9}\\
1_{n_{1}} & 1_{n_{1}}
\end{array}\right), \ldots,\left(\begin{array}{cc}
1_{n_{l}} & r_{l} \\
1_{n_{l}} & 1_{n_{l}}
\end{array}\right)\right) ; f^{(P)} ; \eta\right)
$$

Proof. For any positive integer m, we normalize the Haar measure on $G_{m}(F)$ so that the mass of $K_{m}=G_{m}\left(R_{F}\right)$ is one. By the definition of our orbital integral we have:

$$
H(r ; f ; \eta)=\int_{H(F) / H_{r}} \int_{H(F)} f\left(h_{1}\left(\begin{array}{cc}
1_{n} & r \\
1_{n} & 1_{n}
\end{array}\right) h_{2}\right) \eta\left(\operatorname{det} h_{1}\right) d h_{1} d h_{2}
$$

Since r is a regular semisimple element in M_{1}, it is easily seen that H_{r} is equal to

$$
\left(M_{1} \times M_{1}\right) \cap r^{-1}\left(M_{1} \times M_{1}\right) r
$$

which is contained in $M_{1} \times M_{1}$. Applying the Iwasawa Decomposition

$$
H(F)=(H(F) \cap K)\left(N_{1} \times N_{1}\right)\left(M_{1} \times M_{1}\right)
$$

to the integral we get:

$$
\begin{aligned}
H(r ; f ; \eta)=\int_{M_{1} \times M_{1} / H_{r}} & \int_{M_{1} \times M_{1}} \int_{N_{1} \times N_{1}} \int_{N_{1} \times N_{1}} \\
& f\left(n_{1} m_{1}\left(\begin{array}{cc}
1_{n} & r \\
1_{n} & 1_{n}
\end{array}\right) m_{2} n_{2}\right) \eta\left(\operatorname{det} m_{1}\right) d n_{1} d n_{2} d m_{1} d m_{2} .
\end{aligned}
$$

We now consider the action of the map θ. Since f is a Hecke function, we have $f \circ \theta=f$. Let $\theta(r)$ be the image of

$$
\left(\begin{array}{ll}
1_{n} & r \\
1_{n} & 1_{n}
\end{array}\right)
$$

under θ. Then we find

$$
\theta(r)=\left(\left(\begin{array}{ll}
1_{n_{1}} & r_{1} \tag{2.10}\\
1_{n_{1}} & 1_{n_{1}}
\end{array}\right), \ldots,\left(\begin{array}{ll}
1_{n_{l}} & r_{l} \\
1_{n_{l}} & 1_{n_{l}}
\end{array}\right)\right)
$$

which is in M. Therefore with the action of θ, our integral becomes

$$
\begin{equation*}
\int_{H_{M} /\left(H_{M}\right)_{(r)}} \int_{H_{M}} \int_{N_{2}} \int_{N_{2}} f\left(n_{1} m_{1} \theta(r) m_{2} n_{2}\right) \eta\left(\operatorname{det} m_{1}\right) d n_{1} d n_{2} d m_{1} d m_{2} \tag{2.11}
\end{equation*}
$$

where

$$
\left(H_{M}\right)_{\theta(r)}=H_{M} \cap \theta(r)^{-1} H_{M} \theta(r)
$$

which is equal to

$$
\theta\left(\left(M_{1} \times M_{1}\right) \cap r^{-1}\left(M_{1} \times M_{1}\right) r\right)=\theta\left(H_{r}\right) .
$$

Let

$$
m=m_{1} \theta(r) m_{2} \in M
$$

Thus we can write the integrand of our integral in the form

$$
f\left(n_{1} m n_{2}\right)=f\left(m m^{-1} n_{1} m n_{2}\right) .
$$

Consider the map

$$
\begin{equation*}
\left(n_{1}, n_{2}\right) \mapsto m^{-1} n_{1} m n_{2} \tag{2.12}
\end{equation*}
$$

from $N_{2} \oplus N_{2}$ to N. We will find that it is bijective. Let $J(m)$ be the Jacobian of this map. We obtain:

$$
\begin{equation*}
H(r ; f ; \eta)=\int_{H_{M} /\left(H_{M}\right)_{\theta(r)}} \int_{H_{M}} \int_{N} f(m n)(1 / J(m)) \eta\left(\operatorname{det} m_{1}\right) d n d m_{1} d m_{2} . \tag{2.13}
\end{equation*}
$$

To continue, we must compute $J(m)$. First of all we write (2.12) in the form

$$
\begin{equation*}
\left(n_{1}, n_{2}\right) \mapsto m_{2}^{-1}\left[\theta(r)^{-1}\left(m_{1}^{-1} n_{1} m_{1}\right) \theta(r)\left(m_{2} n_{2} m_{2}^{-1}\right)\right] m_{2} \tag{2.14}
\end{equation*}
$$

By formula (2.7), we find

$$
\delta_{P}\left(\theta\left(\left(x_{1}, x_{2}\right)\right)\right)=\delta_{P_{1}}\left(x_{1} x_{2}\right)^{2}
$$

for $x_{1}, x_{2} \in M_{1}$. Recall that $H_{M}=\theta\left(M_{1} \times M_{1}\right)$ and $N_{2}=\theta\left(N_{1} \times N_{1}\right)$. It follows that the Jacobian of the map

$$
n_{1} \mapsto m_{1}^{-1} n_{1} m_{1} \quad \text { and } \quad n_{2} \mapsto m_{2} n_{2} m_{2}^{-1}
$$

from $N_{2} \rightarrow N_{2}$ are

$$
\delta_{P}\left(m_{1}\right)^{-1 / 2} \quad \text { and } \quad \delta_{P}\left(m_{2}\right)^{1 / 2}
$$

respectively.

Next we consider the Jacobian J of the map

$$
\left(n_{1}, n_{2}\right) \mapsto \theta(r)^{-1} n_{1} \theta(r) n_{2}
$$

from $N_{2} \oplus N_{2}$ to N. Let

$$
n_{1}=\left(\begin{array}{cccc}
1_{2 n_{1}} & \left(U_{12}, U_{12}^{\prime}\right) & \cdots & \left(U_{1 l}, U_{1 l}^{\prime}\right) \\
0 & 1_{2 n_{2}} & \cdots & \left(U_{2 l}, U_{2 l}^{\prime}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right)
$$

and

$$
n_{2}=\left(\begin{array}{cccc}
1_{2 n_{1}} & \left(V_{12}, V_{12}^{\prime}\right) & \cdots & \left(V_{11}, V_{l l}^{\prime}\right) \\
0 & 1_{2 n_{2}} & \cdots & \left(V_{2 l}, V_{2 l}^{\prime}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right)
$$

where $U_{i j}, U_{i j}^{\prime}, V_{i j}, V_{i j}^{\prime}$ are $n_{i} \times n_{j}$ matrices. We denote the matrix

$$
\left(\begin{array}{cc}
1_{n_{i}} & r_{i} \\
1_{n_{i}} & 1_{n_{i}}
\end{array}\right)
$$

by X_{i} for $i=1,2, \ldots, l$. Let $W_{i j}\left(1 \leq i \leq l, 1 \leq j \leq n_{i}\right)$ be the matrix

$$
\begin{equation*}
X_{i}^{-1}\left(U_{i j}, U_{i j}^{\prime}\right) X_{j}+\left(V_{i j}, V_{i j}^{\prime}\right) \tag{2.15}
\end{equation*}
$$

Then we have

$$
\theta(r)^{-1} n_{1} \theta(r) n_{2}=\left(\begin{array}{cccc}
1_{2 n_{1}} & W_{12} & \cdots & W_{1 l} \\
0 & 1_{2 n_{2}} & \cdots & W_{2 l} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right) .
$$

The formula (2.15) determines a F-linear map from $F^{4 n_{i} n_{j}}$ to $F^{4 n_{i} n_{j}}$. Let $J_{i j}$ be the corresponding Jacobian. Then we have $J=\Pi_{1 \leq i<j \leq l} J_{i j \text {. }}$. So we are reduced to computing $J_{i j}$. From (2.15), we find $W_{i j}$ is

$$
\left(\begin{array}{cc}
*+V_{i j} & \left(1_{n_{i}}-r_{1}\right)^{-1}\left(U_{i j} r_{j}-r_{i} U_{i j}^{\prime}\right) \\
\left(1_{n_{i}}-r_{i}\right)^{-1}\left(U_{i j}^{\prime}-U_{i j}\right) & *+V_{i j}^{\prime}
\end{array}\right) .
$$

Here $*$ indicates matrices not related to $V_{i j}$ and $V_{i j}^{\prime}$. Thus the only nontrivial part we need to compute is the Jacobian of the map

$$
\left(U_{i j}, U_{i j}^{\prime}\right) \mapsto\left(U_{i j} r_{j}-r_{i} U_{i j}^{\prime}, U_{i j}^{\prime}-U_{i j}\right)
$$

from $F^{2 n_{i} n_{j}}$ to $F^{2 n_{j} n_{j}}$. We now go for a moment to the field F_{1}. Let

$$
r_{i}=s_{i}\left(r_{i 1}, r_{i 2}, \ldots, r_{i n_{i}}\right) s_{i}^{-1}
$$

and

$$
r_{j}=s_{j}\left(r_{j 1}, r_{j 2}, \ldots, r_{j n_{j}}\right) s_{j}^{-1}
$$

for $s_{i} \in G_{n_{i}}\left(F_{1}\right)$ and $s_{j} \in G_{n_{j}}\left(F_{1}\right)$. Then by a suitable change of basis of $F_{1}^{2 n_{i} n_{j}}$, we just need to consider the Jacobian of the map

$$
\left(U_{i j}, U_{i j}^{\prime}\right) \mapsto\left(U_{i j}\left(r_{j 1}, \ldots, r_{j n_{j}}\right)-\left(r_{i 1}, \ldots, r_{i n_{i}}\right) U_{i j}^{\prime}, U_{i j}^{\prime}-U_{i j}\right)
$$

In this case an elementary computation shows that the result is

$$
\left|\prod_{\substack{1 \leq m_{i} \leq n_{i} \\ 1 \leq m_{j} \leq n_{j}}}\left(r_{i m_{i}}-r_{j m_{j}}\right)\right|_{F}
$$

Thus we find

$$
J_{i j}=\frac{\left|\Pi_{\substack{1 \leq m_{i} \leq n_{i} \\ 1 \leq m_{j} \leq n_{j}}}\left(r_{i m_{i}}-r_{j m_{j}}\right)\right|_{F}}{\left|\operatorname{det}\left(1_{n_{i}}-r_{i}\right)\right|_{F}^{2 n_{j}}}
$$

Taking the product of all $J_{i j}$, we obtain

$$
\begin{aligned}
J & =\prod_{1 \leq i<j \leq l} \frac{\left|\prod_{1 \leq m_{i} \leq n_{i}}\left(r_{i m_{i}}-r_{j m_{j}}\right)\right|_{F}}{\left|\operatorname{det}\left(1_{n_{i}}-r_{i}\right)\right|_{F}^{2 n_{j}}} \\
& =\prod_{i<j} \frac{\left|\prod_{1 \leq m_{i} \leq n_{i}}\left(r_{i m_{i}}-r_{j m_{j}}\right)\right|_{F}}{\left|\operatorname{det}\left(1_{n_{i}}-r_{i}\right)\right|^{n_{j}}\left|\operatorname{det}\left(1_{n_{j}}-r_{j}\right)\right|^{n_{i}}} \prod_{i<j} \frac{\left|\operatorname{det}\left(1_{n_{j}}-r_{j}\right)\right|^{n_{i}}}{\left.\operatorname{det}\left(1_{n_{i}}-r_{i}\right)\right|^{n_{j}}} \\
& =\lambda(r)^{-1} \delta_{P}(\theta(r))^{-1 / 2} .
\end{aligned}
$$

Finally the Jacobian of the map $n \mapsto m_{2}^{-1} n m_{2}$ from N to N is $\delta_{P}\left(m_{2}\right)^{-1}$. Therefore

$$
J(m)=\delta_{P}\left(m_{1}\right)^{-1 / 2} \delta_{p}\left(m_{2}\right)^{1 / 2} \lambda(r)^{-1} \delta_{P}(\theta(r))^{-1 / 2} \delta_{P}\left(m_{2}\right)^{-1}
$$

which can be simplified to

$$
\delta_{P}(m)^{-1 / 2} \lambda(r)^{-1}
$$

Hence our integral becomes

$$
\begin{aligned}
\lambda(r) \int_{H_{M} /\left(H_{M}\right)_{(r)}} \int_{H_{M}} & {\left[\delta_{P}(m)^{1 / 2} \int_{N} f(m n) d n\right] \eta\left(\operatorname{det} m_{1}\right) d m_{1} d m_{2} } \\
& =\lambda(r) \int_{H_{M} /\left(H_{M}\right)_{(r)}} \int_{H_{M}} f^{(P)}\left(m_{1} \theta(r) m_{2}\right) \eta\left(\operatorname{det} m_{1}\right) d m_{1} d m_{2}
\end{aligned}
$$

This ends the proof of our proposition.
2.3. We turn to the H^{\prime}-double orbital integrals on $G^{\prime}(F)$. Let α belong to $G(E)$ and let $r=\alpha \bar{\alpha}$. Suppose r is a regular element in $G_{n}(F)$ which has the form as in (2.1). We may assume

$$
\alpha=\left(\alpha_{1}, \ldots, \alpha_{l}\right)
$$

where $r_{i}=\alpha_{i} \bar{\alpha}_{i}$ is a regular elliptic element in $G_{n_{i}}(F)$. To continue we need to introduce another variant of $G(F)$. Let $G^{\prime \prime} \subset G_{2 n}(E)$ be the subgroup which consists of the elements of the form

$$
g^{\prime \prime}=\left(\begin{array}{ccc}
\left(\begin{array}{cc}
\alpha_{11} & \beta_{11} \\
\bar{\beta}_{11} & \bar{\alpha}_{11}
\end{array}\right) & \cdots & \left(\begin{array}{cc}
\alpha_{1 l} & \beta_{1 l} \\
\bar{\beta}_{1 l} & \bar{\alpha}_{1 l}
\end{array}\right) \\
\vdots & \vdots & \vdots \\
\left(\begin{array}{cc}
\alpha_{l 1} & \beta_{l 1} \\
\bar{\beta}_{l 1} & \bar{\alpha}_{l l}
\end{array}\right) & \cdots & \left(\begin{array}{cc}
\alpha_{l l} & \beta_{l l} \\
\bar{\beta}_{l l} & \bar{\alpha}_{l l}
\end{array}\right)
\end{array}\right)
$$

where $\alpha_{i j}$ and $\beta_{i j}$ are $n_{i} \times n_{j}$ matrices over E. Regarded as an algebraic group over $F, G^{\prime \prime}$ is isomorphic to both G and G^{\prime}. Let $P^{\prime \prime} \subset G^{\prime \prime}(F)$ be the parabolic group which corresponds to $P \subset G(F)$. Then $g^{\prime \prime} \in P^{\prime \prime}$ if and only if $\alpha_{i j}=\beta_{i j}=0$ when $j<i$. Let

$$
M^{\prime \prime}=G_{2 n_{1}}^{\prime}(F) \times \cdots \times G_{2 n_{l}}^{\prime}(F)
$$

be a Levi subgroup and $N^{\prime \prime}$ be the unipotent radical of $P^{\prime \prime}$.
The automorphism θ of G defined in (2.3) can be regarded as an automorphism of $G(E)$. Then it is easy to see that the restriction of θ to G^{\prime} induces an isomorphism between G^{\prime} and $G^{\prime \prime}$. In what follows we will not make a distinction between $G_{m}(E)$ and its embedding in $G_{2 m}^{\prime}(F)$ for any $m>0$. Thus the subgroup

$$
H_{M^{\prime \prime}}=G_{n_{1}}(E) \times G_{n_{2}}(E) \times \cdots \times G_{n_{l}}(E)
$$

of $M^{\prime \prime}$ is just $\theta\left(M_{1}(E)\right)$. We can extend the definition of our orbital integral to ($M^{\prime \prime}, H_{M^{\prime \prime}}$) in a natural way.

Proposition 2.2. Let f^{\prime} be a Hecke function of $G^{\prime}(F)$ and let $f^{\prime \prime}=f^{\prime} \circ \theta^{-1}$ be the corresponding one of $G^{\prime \prime}(F)$. Then

$$
H\left(\alpha ; f^{\prime}\right)=\lambda(r) H\left(\left(\left(\begin{array}{ll}
1_{n_{1}} & \alpha_{1} \tag{2.16}\\
\bar{\alpha}_{1} & 1_{n_{1}}
\end{array}\right), \ldots,\left(\begin{array}{ll}
1_{n_{l}} & \alpha_{l} \\
\bar{\alpha}_{l} & 1_{n_{l}}
\end{array}\right)\right) ; f^{\prime \prime\left(P^{\prime \prime}\right)}\right)
$$

Proof. We normalize the Haar measure on $G_{n}(E)$ by $\int_{K(E)} d g=1$. For $g \in G_{n}(E)$, we set $g=k n m$ by Iwasawa decomposition, where $k \in K_{n}(E), n \in N_{1}(E)$ and $m \in$ $M_{1}(E)$. Then $d g=d k d n d m$. So we get

$$
\begin{aligned}
H\left(\alpha ; f^{\prime}\right)= & \int_{M_{1}(E)} \int_{M_{1}(E) / G_{n}(E) \bar{\alpha}} \int_{N_{1}(E)} \int_{N_{1}(E)} \\
& f^{\prime}\left(\left(n_{1}, \bar{n}_{1}\right)(h, \bar{h})\left(\begin{array}{cc}
1_{n} & \alpha \\
\bar{\alpha} & 1_{n}
\end{array}\right)(g, \bar{g})\left(n_{2}, \bar{n}_{2}\right)\right) d n_{1} d n_{2} d h d g .
\end{aligned}
$$

Let $N_{2}^{\prime \prime}$ be the image of $N_{1}(E)$ under the map θ. Then $N_{2}^{\prime \prime}$ is a subgroup of $N^{\prime \prime}$, which consists of the elements of the form

$$
\left(\begin{array}{cccc}
1_{2 n_{1}} & \left(U_{11}, \bar{U}_{11}\right) & \cdots & \left(U_{1 l}, \bar{U}_{1 l}\right) \\
0 & 1_{2 n_{2}} & \cdots & \left(U_{2 l}, \bar{U}_{2 l}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right) .
$$

Here we use $\left(U_{i j}, \bar{U}_{i j}\right)$ to denote the matrix

$$
\left(\begin{array}{cc}
U_{i j} & 0 \\
0 & \bar{U}_{i j}
\end{array}\right)
$$

Let $\theta(\alpha)$ be the element

$$
\theta\left(\left(\begin{array}{cc}
1_{n} & \alpha \tag{2.17}\\
\bar{\alpha} & 1_{n}
\end{array}\right)\right)=\left(\left(\begin{array}{cc}
1_{n_{1}} & \alpha_{1} \\
\bar{\alpha}_{1} & 1_{n_{1}}
\end{array}\right), \ldots,\left(\begin{array}{ll}
1_{n_{l}} & \alpha_{l} \\
\bar{\alpha}_{l} & 1_{n_{l}}
\end{array}\right)\right)
$$

Then we can change our orbital integral into

$$
\begin{aligned}
& \int_{H_{M^{\prime \prime}} /\left(H_{M^{\prime \prime}}\right)_{\theta(\alpha)}} \int_{H_{M^{\prime \prime}}} \int_{N_{2}^{\prime \prime}} \int_{N_{2}^{\prime \prime}} f^{\prime \prime}\left(n_{1} h_{1} \theta(\alpha) h_{2} n_{2}\right) d n_{1} d n_{2} d h_{1} d h_{2} \\
&=\iiint_{N^{\prime \prime}} f^{\prime \prime}\left(m^{\prime \prime} n^{\prime \prime}\right)\left(1 / J\left(m^{\prime \prime}\right)\right) d n^{\prime \prime} d h_{1} d h_{2}
\end{aligned} .
$$

Here $m^{\prime \prime}=h_{1} \theta(\alpha) h_{2} \in M^{\prime \prime}$ and $J\left(m^{\prime \prime}\right)$ is the Jacobian of the map

$$
\begin{equation*}
\left(n_{1}, n_{2}\right) \mapsto m^{\prime \prime-1} n_{1} m^{\prime \prime} n_{2} \tag{2.18}
\end{equation*}
$$

from $N_{2}^{\prime \prime} \oplus N_{2}^{\prime \prime}$ to $N^{\prime \prime}$. We need to compute $J\left(m^{\prime \prime}\right)$. To do this we express (2.18) in the form

$$
\left(n_{1}, n_{2}\right) \longmapsto h_{2}^{-1}\left[\theta(\alpha)^{-1}\left(h_{1}^{-1} n_{1} h_{1}\right) \theta(\alpha)\left(h_{2} n_{2} h_{2}^{-1}\right)\right] h_{2}
$$

First of all the Jacobians of the maps $n_{1} \longmapsto h_{1}^{-1} n_{1} h_{1}$ and $n_{2} \longmapsto h_{2} n_{2} h_{2}^{-1}$ from $N_{2}^{\prime \prime}$ to $N_{2}^{\prime \prime}$ are

$$
\delta_{P_{1}(E)}\left(\theta^{-1}\left(h_{1}\right)\right)^{-1}=\delta_{P^{\prime \prime}}\left(h_{1}\right)^{-1 / 2} \quad \text { and } \quad \delta_{P_{1}(E)}\left(\theta^{-1}\left(h_{2}\right)\right)=\delta_{P^{\prime \prime}}\left(h_{2}\right)^{1 / 2}
$$

respectively. Next we consider the Jacobian J^{\prime} of the map

$$
\left(n_{1}, n_{2}\right) \longmapsto \theta(\alpha)^{-1} n_{1} \theta(\alpha) n_{2} .
$$

from $N_{2}^{\prime \prime} \oplus N_{2}^{\prime \prime}$ to $N^{\prime \prime}$. We proceed as in the last proposition. Let

$$
n_{1}=\left(\begin{array}{cccc}
1_{2 n_{1}} & \left(U_{12}, \bar{U}_{12}\right) & \cdots & \left(U_{1 l}, \bar{U}_{1 l}\right) \\
0 & 1_{2 n_{2}} & \cdots & \left(U_{2 l}, \bar{U}_{2 l}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right)
$$

and

$$
n_{2}=\left(\begin{array}{cccc}
1_{2 n_{1}} & \left(V_{12}, \bar{V}_{12}\right) & \cdots & \left(V_{1 l}, \bar{V}_{1 l}\right) \\
0 & 1_{2 n_{l}} & \cdots & \left(V_{2 l}, \bar{V}_{2 l}\right) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right) .
$$

We use X_{i}^{\prime} to denote the element

$$
\left(\begin{array}{cc}
1_{n_{i}} & \alpha_{i} \\
\bar{\alpha}_{i} & 1_{n_{i}}
\end{array}\right) .
$$

Let $W_{i j}^{\prime}$ be the matrix

$$
\begin{equation*}
X_{i}^{\prime-1}\left(U_{i j}, \bar{U}_{i j}\right) X_{j}^{\prime}+\left(V_{i j}, \bar{V}_{i j}\right) \tag{2.19}
\end{equation*}
$$

for $1 \leq i<j \leq l$. Then we have

$$
\theta(\alpha)^{-1} n_{1} \theta(\alpha) n_{2}=\left(\begin{array}{cccc}
1_{2 n_{1}} & W_{12}^{\prime} & \cdots & W_{1 l}^{\prime} \\
0 & 1_{2 n_{2}} & \cdots & W_{2 l}^{\prime} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1_{2 n_{l}}
\end{array}\right)
$$

As before if we denote by $J_{i j}^{\prime}$ the Jacobian of the F-linear map from $F^{4 n_{i} n_{j}}$ to $F^{4 n_{i} n_{j}}$ determined by (2.19), then $J^{\prime}=\Pi_{1 \leq i<j \leq \leq} J_{i j}^{\prime}$. We now compute $J_{i j}^{\prime}$. We will do this over $E_{1}=F_{1} \otimes E$. Here E_{1} is a quadratic extension field of F_{1} if E is not isomorphic to a subfield of F_{1}. Otherwise we have $E_{1} \cong F_{1} \oplus F_{1}$. In either case we will still use $x \mapsto \bar{x}$ to denote the only nontrivial F_{1}-automorphism of E_{1}. Since $r=\alpha \bar{\alpha}$ splits over F_{1}, there exists $s_{k} \in G_{n_{k}}\left(E_{1}\right)$ for each $k \in\{1, \ldots, l\}$ such that

$$
\alpha_{k}=s_{k}\left(\alpha_{k 1}, \ldots, \alpha_{k n_{k}}\right) \bar{s}_{k}^{1}
$$

where $\alpha_{k t} \in E_{1}$ and $\alpha_{k t} \bar{\alpha}_{k t}=r_{k t}$. Thus we can write $W_{i j}^{\prime}$ in the following form:

$$
\left(\begin{array}{cc}
*+V_{i j} & Y_{i j} \\
\bar{Y}_{i j} & \bar{*}+\bar{V}_{i j}
\end{array}\right)
$$

where $*$ is not related to $V_{i j}$ and

$$
\begin{aligned}
\left(1_{n_{i}}-\alpha_{i} \bar{\alpha}_{i}\right) Y_{i j} & =U_{i j} \alpha_{j}-\alpha_{i} \bar{U}_{i j} \\
& =U_{i j} s_{j}\left(\alpha_{j 1}, \ldots, \alpha_{j n_{j}}\right) \bar{s}_{j}^{-1}-s_{i}\left(\alpha_{i 1}, \ldots, \alpha_{i n_{i}}\right) \bar{s}_{i}^{-1} \bar{U}_{i j} \\
& =s_{i}\left[\left(s_{i}^{-1} U_{i j} s_{j}\right)\left(\alpha_{j 1}, \ldots, \alpha_{j n_{j}}\right)-\left(\alpha_{i 1}, \ldots, \alpha_{i n_{i}}\right)\left(\bar{s}_{i}^{-1} \bar{U}_{i j} \bar{s}_{j}\right)\right] \bar{s}_{j}^{-1}
\end{aligned}
$$

Then through an elementary computation we obtain

$$
J_{i j}^{\prime}=\frac{\left|\prod_{\substack{1 \leq m_{i} \leq n_{i} \\ 1 \leq m_{j} \leq n_{j}}}\left(r_{i m_{i}}-r_{j m_{j}}\right)\right|_{F}}{\left|\operatorname{det}\left(1_{n_{i}}-r_{i}\right)\right|_{F}^{2 n_{j}}}
$$

Thus by taking the product of all $J_{i j}^{\prime}$, we find

$$
J^{\prime}=\lambda(r)^{-1} \delta_{P^{\prime \prime}}(\theta(\alpha))^{-1 / 2}
$$

Finally the Jacobian of the map $n \mapsto h_{2}^{-1} n h_{2}$ from $N^{\prime \prime}$ to $N^{\prime \prime}$ is

$$
\delta_{P^{\prime \prime}}\left(h_{2}\right)^{-1 / 2}
$$

Hence

$$
J\left(m^{\prime \prime}\right)=\delta_{P^{\prime \prime}}\left(h_{1}\right)^{-1 / 2} \delta_{P^{\prime \prime}}\left(h_{2}\right)^{1 / 2} \lambda(r)^{-1} \delta_{P^{\prime \prime}}(\theta(\alpha))^{-1 / 2} \delta_{P^{\prime \prime}}\left(h_{2}\right)^{-1}
$$

which is

$$
\delta_{P^{\prime \prime}}\left(m^{\prime \prime}\right)^{-1 / 2} \lambda(r)^{-1}
$$

So our orbital integral becomes

$$
\lambda(r) \int_{H_{M^{\prime \prime}} /\left(H_{M^{\prime \prime}}\right)_{\theta(\alpha)}} \int_{H_{M}^{\prime \prime}}\left[\delta_{P^{\prime \prime}}\left(m^{\prime \prime}\right)^{1 / 2} \int_{N^{\prime \prime}} f^{\prime \prime}\left(m^{\prime \prime} n^{\prime \prime}\right) d n^{\prime \prime}\right] d h_{1} d h_{2}
$$

which equals to

$$
\lambda(r) H\left(\theta(\alpha) ; f^{\prime \prime\left(P^{\prime \prime}\right)}\right)
$$

From these two propositions the comparison of the orbital integrals of Hecke functions is reduced to the case of the orbital integrals at regular elliptic elements.
3. Orbital integrals at regular elliptic elements. In this section we restrict ourself to the unit Hecke functions f_{0} and f_{0}^{\prime}. We will compare the orbital integrals $H\left(a ; f_{0} ; \eta\right)$ and $H\left(\alpha ; f_{0}^{\prime}\right)$ where a is regular elliptic in $G_{n}(F)$ and α is twisted regular elliptic in $G_{n}(E)$.
3.1. We need some preliminaries. Let $V=F^{2 n}$ be the $2 n$-dimensional vector space of column vectors over F. Let $\left(e_{1}, e_{2}, \ldots, e_{2 n}\right)$ be the natural basis of V. Then the exterior n-space $\wedge^{n} V$ is a vector space with basis $\left\{e_{i_{1}} \wedge \cdots \wedge e_{i_{n}} \mid 1 \leq i_{1}<\cdots<i_{n} \leq 2 n\right\}$. For a vector

$$
v=\sum_{1 \leq i_{1}<\cdots<i_{n} \leq 2 n} a_{i_{1} \cdots i_{n}} e_{i_{1}} \wedge \cdots \wedge e_{i_{n}}
$$

in $\wedge^{n} V$, we define

$$
|v|_{F}=\max \left(\left|a_{i_{1} \cdots i_{n}}\right|_{F} ; 1 \leq i_{1}<\cdots<i_{n} \leq 2 n\right) .
$$

The group $G(F)$ acts on $\wedge^{n} V$ by

$$
g\left(e_{i_{1}} \wedge \cdots \wedge e_{i_{n}}\right)=g e_{i_{1}} \wedge \cdots \wedge g e_{i_{n}} .
$$

Lemma 3.1. Given $g \in G(F)$. Then $g \in K H$ if and only if

$$
\begin{equation*}
\left|g\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|_{F} \bullet\left|g\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|_{F}=|\operatorname{det} g|_{F} \tag{3.1}
\end{equation*}
$$

We remark that as a function on $G(F)$

$$
\frac{\left|g\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right| F\left|g\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|_{F}}{|\operatorname{det} g|_{F}}
$$

is invariant under K on the left and invariant under H on the right.
Proof. Clearly if $g \in K H$, then the relation is satisfied.
As for the "if" part, We apply the following Iwasawa decomposition for $g \in G(F)$

$$
g=k\left(\begin{array}{cc}
1_{n} & X \\
0 & 1_{n}
\end{array}\right) h
$$

where $k \in K$ and $h \in H$. Because the element

$$
\left(\begin{array}{cc}
1_{n} & \varpi^{m} 1_{n} \\
0 & 1_{n}
\end{array}\right) \quad m \geq 0
$$

is in K and $\varpi^{m} 1_{n}+X$ is nonsingular when m is large enough, we may assume $\operatorname{det} X \neq 0$ in the above decomposition. By the Cartan decomposition for $G_{n}(F)$, we can express X as

$$
k_{1}\left(\varpi^{i_{1}}, \ldots, \varpi^{i_{n}}\right) k_{2}
$$

with $k_{1}, k_{2} \in K_{n}$ and $i_{1} \leq \cdots \leq i_{n}$. Thus we can write

$$
g=k\left(\begin{array}{cc}
1_{n} & \left(\varpi^{i_{1}}, \ldots, \varpi^{i_{n}}\right) \\
0 & 1_{n}
\end{array}\right) h
$$

if we change k, h suitably. We may further assume $i_{1} \leq \cdots \leq i_{n} \leq 0$ by adjusting k. In this case we have

$$
\left|g\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|\left|g\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|=q^{i_{1}+\cdots+i_{n}}|\operatorname{det} g|
$$

Therefore if

$$
\left|g\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|\left|g\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|=|\operatorname{det} g|
$$

then $i_{1}=\cdots=i_{n}=0$ and $g \in K H$.
The subgroup H^{\prime} is not a Levi subgroup of G^{\prime}. But we still have a similar description for $K^{\prime} H^{\prime}$. To that end we need a preparatory lemma.

Lemma 3.2. Every double coset $K^{\prime} g^{\prime} H^{\prime}$ has a representative g_{0}^{\prime} such that g_{0}^{\prime} has integral entries and

$$
\left|g_{0}^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|_{E}=1
$$

Proof. Let

$$
g^{\prime}=\left(\begin{array}{ll}
\alpha & \beta \\
\bar{\beta} & \bar{\alpha}
\end{array}\right) .
$$

Multiplying g^{\prime} on the left by

$$
\left(\begin{array}{cc}
1_{n} & \varpi^{m} 1_{n} \\
\varpi^{m} 1_{n} & 1_{n}
\end{array}\right) \in K^{\prime}
$$

for large enough m if necessary, we may assume $\operatorname{det} \alpha \neq 0$ and $\operatorname{det} \beta \neq 0$. So we can take g^{\prime} of the form

$$
\left(\begin{array}{cc}
1_{n} & \beta \\
\bar{\beta} & 1_{n}
\end{array}\right) .
$$

Let

$$
\beta=k_{1}\left(\varpi^{i_{1}}, \ldots, \varpi^{i_{1}}, \varpi^{i_{i+1}}, \ldots, \varpi^{i_{n}}\right) k_{2}
$$

Here $k_{1}, k_{2} \in K_{n}(E)$ and $i_{1} \geq \cdots \geq i_{t}>0 \geq i_{t+1} \geq \cdots \geq i_{n}$. Then the element

$$
\begin{aligned}
g_{0}^{\prime} & =g^{\prime}\left(\bar{k}_{2}^{-1}\left(1, \ldots, 1, \varpi^{-i_{t+1}}, \ldots, \varpi^{-i_{n}}\right), k_{2}^{-1}\left(1, \ldots, 1, \varpi^{-i_{t+1}}, \ldots, \varpi^{-i_{n}}\right)\right) \\
& =\left(\begin{array}{cc}
\bar{k}_{2}^{-1}\left(1, \ldots, 1, \varpi^{-i_{t+1}}, \ldots, \varpi^{-i_{n}}\right) & k_{1}\left(\varpi^{i_{1}}, \ldots, \varpi^{i_{t}}, 1, \ldots, 1\right) \\
\bar{k}_{1}\left(\varpi^{i_{1}}, \ldots, \varpi^{i_{i}}, 1, \ldots, 1\right) & k_{2}^{-1}\left(1, \ldots, 1, \varpi^{-i_{t+1}}, \ldots, \varpi_{-i_{n}}\right)
\end{array}\right) \\
& =\left(\bar{k}_{2}^{-1}, \bar{k}_{1}\right) \times\left(\begin{array}{cc}
\left(1, \ldots, 1, \varpi^{-i_{t+1}}, \ldots, \varpi^{-i_{n}}\right) & \bar{k}_{2} k_{1}\left(\varpi^{i_{1}}, \ldots, \varpi^{i_{1}}, 1, \ldots, 1\right) \\
\left(\varpi^{i_{1}}, \ldots, \varpi^{i_{t}}, 1, \ldots, 1\right) & \bar{k}_{1}^{-1} k_{2}^{-1}\left(1, \ldots, 1, \varpi^{i_{i+1}}, \ldots, \varphi^{-i_{n}}\right)
\end{array}\right)
\end{aligned}
$$

has integral entries. We have

$$
\begin{aligned}
& \left|g_{0}^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right| \\
& \quad=\left|\left(e_{1}+\varpi^{i_{1}} e_{n}\right) \wedge \cdots \wedge\left(e_{t}+\varpi^{i_{i}} e_{t+n}\right) \wedge\left(\varpi^{-i_{t+1}} e_{t+1}+e_{n+t+1}\right) \wedge \cdots \wedge\left(\varpi^{-i_{n}} e_{n}+e_{2 n}\right)\right| \\
& \quad=\left|e_{1} \wedge \cdots \wedge e_{t} \wedge e_{n+t+1} \wedge \cdots \wedge e_{2 n}+\sum a_{l_{1} \cdots l_{n}} e_{l_{1}} \wedge \cdots \wedge e_{l_{n}}\right|
\end{aligned}
$$

where $a_{l_{1} \cdots l_{n}}$ are integers. Hence $\left|g_{0}^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|=1$.
Lemma 3.3. An element $g^{\prime} \in G^{\prime}$ is in $K^{\prime} H^{\prime}$ if and only if

$$
\begin{equation*}
\left|g^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|_{E} \bullet\left|g^{\prime}\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|_{E}=\left|\operatorname{det} g^{\prime}\right|_{E} \tag{3.2}
\end{equation*}
$$

Proof. Let $g^{\prime}=k^{\prime} g_{0}^{\prime} h^{\prime}$ where g_{0}^{\prime} has integral entries and satisfies

$$
\left|g_{0}^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|_{E}=1
$$

We also have

$$
\left|g_{0}^{\prime}\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|=\left|g_{0}^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|=1
$$

Then we find

$$
\left|g^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|_{E}\left|g^{\prime}\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|_{E}=\left|\operatorname{det} h^{\prime}\right|_{E}
$$

Thus

$$
\left|g^{\prime}\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|_{E}\left|g^{\prime}\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|_{E}=\left|\operatorname{det} g^{\prime}\right|_{E}
$$

if and only if $\left|\operatorname{det} g_{0}^{\prime}\right|=1$ which is equivalent to $g_{0}^{\prime} \in K^{\prime}$, hence $g^{\prime} \in K^{\prime} H^{\prime}$.
The following simple lemma is crucial in later computations.
Lemma 3.4. Let r be a regular elliptic element in $G_{n}(F)$ and let

$$
x_{r}=\left|\operatorname{det}\left(1_{n}-r\right)\right|_{F}, \quad y_{r}=|\operatorname{det} r|_{F},
$$

then $x_{r} \leq y_{r}$ or $y_{r}<x_{r}=1$.
Proof. Let F_{1} be the splitting field of the characteristic polynomial of r. Then F_{1} is a finite Galois extension of F. Let $\alpha_{1}, \ldots, \alpha_{n}$ be the eigenvalues of r in F_{1}. Then r is conjugate to $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ in $G_{n}\left(F_{1}\right)$. Thus

$$
x_{r}=\left|\left(1-\alpha_{1}\right) \cdots\left(1-\alpha_{n}\right)\right|_{F}, \quad y_{r}=\left|\alpha_{1} \cdots \alpha_{n}\right|_{F} .
$$

Since r is regular elliptic, the characteristic polynomial of r is irreducible. Therefore $\alpha_{1}, \ldots, \alpha_{n}$ are conjugate to each other. Hence we have

$$
\left|\alpha_{1}\right|_{F_{1}}=\cdots=\left|\alpha_{n}\right|_{F_{1}}, \quad\left|1-\alpha_{1}\right|_{F_{1}}=\cdots=\left|1-\alpha_{n}\right|_{F_{1}} .
$$

Now $\left|1-\alpha_{i}\right|_{F_{1}} \leq\left|\alpha_{i}\right|_{F_{1}}$ or $\left|\alpha_{i}\right|_{F_{1}}<\left|1-\alpha_{i}\right|_{F_{1}}=1$. The conclusion of the lemma follows.
We now fix some notations. Let A be an $n \times n$ matrix over F. We will denote by $\left\|(A)_{k}\right\|$ the maximum of the absolute values of determinants of all $k \times k$ submatrices of A. In particular $\left\|(A)_{1}\right\|$ is the maximum of the absolute values of all the entries and $\left\|(A)_{n}\right\|=|\operatorname{det} A|$. We will simple denote $\left\|(A)_{1}\right\|$ by $\|A\|$. For convenience, we define $\left\|(A)_{0}\right\|=1$.
3.2. Let r be an element of $G_{n}(F)$ such that $\operatorname{det}\left(1_{n}-r\right) \neq 0$. Let x_{r} and y_{r} be defined as in Lemma 3.4. We use Φ_{r} to denote the characteristic function of the set of $(X, Y) \in$ $G_{n}(F) \times G_{n}(F)$ such that

$$
\begin{gather*}
\sup \left(\left\|(X)_{k}\right\| ; k=0, \ldots, n\right) \sup \left(\left\|(Y)_{k}\right\| ; k=0, \ldots, n\right)=x_{r} \\
|\operatorname{det} X Y|=y_{r} . \tag{3.3}
\end{gather*}
$$

Then Φ_{r} is compactly supported and bi- K_{n} invariant for both X and Y. Let Ψ_{r} be the function on $G_{n}(F)$ defined by

$$
\begin{equation*}
\Psi_{r}(g)=\int_{G_{n}(F)} \Phi\left(g h^{-1}, h\right) \eta(\operatorname{det} h) d h \tag{3.4}
\end{equation*}
$$

It is clear that Ψ_{r} is a Hecke function of $G_{n}(F)$.
Lemma 3.5. With the Hecke function Ψ_{r} defined above, we have

$$
\begin{equation*}
H\left(r ; f_{0} ; \eta\right)=\int_{G_{n}(F) / G_{n}(F)_{r}} \Psi_{r}\left(g r g^{-1}\right) d g . \tag{3.5}
\end{equation*}
$$

Here $G_{n}(F)_{r}$ is the centralizer of r in $G_{n}(F)$.
The right-hand side of (3.5) is the usual orbital integral with respect to conjugation in $G_{n}(F)$. We will call it the conjugate orbital integral.

Proof. Recalling the definition of the integral $H(r ; f ; \eta)$, we have:

$$
\begin{aligned}
& H\left(r ; f_{0} ; \eta\right) \\
& \quad=\int_{H / H_{r}} \int_{H} f_{0}\left(\left(\begin{array}{cc}
h_{1} & 0 \\
0 & h_{2}
\end{array}\right)\left(\begin{array}{cc}
1_{n} & r \\
1_{n} & 1_{n}
\end{array}\right)\left(\begin{array}{cc}
h_{3} & 0 \\
0 & h_{4}
\end{array}\right)\right) \eta\left(\operatorname{det} h_{1} h_{2}\right) d\left(h_{1}, h_{2}\right) d\left(h_{3}, h_{4}\right)
\end{aligned}
$$

which is

$$
\int_{H / H_{r}} \int_{H} f_{0}\left(\left(\begin{array}{cc}
h_{1} h_{3} & h_{1} r h_{4} \\
h_{2} h_{3} & h_{2} h_{4}
\end{array}\right)\right) \eta\left(\operatorname{det} h_{1} h_{2}\right) d\left(h_{1}, h_{2}\right) d\left(h_{3}, h_{4}\right)
$$

We now change the variables $h_{3} \longmapsto h_{1} h_{3}, h_{4} \longmapsto h_{2} h_{4}, h_{2} \mapsto h_{2} h_{1}^{-1}$. Then our integral becomes:

$$
\iint f_{0}\left(\left(\begin{array}{cc}
1_{n} & h_{1} r h_{1}^{-1} h_{2}^{-1} \\
h_{2} & 1_{n}
\end{array}\right) h\right) \eta\left(\operatorname{det} h_{2}\right) d h d\left(h_{1}, h_{2}\right) .
$$

Let Φ be the function on the symmetric space G / H defined by

$$
\Phi(g)=\int_{H} f_{0}(g h) d h
$$

and let $\Phi(X, Y)$ be

$$
\Phi\left(\left(\begin{array}{cc}
1_{n} & X \\
Y & 1_{n}
\end{array}\right)\right)
$$

for $X, Y \in G_{n}(F)$. Thus we obtain

$$
H\left(r ; f_{0}\right)=\int_{G_{n}(F)} \int_{G_{n}(F) / G_{n}(F)_{r}} \Phi\left(h_{1} r h_{1}^{-1} h_{2}^{-1}, h_{2}\right) \eta\left(\operatorname{det} h_{2}\right) d h_{1} d h_{2}
$$

By Lemma 3.1, we have that Φ is the characteristic function of the set of

$$
(X, Y) \in G_{n}(F) \times G_{n}(F)
$$

such that

$$
\left|\left(\begin{array}{cc}
1_{n} & X \\
Y & 1_{n}
\end{array}\right)\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|\left|\left(\begin{array}{cc}
1_{n} & X \\
Y & 1_{n}
\end{array}\right)\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|=\left|\operatorname{det}\left(1_{n}-X Y\right)\right| .
$$

By a simple computation, we find

$$
\left|\left(\begin{array}{cc}
1_{n} & X \\
Y & 1_{n}
\end{array}\right)\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|=\sup \left(\left\|(Y)_{k}\right\| ; k=0,1, \ldots, n\right)
$$

and

$$
\left|\left(\begin{array}{cc}
1_{n} & X \\
Y & 1_{n}
\end{array}\right)\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|=\sup \left(\left\|(X)_{k}\right\| ; k=0,1, \ldots, n\right)
$$

On the other hand when $X=h_{1} r h_{1}^{-1} h_{2}^{-1}$ and $Y=h_{2}$ we have

$$
\left|\operatorname{det}\left(1_{n}-X Y\right)\right|=\left|\operatorname{det}\left(1_{n}-r\right)\right|, \quad|\operatorname{det} X Y|=|\operatorname{det} r| .
$$

Thus we find

$$
\Phi\left(h_{1} r h_{1}^{-1} h_{2}^{-1}, h_{2}\right)=\Phi_{r}\left(h_{1} r h_{1}^{-1} h_{2}^{-1}, h_{2}\right)
$$

for all $h_{1}, h_{2} \in G_{n}(F)$. The assertion of the lemma follows immediately.
Similarly for $\alpha \in G_{n}(E)$ such that $\alpha \bar{\alpha}=r \in G_{n}(F)$ and $\operatorname{det}\left(1_{n}-r\right) \neq 0$, we use Φ_{α} to denote the characteristic function of the set of $X \in G_{n}(E)$ where

$$
\begin{gather*}
\sup \left(\left\|(X)_{k}\right\|_{E} ; k=0,1, \ldots, n\right)=x_{r} \\
|\operatorname{det} X|_{E}=y_{r} . \tag{3.6}
\end{gather*}
$$

Then Φ_{α} is a Hecke function on $G_{n}(E)$.

Lemma 3.6. With the above notations, we have:

$$
\begin{equation*}
H\left(\alpha ; f_{0}^{\prime}\right)=\int_{G_{n}(E) / G_{n}(E)_{\alpha}^{-}} \Phi_{\alpha}\left(h \alpha \bar{h}^{-1}\right) d h \tag{3.7}
\end{equation*}
$$

Here

$$
G_{n}(E)_{\alpha}^{-\bar{\alpha}}=\left\{h \in G_{n}(E) \mid h \alpha \bar{h}^{-1}=\alpha\right\}
$$

is the twisted centralizer of α in $G_{n}(E)$.
The right-hand side is the usual orbital integral with respect to the twisted conjugation in $G_{n}(E)$. We will call it the twisted conjugate orbital integral.

Proof. By definition the orbital integral $H\left(\alpha ; f_{0}^{\prime}\right)$ is equal to

$$
\begin{aligned}
& \int_{G_{n}(E) / G_{n}(E)_{\alpha}^{\prime}} \int_{G_{n}(E)} f_{0}^{\prime}\left(\left(\begin{array}{ll}
h & 0 \\
0 & \bar{h}
\end{array}\right)\left(\begin{array}{cc}
1_{n} & \alpha \\
\bar{\alpha} & 1_{n}
\end{array}\right)\left(\begin{array}{cc}
h_{1} & 0 \\
0 & \bar{h}_{1}
\end{array}\right)\right) d h_{1} d h \\
&=\iint f_{0}^{\prime}\left(\left(\begin{array}{cc}
1_{n} & h \alpha \bar{h}^{-1} \\
\bar{h} \bar{\alpha} h^{-1} & 1_{n}
\end{array}\right)\left(\begin{array}{cc}
h_{1} & 0 \\
0 & \bar{h}_{1}
\end{array}\right)\right) d h_{1} d h
\end{aligned}
$$

Let Φ^{\prime} be the function on G^{\prime} / H^{\prime} defined by

$$
\Phi^{\prime}(g)=\int_{H^{\prime}} f^{\prime}(g h) d h
$$

and let $\Phi^{\prime}(X)$ be

$$
\Phi^{\prime}\left(\left(\begin{array}{cc}
1_{n} & X \\
\bar{X} & 1_{n}
\end{array}\right)\right)
$$

Then our integral becomes

$$
\int_{G_{n}(E) / G_{n}(E)_{\bar{\alpha}}} \Phi^{\prime}\left(h \alpha \bar{h}^{-1}\right) d h .
$$

By Lemma 3.3, Φ^{\prime} is the characteristic function of the set of $X \in G_{n}(E)$ such that

$$
\left.\left|\left(\begin{array}{cc}
1_{n} & X \\
\bar{X} & 1_{n}
\end{array}\right)\left(e_{1} \wedge \cdots \wedge e_{n}\right)\right|_{E}\left(\begin{array}{cc}
1_{n} & X \\
\bar{X} & 1_{n}
\end{array}\right)\left(e_{n+1} \wedge \cdots \wedge e_{2 n}\right)\right|_{E}=\left|\operatorname{det}\left(1_{n}-X \bar{X}\right)\right|_{E} .
$$

This condition is equivalent to

$$
\sup \left(\left\|(X)_{k}\right\|_{E} ; k=0, \ldots, n\right)=\left|\operatorname{det}\left(1_{n}-X \bar{X}\right)\right|_{F} .
$$

If $X=h \alpha \bar{h}^{-1}$, we have

$$
|\operatorname{det} X|_{E}=|\operatorname{det} \alpha|_{E}=|\operatorname{det} r|_{F}=y_{r}, \quad\left|\operatorname{det}\left(1_{n}-X \bar{X}\right)\right|_{F}=x_{r} .
$$

Thus we find

$$
\Phi^{\prime}\left(h \alpha \bar{h}^{-1}\right)=\Phi_{\alpha}\left(h \alpha \bar{h}^{-1}\right)
$$

for any $h \in G_{n}(E)$. Hence our lemma.
From these two lemmas we find that to compare the orbital integral of f_{0} at r with the orbital integral of f_{0}^{\prime} at α, it suffices to compare the conjugate orbital integrals of Ψ_{r} with the twisted orbital integrals of Φ_{α}. In this case we have:

Proposition 3.7. Letr be a regular elliptic element in $G_{n}(F)$ such that $\operatorname{det}\left(1_{n}-r\right) \neq$ 0 . Then
(l) if $r=\alpha \bar{\alpha}$ for some $\alpha \in G_{n}(E)$, then Ψ_{r} and Φ_{α} have matching (conjugate and twisted conjugate) orbital integrals at regular split elements of $G_{n}(F)$, i.e., for a regular split element t of $G_{n}(F)$

$$
\int_{G_{n}(F) / G_{n}(F)_{t}} \Psi_{r}\left(g g^{-1}\right) d g= \begin{cases}\int_{G_{n}(E) / G_{n}(E)_{\alpha}^{-}} \Phi_{\alpha}\left(g \beta \bar{g}^{-1}\right) d g, & \text { if } t=\beta \bar{\beta} \tag{3.8}\\ 0, & \text { if } t \notin N G_{n}(E) .\end{cases}
$$

(2) if $r \notin N G_{n}(E)$, then the conjugate orbital integral of Ψ_{r} vanishes at all split regular elements of $G_{n}(F)$.

Proof. Since the orbital integrals depend only on conjugacy classes, we just need to consider the diagonal matrices. We use A_{n} to denote the subgroup of diagonal matrices of $G_{n}(F)$.

We first compute the conjugate orbital integral of Ψ_{r} at the matrix $a=\left(a_{1}, \ldots, a_{n}\right)$ where $a_{i} \neq a_{j}$ if $i \neq j$. For convenience we use $A_{r}(a)$ to denote this integral. Then we have:

$$
A_{r}(a)=\int_{G_{n}(F) / A_{n}(F)} \Psi_{r}\left(g a g^{-1}\right) d g
$$

which is equal to

$$
\int_{N_{n}} \Psi_{r}\left(n a n^{-1}\right) d n
$$

by the Iwasawa decomposition $G_{n}(F)=K_{n} N_{n} A_{n}$. Here N_{n} is the group of the upper triangular unipotent elements of $G_{n}(F)$.

Recalling the definition of the function Ψ_{r} we have

$$
\left.A_{r}(a)=\int_{N_{n}} \int_{G_{n}(F)} \Phi_{r}\left(n a n^{-1} g^{-1}, g\right) \eta(\operatorname{det} g)\right] d n d g
$$

Then using the Iwasawa decomposition $G_{n}(F)=K_{n} N_{n} A_{n}$ again and the fact that Φ_{r} is bi- K_{n} invariant for both variables, we find

$$
\begin{aligned}
A_{r}(a) & =\int_{A_{n}} \int_{N_{n}} \int_{N_{n}} \Phi_{r}\left(n a n^{-1} m^{-1} n_{1}^{-1}, n_{1} m\right) \eta(\operatorname{det} m) d n d n_{1} d m \\
& =\int_{A_{n}} \int_{N_{n}} \int_{N_{n}} \Phi_{r}\left(a\left(a^{-1} n a n^{-1}\right) m^{-1} n_{1}^{-1}, n_{1} m\right) \eta(\operatorname{det} m) d n d n_{1} d m .
\end{aligned}
$$

We now consider the map

$$
n \mapsto a^{-1} n a n^{-1}
$$

from N_{n} to N_{n}. Its Jacobian is

$$
\Delta(a)=|\operatorname{det}(\operatorname{Ad}(a)-1)|_{\operatorname{Lie}\left(N_{n}\right)} \mid F
$$

where $\operatorname{Lie}\left(N_{n}\right)$ is the Lie algebra of N_{n}. So our integral becomes:

$$
\begin{aligned}
& \Delta(a)^{-1} \int_{A_{n}} \int_{N_{n}} \int_{N_{n}} \Phi\left(a n m^{-1} n_{1}^{-1}, n_{1} m\right) \eta(\operatorname{det} m) d n d n_{1} d m \\
& \quad=\Delta(a)^{-1} \int_{A_{n}} \int_{N_{n}} \int_{N_{n}} \Phi\left(a m^{-1}\left(m n m^{-1}\right) n_{1}^{-1}, m\left(m^{-1} n_{1} m\right)\right) \eta(\operatorname{det} m) d n d n_{1} d m
\end{aligned}
$$

Next we change the variables

$$
n \mapsto m n m^{-1} \quad n_{1} \mapsto m^{-1} n_{1} m
$$

and then $n \mapsto n n_{1}^{-1}$ to obtain

$$
A_{r}(a)=\Delta(a)^{-1} \int_{A_{n}} \int_{N_{n}} \int_{N_{n}} \Phi_{r}\left(a m^{-1} n, m n_{1}\right) \eta(\operatorname{det} m) d n d n_{1} d m
$$

Recall that the function Φ_{r} is the characteristic function of the subset of $(X, Y) \in G_{n}(F) \times$ $G_{n}(F)$ which satisfy the conditions

$$
\begin{gather*}
\sup \left(\left\|(X)_{k}\right\| ; k=0, \ldots, n\right) \sup \left(\left\|(Y)_{k}\right\| ; k=0, \ldots, n\right)=x_{r} \\
|\operatorname{det} X Y|=y_{r} . \tag{3.9}
\end{gather*}
$$

This subset is empty unless $y_{r} \leq x_{r}$ and $1 \leq x_{r}$. Assuming this is the case, we must have

$$
x_{r}=y_{r}>1 \quad \text { or } \quad y_{r} \leq x_{r}=1
$$

by Lemma 3.4.
To continue we distinguish these two cases.
We first consider the case $y_{r} \leq x_{r}=1$. Then $(X, Y) \in G_{n}(F) \times G_{n}(F)$ satisfies the conditions (3.9) if and only if

$$
\begin{aligned}
& \sup \left(\left\|(X)_{k}\right\| ; k=0,1, \ldots, n\right)=1 \\
& \sup \left(\left\|(Y)_{k}\right\| ; k=0,1, \ldots, n\right)=1
\end{aligned}
$$

and

$$
|\operatorname{det} X Y|=y_{r} .
$$

These conditions are equivalent to

$$
\|X\| \leq 1, \quad\|Y\| \leq 1, \quad|\operatorname{det} X Y|=y_{r} .
$$

Now let

$$
m=\left(x_{1}, \ldots, x_{n}\right)
$$

and let $u_{i j}$ and $v_{i j}$ be the (i, j)-entry of n and n_{1} respectively. So when $|\operatorname{det} a|=y_{r}$ our integral becomes

$$
\begin{aligned}
\Delta(a)^{-1} \prod_{1 \leq k \leq n} \int_{\left|a_{k}\right| \leq\left|x_{k}\right| \leq 1} & {\left[\prod_{i<j}\left(\int_{\left|u_{j j}\right| \leq\left|x_{i}\right| a_{i} \mid} d u_{i j}\right)\left(\int_{\left|v_{i j}\right| \leq 1 /\left|x_{i}\right|} d v_{i j}\right)\right] \eta\left(\operatorname{det} x_{i}\right) d^{*} x_{i} } \\
& =\frac{1}{\Delta(a)\left|a_{1}^{n-1} a_{2}^{n-2} \cdots a_{n-1}\right| F} \prod_{1 \leq i \leq n} \int_{\left|a_{i}\right| \leq\left|x_{i}\right| \leq 1} \eta\left(x_{i}\right) d^{*} x_{i}
\end{aligned}
$$

We conclude that

$$
A_{r}(a)= \begin{cases}\frac{1}{\Delta(a) \mid a_{1}^{n-1 \ldots a_{n-1} \mid F}} & \text { if }\left|a_{i}\right| \leq 1, a_{i} \in N E^{*},\left|a_{1} \cdots a_{n}\right|=y_{r} \\ 0 & \text { otherwise }\end{cases}
$$

In particular if $y_{r} \notin\left|N E^{*}\right|$, then $A_{r}(a)$ is always zero.
Next we consider the case $x_{r}=y_{r}>1$. Then the conditions in (3.9) become

$$
\begin{gather*}
\sup \left(\left\|(X)_{k}\right\| ; k=0, \ldots, n\right)=|\operatorname{det} X| \\
\sup \left(\left\|(Y)_{k}\right\| ; k=0, \ldots, n\right)=|\operatorname{det} Y| \tag{3.10}\\
|\operatorname{det} X Y|=x_{r}=y_{r} .
\end{gather*}
$$

Let

$$
X=k_{1}\left(\varpi^{i_{1}}, \ldots, \varpi^{i_{n}}\right) k_{2}
$$

where $k_{1}, k_{2} \in K_{n}$ and $i_{1} \leq \cdots \leq i_{n}$. Then we have

$$
\left\|(X)_{k}\right\|=q^{-\left(i_{1}+\cdots+i_{k}\right)} .
$$

So

$$
\sup \left(\left\|(X)_{k}\right\| ; k=0, \ldots, n\right)=|\operatorname{det} X|
$$

if and only if $i_{1} \leq \cdots \leq i_{n} \leq 0$. Since

$$
X^{-1}=k_{1}^{-1}\left(\varpi^{-i_{1}}, \ldots, \varpi^{-i_{n}}\right) k_{2}^{-1}
$$

we find that $\left\|X^{-1}\right\|=q^{i_{n}}$. Thus the above condition is equivalent to $\left\|X^{-1}\right\| \leq 1$. Similarly

$$
\sup \left(\left\|(Y)_{k}\right\| ; k=0, \ldots, n\right)=|\operatorname{det} Y|
$$

if and only if $\left\|Y^{-1}\right\| \leq 1$.
Hence the conditions in (3.10) are simply

$$
\left\|X^{-1}\right\| \leq 1, \quad\left\|Y^{-1}\right\| \leq 1, \quad|\operatorname{det} X Y|=x_{r}=y_{r}
$$

Therefore $A_{r}(a)$ equals to

$$
\Delta(a)^{-1} \iiint \eta(\operatorname{det} m) d n d n_{1} d m
$$

where the integrals are over the domain

$$
\left\|n^{-1} m a^{-1}\right\| \leq 1, \quad\left\|n_{1}^{-1} m^{-1}\right\| \leq 1, \quad|\operatorname{det} a|=x_{r}=y_{r} .
$$

Now we change the variables from $\left(n, n_{1}\right)$ to $\left(n^{-1}, n_{1}^{-1}\right)$. The domain for our integral becomes

$$
\left\|n m a^{-1}\right\| \leq 1,\left\|n_{1} m^{-1}\right\| \leq 1,|\operatorname{det} a|=x_{r}=y_{r}
$$

Thus in the case $|\operatorname{det} a|=x_{r}=y_{r}$ we find

$$
\begin{aligned}
A_{r}(a) & =\Delta(a)^{-1} \prod_{1 \leq i \leq n} \int_{1 \leq\left|x_{i}\right| \leq\left|a_{i}\right|}\left[\prod_{i<j}\left(\int_{\left|u_{j}\right| \leq\left|a_{i}\right| x_{j} \mid} d u_{i j}\right)\left(\int_{\left|v_{i j}\right| \leq\left|x_{j}\right|} d v_{i j}\right)\right] \eta\left(x_{i}\right) d^{*} x_{i} \\
& =\frac{\left|a_{2} a_{3}^{2} \cdots a_{n}^{n-1}\right|}{\Delta(a)} \prod_{1 \leq i \leq\left|a_{i}\right|} \int_{1 \leq\left|x_{i}\right| \leq\left|a_{i}\right|} \eta\left(x_{i}\right) d^{*} x_{i} .
\end{aligned}
$$

In conclusion we get

$$
A_{r}(a)= \begin{cases}\frac{\left|a_{2} a_{3}^{2} \cdots a_{n}^{n-1}\right|}{\Delta(a)}, & \text { if }\left|a_{i}\right| \geq 1, a_{i} \in N E^{*},\left|a_{1} \cdots a_{n}\right|=y_{r} \\ 0, & \text { otherwise } .\end{cases}
$$

In particular A_{r} is always zero if $y_{r} \notin\left|N E^{*}\right|$.
We now pass to the computation of the twisted conjugate orbital integrals of Φ_{α} at diagonal matrices. We assume $\alpha \bar{\alpha}=r$ is a regular elliptic element of $G_{n}(F)$. Let $\beta=$ $\left(\beta_{1}, \ldots, \beta_{n}\right) \in A_{n}(E)$ such that $\beta_{i} \bar{\beta}_{i} \neq \beta_{j} \bar{\beta}_{j}$ if $i \neq j$. We use $B_{\alpha}(\beta)$ to denote the orbital integral

$$
\int_{G_{n}(E) / A_{n}(F)} \Phi_{\alpha}\left(g \beta \bar{g}^{-1}\right) d g .
$$

Then it is equal to

$$
\int_{A_{n}(E) / A_{n}(F)} \int_{N_{n}(E)} \Phi_{\alpha}\left(n m \beta \bar{m}^{-1} \bar{n}^{-1}\right) d n d m=\int_{N_{n}(E)} \Phi_{\alpha}\left(n \beta \bar{n}^{-1}\right) d n
$$

We now change n to $\beta^{-1} n \beta \bar{n}^{-1}$. The Jacobian is

$$
|\operatorname{det}(1-\operatorname{Ad}(\beta) \circ \sigma)|_{\operatorname{Lie}\left(N_{n}(E)\right)} \mid
$$

where σ is the nontrivial element of $\operatorname{Gal}(E / F)$. This Jacobian is actually equal to $\Delta(N \beta)$ ($[\mathrm{K}]$, p. 376). Hence our integral becomes

$$
\Delta(N \beta)^{-1} \int_{N_{n}(E)} \Phi_{\alpha}(\beta n) d n
$$

Recall Φ_{α} is the characteristic function of the set of $X \in G_{n}(E)$ such that

$$
\begin{equation*}
|\operatorname{det} X|=y_{r}, \sup \left(\left\|(X)_{k}\right\| ; k=0, \ldots, n\right)=x_{r} \tag{3.11}
\end{equation*}
$$

So $\Phi_{\alpha} \equiv 0$ if $x_{r}<1$ or $x_{r}<y_{r}$. As before the only remaining cases are

$$
x_{r}=y_{r}>1 \quad \text { and } \quad y_{r} \leq x_{r}=1
$$

We first consider the case $y_{r} \leq x_{r}=1$. Then the conditions for Φ_{α} becomes

$$
\|X\|_{E} \leq 1, \quad|\operatorname{det} X|=x_{r} .
$$

So when $|\operatorname{det} \beta|_{E}=x_{r}$ we have

$$
\begin{aligned}
B_{\alpha}(\beta)=\Delta(N \beta)^{-1} \int_{\|\beta n\|_{E} \leq 1} d n & = \begin{cases}\Delta(N \beta)^{-1} \Pi_{i<j}\left(\int_{\left|u_{i j}\right| E \leq\left|\beta_{i}\right|^{-1}} d u_{i j}\right), & \text { if }\left|\beta_{i}\right| \leq 1 \\
0, & \text { otherwise. }\end{cases} \\
& = \begin{cases}\frac{1}{\Delta(N \beta)\left|\beta_{1}^{n-1} \ldots \beta_{n-1}\right| E}, & \text { if }\left|\beta_{i}\right|_{E} \leq 1 \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

If $|\operatorname{det} \beta|_{E} \neq x_{r}$, the integral is zero.
Next we consider the case $y_{r}=x_{r}>1$. Then the condition for Φ_{α} is

$$
\sup \left(\left\|(X)_{k}\right\| ; k=0, \ldots, n\right) \leq|\operatorname{det} X|_{E}=x_{r}=y_{r} .
$$

As before this is equivalent to

$$
\left\|X^{-1}\right\|_{E} \leq 1, \quad|\operatorname{det} X|_{E}=x_{r}=y_{r}
$$

Hence if $|\operatorname{det} \beta|_{E}=x_{r}=y_{r}$ we have

$$
\begin{aligned}
B_{\alpha}(\beta) & =\Delta(N \beta)^{-1} \int_{\left|n^{-1} \beta^{-1}\right|_{E} \leq 1} d n=\Delta(N \beta)^{-1} \int_{\left|n \beta^{-1}\right|_{E} \leq 1} d n \\
& = \begin{cases}\Delta(N \beta)^{-1} \Pi_{i<j}\left(\int_{u_{i j}\left|E \leq\left|\beta_{j}\right|_{E}\right.} d u_{i j}\right), & \text { if }\left|\beta_{i}\right| \geq 1 \\
0, & \text { otherwise }\end{cases} \\
& = \begin{cases}\frac{\left|\beta_{2} \cdots \beta_{n}^{n-1}\right|_{E}}{\Delta_{(N \beta)}} & \text { if }\left|\beta_{i}\right|_{E} \geq 1 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

If $|\operatorname{det} \beta|_{E} \neq y_{r}$, then $B_{\alpha}(\beta)=0$.
So we have finished the computations. Comparing the results, we find the assertions of the proposition are true.

Corollary 3.7. With the notations as in the proposition, we have

$$
\Psi_{r}=0 \quad \text { if } r \notin N G_{n}(E)
$$

and

$$
\Psi_{r}=b \Phi_{\alpha} \quad \text { if } r=\alpha \bar{\alpha} .
$$

Here $b: H\left(G_{n}(E), K_{n}(E)\right) \rightarrow H\left(G_{n}(F), K_{n}(F)\right)$ is the base change map.
Proof. We assume $\Phi_{\alpha}=0$ if $r \notin N G_{n}(E)$. Let $f=b \Phi_{\alpha}$. Then f and Φ_{α} have matching (conjugate and twisted conjugate) orbital integrals ([AC], Chapter 1). Thus f and Ψ_{r} have the same conjugate orbital integrals at regular diagonal matrices.

Let S be the Satake transform from $H\left(G_{n}(F), K_{n}\right)$ to $H\left(A_{n}, A_{n} \cap K_{n}\right)$. Then for regular $a \in A_{n}$ we have

$$
S f(a)=\Delta(a) \delta_{P_{n}}(a)^{-1 / 2} \int_{G_{n}(F) / A_{n}(F)} f\left(g a g^{-1}\right) d g
$$

where $P_{n}=A_{n} N_{n}$ is the minimal standard parabolic subgroup of G_{n} ([C], p. 147). The same is true for Ψ_{r}. Therefore $s f=s \Psi_{r}$. But S is one to one. So $f=\Psi_{r}$.
4. Conclusion. Now we are ready to prove our theorem.

PROOF OF THE THEOREM. Let $r \in G_{n}(F)$ be a regular semisimple element such that $\operatorname{det}\left(1_{n}-r\right) \neq 0$.

If r is regular elliptic, we have

$$
\int_{G_{n}(F) / G_{n}(F)_{r}} \Psi_{r}\left(\mathrm{grg}^{-1}\right) d g= \begin{cases}\int_{G_{n}(E) / G_{n}(E)_{\alpha}^{-\alpha}} \Phi\left(g \alpha \bar{g}^{-1}\right) d g, & \text { if } r=\alpha \bar{\alpha} \\ 0, & \text { if } r \notin N G_{n}(E)\end{cases}
$$

by the above corollary. By Lemma 3.5 and 3.6, we obtain:

$$
H\left(r ; f_{0} ; \eta\right)= \begin{cases}H\left(\alpha ; f_{0}^{\prime}\right), & \text { if } r=\alpha \bar{\alpha} \tag{4.1}\\ 0, & \text { if } r \notin N G_{n}(E)\end{cases}
$$

If r is not regular elliptic, we may assume

$$
r=\left(r_{1}, \ldots, r_{l}\right)
$$

where r_{i} is a regular elliptic element in $G_{n_{i}}(F)$. Proposition 2.1 tells us

$$
H\left(r ; f_{0} ; \eta\right)=\lambda(r) \prod_{1 \leq i \leq l} H\left(r_{i} ; f_{i 0} ; \eta\right)
$$

where $f_{i 0}$ is the unit Hecke function of $G_{i}(F)$. On the other hand if

$$
\alpha=\left(\alpha_{1}, \ldots \alpha_{l}\right)
$$

where $\alpha_{i} \bar{\alpha}_{i}=r_{i}$ is regular elliptic in $G_{n_{i}}(F)$, we have

$$
H\left(\alpha ; f_{0}^{\prime}\right)=\lambda(r) \prod_{1 \leq i \leq l} H\left(\alpha_{i}, f_{i 0}^{\prime}\right)
$$

Here $f_{i 0}^{\prime}$ is the unit Hecke function of $G_{2 n_{i}}^{\prime}$. Therefore the identity (4.1) is also satisfied in this case. This ends the proof of our theorem.

We remark that we could also consider the orbital integrals over nonregular elements. For GL(4), this was done by the author in an unpublished note where he established the Shalike germ expansion theorem for our orbital integrals and applied it to obtain the relations between orbital integrals over elements which are not relatively regular.

References

[AC] J. Arthur and L. Clozel, Simple algebras, base change, and advanced theory of the trace formula, Ann. Math. Stud. 120, Princeton Univ. Press, 1989.
[BF] D. Bump and S. Friedberg, The exterior square L-functions on GL(n). In: Festschrift in honor of I. I. Piatetski-Shapiro, Part II, Israel Math. Conf. Proc. 3, 1990, 47-65.
[C] P. Cartier, Representations of p-adic groups. In: Proc. Sympos. Pure Math. 33, Amer. Math. Soc., Providence, Rhode Island, 1979, 111-155.
[Cl] L. Clozel, The fundamental lemma for stable base change, Duke Math. J. 61(1990), 255-302.
[DKV] P. Deligne, D. Kazhdan and M.-F. Vigneras, Representations des algèbres centrales simples p-adiques.
In: Representations des Groupes Reductifs sur un Corps Local, Herman, Paris, 1984, 33-117.
[FJ] S. Friedberg and H. Jacquet, Linear periods, J. Reine Angew. Math. 443(1993), 91-139.
[G1] J. Guo, On the positivity of the central critical values of automorphic L-functions for GL(2), Duke Math. J., to appear.
[G2] \longrightarrow Uniqueness of generalized Waldspurger model for GL(2n), (1995), preprint .
[J1] H. Jacquet, Sur une resultat de Waldspurger, Ann. Sci. École Norm. Sup. (4) 19 (1986), 185-229.
[J2] \qquad , On the nonvanishing of some L-functions, Proc. Indian Acad. Sci. Math. Sci. 97(1987), 117-155.
[JR] H. Jacquet and S. Rallis, Uniqueness of linear periods, Compositio Math., to appear.
[JS] H. Jacquet and J. Shalika, On the exterior square L-function. In: Automorphic Forms, Shimura Varieties, and L-functions, (eds. L. Clozel and J. S. Milne), Perspectives in Math. 11, Academic Press, 143-225.
[K] R. Kottwitz, Orbital integrals on GL(3), Amer. J. Math. 102(1980), 327-384.
[L] J. P. Labesse, Fonctions elementaires et lemme fondamental pour le changement de base stable, Duke Math. J. 61(1990), 519-530.
[R] R. Richardson, Orbits, invariants, and representations associated to involutions of reductive groups, Invent. Math. 66(1982), 287-312.
[W1] J.-L. Waldspurger, Sur les valeurs de certains fonctions L automorphes en leur centre de symetrie, Compositio Math. 54(1985), 173-242.
[W2] 54(1985), Quelques pr

Department of Mathematics
Stanford University
Stanford, California 94305
U.S.A.
e-mail: guo@math.stanford.edu

[^0]: The author is partially supported by an Alfred P. Sloan Doctoral Dissertation Fellowship.
 Received by the editors June 23, 1994.
 AMS subject classification: 11F70 11F67 22E50.
 (c) Canadian Mathematical Society 1996.

