A SPEGIALISED NET OF QUADRICS HAVING SELFPOLAR POLYHEDRA, WITH DETAILS OF THE FIVEDIMENSIONAL EXAMPLE

W. L. EDGE

1. If $x_{0}, x_{1}, \ldots, x_{n}$ are homogeneous coordinates in [n], projective space of n dimensions, the prime (to use the standard name for a hyperplane)

$$
x_{0}+x_{1} \theta+\ldots+x_{n} \theta^{n}=0
$$

osculates, as θ varies, the rational normal curve C whose parametric form is [2, p. 347]

$$
x_{r}=(-1)^{r}\binom{n}{r} \theta^{n-r}
$$

Take a set of $n+2$ points on C for which $\theta=\eta^{j} \zeta$ where ζ is any complex number and

$$
\eta=\exp [2 \pi i /(n+2)]
$$

so that the η^{j}, for $0 \leqq j<n+2$, are the ($n+2$)th roots of unity. The $n+2$ primes osculating C at these points bound an $(n+2)$-hedron H which varies with ζ, and H is polar for all the quadrics

$$
\begin{equation*}
\sum \alpha_{j} P_{j}^{2} \equiv \sum_{j=0}^{n+1} \alpha_{j}\left(x_{0}+x_{1} \eta^{j} \zeta+x_{2} \eta^{2 j} \zeta^{2}+\ldots+x_{n} \eta^{n j} \zeta^{n}\right)^{2}=0 \tag{1.1}
\end{equation*}
$$

in the sense that the polar of any vertex, common to n of its $n+2$ bounding primes, contains the opposite $[n-2]$ common to the residual pair. Call this vertex and opposite $[n-2]$ conjugate with respect to the quadric.

If the α_{j} can be chosen so that (1.1) does not depend on ζ the various H will all be polar for the same quadric. In attempting to achieve this it is natural, since $\sum_{j=0}^{n+1} \eta^{m j}$ is zero save when m is zero or a multiple of $n+2$, to take $\alpha_{j}=\eta^{k j}$ with k some positive integer. But then, the power of ζ appearing in any term in the expanded form of (1.1) being less by k than the power of η^{j}, if ζ is to be cancellable the $2 n+1$ consecutive integers

$$
k, k+1, \ldots, k+2 n
$$

[^0]must not involve two multiples (zero included) of $n+2$. Hence k is 1 , 2 or 3 . Then
\[

$$
\begin{aligned}
& \sum \eta^{j} P_{j}^{2} \equiv(n+2) \zeta^{n+1}\left(x_{1} x_{n}+x_{2} x_{n-1}+\right.\ldots) \\
& \equiv(n+2) \zeta^{n+1} \sum_{r=1}^{n} x_{r} x_{n+1-r} \\
& \sum \eta^{2 j} P_{j}^{2} \equiv(n+2) \zeta^{n}\left(x_{0} x_{n}+x_{1} x_{n-1}+\ldots\right) \\
& \equiv(n+2) \zeta^{n} \sum_{r=0}^{n} x_{r} x_{n-r} \\
& \sum \eta^{3 j} P_{j}^{2} \equiv(n+2) \zeta^{n-1}\left(x_{0} x_{n-1}+x_{1} x_{n-2}\right.+\ldots) \\
& \equiv(n+2) \zeta^{n-1} \sum_{r=0}^{n-1} x_{r} x_{n-1-r}
\end{aligned}
$$
\]

So one obtains a net N of quadrics

$$
\begin{equation*}
\lambda Q_{0}+\mu Q_{1}+\nu Q_{2}=0 \tag{1.2}
\end{equation*}
$$

all of which have all $\infty^{1} H$ as polars: it is based on the quadratic forms

$$
Q_{0} \equiv \sum_{r=1}^{n} x_{r} x_{n+1-r}, \quad Q_{1} \equiv \sum_{r=0}^{n} x_{r} x_{n-r}, \quad Q_{2} \equiv \sum_{r=0}^{n-1} x_{r} x_{n-1-r}
$$

Note that any $x_{r}{ }^{2}$ occurring in a sum only appears once, while any product appears twice. It is sometimes convenient to speak of the quadric $Q_{i}=0$ merely as $Q_{i} . Q_{0}$ is a cone with vertex X_{0}, Q_{2} a cone with vertex X_{n}; here, as is customary, X_{r} denotes the vertex of the simplex of reference opposite to $x_{r}=0 . X_{0}$ and X_{n} are not only vertices of cones: they are on the octavic $(n-3)$-fold B, the base locus of N, and so may be expected to be singular points of the Jacobian curve \mathscr{J} of N.
2. If η^{p} and η^{q} are not equal

$$
\begin{equation*}
\eta^{p} \eta^{q} Q_{0}-\left(\eta^{p}+\eta^{q}\right) \zeta Q_{1}+\zeta^{2} Q_{2} \tag{2.1}
\end{equation*}
$$

lacks the terms in $P_{p}{ }^{2}$ and $P_{q}{ }^{2}$ so that the quadric is a cone; its vertex, common to all $P_{j}=0$ save for $j=p, q$ is a vertex of H; all vertices of all H are on \mathscr{J}. Each edge of an H, common to $n-1$ of its $n+2$ bounding primes, is a trisecant of \mathscr{J} because it contains three vertices of H. Likewise a bounding plane, common to $n-2$ bounding primes, is met by the other four in the sides of a quadrilateral and meets \mathscr{J} at the six vertices of this; a bounding solid meets \mathscr{J} at the ten vertices of a pentahedron; and so on.

If $\eta^{p}+\eta^{q}=0$ the cones (2.1) are just the pencil in N spanned by Q_{0} and Q_{2}. This cannot happen unless n is even, requiring as it does the presence of -1 among the $(n+2)$ th roots of unity; but in this event (2.1) is

$$
\begin{equation*}
\sum_{r=1}^{n}\left(\zeta^{2} x_{r-1} x_{n-r}-\eta^{2 p} x_{r} x_{n+1-r}\right) \quad(n \text { even }) \tag{2.2}
\end{equation*}
$$

The sum of the pair of suffixes in every product here is odd, so that one suffix of every pair is odd and the other even and (2.2) is

$$
2 \sum_{s=1}^{n / 2} x_{2 s-1}\left(\zeta^{2} x_{n-2 s}-\eta^{2 p} x_{n-2 s+2}\right)
$$

a quadratic form not in $n+1$ but in only n variables. It represents a cone whose vertex

$$
\left(1,0, u, 0, u^{2}, \ldots, 0, u^{n / 2}\right)
$$

is the common zero of these n variables; here $u=\zeta^{2} / \eta^{2 p}$. As the cone varies in the pencil its vertex traces a rational normal curve of order $\frac{1}{2} n$ in the $\left[\frac{1}{2} n\right] X_{0} X_{2} \ldots X_{n}$. This curve, when n is even, is part of \mathscr{J}.

When (2.1) is divided by $\eta^{(p+q) / 2}$ it becomes

$$
\eta^{(p+q) / 2} Q_{0}-2 \zeta \cos \frac{(p-q) \pi}{n+2} Q_{1}+\zeta^{2} \eta^{-(p+q) / 2} Q_{2}
$$

the cones are just those quadrics (1.2) for which

$$
\frac{\mu^{2}}{\nu \lambda}=4 \cos ^{2} \frac{(p-q) \pi}{n+2}
$$

They belong to different families according to the value of this squared cosine. Since p, q are unequal integers among $0,1,2, \ldots, n+1$

$$
0<|p-q| \leqq n+1
$$

But two values of $|p-q|$ whose sum is $n+2$ yield the same squared cosine, so that none higher than the integral part of $\frac{1}{2}(n+2)$ need be used. And since $p-q=\frac{1}{2} n+1$ has, when n is even, been disposed of, the number of different families here is the integral part of $\frac{1}{2}(n+1)$. Each provides, with ζ varying, a singly-infinite family of cones whose vertices trace a component of \mathscr{J}. And every family includes both Q_{0} and Q_{2}.

For the lower values of n the circumstances are easy to describe.
If $n=3, \mu^{2} /(4 \nu \lambda)$ is either $\cos ^{2} \pi / 5$ or $\cos ^{2} 2 \pi / 5$. The geometry of this figure was described in [4, pp. 471-480].

If $n=4, \mu^{2} /(4 \nu \lambda)$ is either $\cos ^{2} \pi / 6=3 / 4$ or $\cos ^{2} \pi / 3=1 / 4$. The The Jacobian curve has, n being even, an additional third component, here a conic in the plane $X_{0} X_{2} X_{4}$. The geometry of this figure has only been described very recently [5].

If $n=5, \mu^{2} /(4 \nu \lambda)$ is one of

$$
\cos ^{2} \pi / 7, \cos ^{2} 2 \pi / 7, \cos ^{2} 3 \pi / 7
$$

and \mathscr{J} is tripartite. The following paragraphs are concerned with the geometry of this figure in [5].

The ten vertices of the pentahedron conjugate to ϕ_{0}.
3. The geometry in [5]. In [5] the primes
(3.1) $x_{0}+x_{1} \theta+x_{2} \theta^{2}+x_{3} \theta^{3}+x_{4} \theta^{4}+x_{5} \theta^{5}=0$
osculate, when θ varies, a rational normal quintic C; the vertices X_{0}, X_{5} of the simplex of reference are on C with respective parameters $\infty, 0$. If (3.1) is looked upon as a restriction on θ when the x_{i} have been assigned it shows that the point common to five osculating primes of C is
(3.2) $\left(-e_{5}, e_{4},-e_{3}, e_{2},-e_{1}, 1\right)$
where e_{i} is the elementary symmetric function of degree i in the parameters of the five contacts.

Take $\epsilon=\exp (2 \pi i / 7)$ and H to be bounded by those seven primes (3.1) for which $\theta=\epsilon^{j} \zeta(0 \leqq j \leqq 6)$. The different values of ζ afford an
infinity of H; each H has 21 vertices whose locus, as ζ varies, is \mathscr{J}. The identity

$$
\begin{aligned}
& (1-\epsilon)\left(\theta^{7}-\zeta^{7}\right) \equiv(\theta-\zeta)(\theta-\epsilon \zeta)\left\{(1-\epsilon) \theta^{5}+\left(1-\epsilon^{2}\right) \theta^{4} \zeta\right. \\
& \left.\quad+\left(1-\epsilon^{3}\right) \theta^{3} \zeta^{2}+\left(1-\epsilon^{4}\right) \theta^{2} \zeta^{3}+\left(1-\epsilon^{5}\right) \theta \zeta^{4}+\left(1-\epsilon^{6}\right) \zeta^{5}\right\}
\end{aligned}
$$

shows, with (3.2), that when $\zeta=\phi$ the vertex of H opposite to the solid common to the osculating primes of C at $\theta=\phi, \epsilon \phi$ is

$$
\begin{equation*}
\left[\left(1-\epsilon^{6}\right) \phi^{5},\left(1-\epsilon^{5}\right) \phi^{4},\left(1-\epsilon^{4}\right) \phi^{3},\left(1-\epsilon^{3}\right) \phi^{2},\left(1-\epsilon^{2}\right) \phi, 1-\epsilon\right] . \tag{3.3}
\end{equation*}
$$

So this vertex traces, as ϕ varies, a rational normal quintic Γ_{0}.
Now only 7 of the 21 vertices of H are here accounted for. Just as a cyclic group of order 7 has three pairs of inverse operations, so the bounding primes of H can succeed each other in three different cycles: ϵ and ϵ^{6} correspond to one cycle traversed in opposite senses, ϵ^{2} and ϵ^{5} to a second, ϵ^{4} and ϵ^{3} to a third. The phenomenon is mirrored in the Euclidean plane by the linking with a regular convex heptagon of two stellated heptagons, all three heptagons sharing the same vertices. So the vertices of H trace three rational normal quintics:

$$
\left\{\begin{array}{l}
\Gamma_{0}: x_{6-j}=\left(1-\epsilon^{j}\right) \phi^{j-1} \tag{3.4}\\
\Gamma_{1}: x_{6-j}=\left(1-\epsilon^{2 j}\right) \psi^{j-1} \\
\Gamma_{2}: x_{6-j}=\left(1-\epsilon^{4 j}\right) \chi^{j-1}
\end{array} \quad j=6,5,4,3,2,1\right.
$$

each Γ_{i} in the cycle ($\Gamma_{0} \Gamma_{1} \Gamma_{2}$) being changed into its successor by the operation σ, of period 3, that replaces ϵ by ϵ^{2}. All three Γ_{i} contain X_{0} and X_{5} and share the same osculating spaces there; together they constitute \mathscr{J}, the (now tripartite) Jacobian curve.
4. In [5] N is based on

$$
\begin{aligned}
& Q_{0} \equiv 2\left(x_{1} x_{5}+x_{2} x_{4}\right)+x_{3}^{2}, Q_{1} \equiv 2\left(x_{0} x_{5}+x_{1} x_{4}+x_{2} x_{3}\right), \\
& Q_{2} \equiv 2\left(x_{0} x_{4}+x_{1} x_{3}\right)+x_{2}^{2} .
\end{aligned}
$$

The outcome of substituting the parametric form for Γ_{0} in Q_{0} is

$$
\begin{aligned}
& 2\left[\left(1-\epsilon^{5}\right) \phi^{4}(1-\epsilon)+\left(1-\epsilon^{4}\right) \phi^{3}\left(1-\epsilon^{2}\right) \phi\right]+\left(1-\epsilon^{3}\right)^{2} \phi^{4} \\
& =\phi^{4}\left[4+4 \epsilon^{6}+1+\epsilon^{6}-2\left(\epsilon^{5}+\epsilon+\epsilon^{4}+\epsilon^{2}+\epsilon^{3}\right)\right] \\
& =7\left(1+\epsilon^{6}\right) \phi^{4}=7 \epsilon^{3}\left(\epsilon^{4}+\epsilon^{3}\right) \phi^{4} .
\end{aligned}
$$

Such procedures show the results of the nine substitutions to be as follows:

	Γ_{0}	Γ_{1}	Γ_{2}
Q_{0}	$7 \epsilon^{3}\left(\epsilon^{4}+\epsilon^{3}\right) \phi^{4}$	$7 \epsilon^{6}\left(\epsilon+\epsilon^{6}\right) \psi^{4}$	$7 \epsilon^{5}\left(\epsilon^{2}+\epsilon^{5}\right) \chi^{4}$
Q_{1}	$14 \phi^{5}$	$14 \psi^{5}$	$14 \chi^{5}$
Q_{2}	$7 \epsilon^{4}\left(\epsilon^{3}+\epsilon^{4}\right) \phi^{6}$	$7 \epsilon\left(\epsilon^{6}+\epsilon\right) \psi^{6}$	$7 \epsilon^{2}\left(\epsilon^{5}+\epsilon^{2}\right) \chi^{6}$

So the ten intersections of (1.2) with any Γ_{i} lie four at X_{0} (parameter ∞), four at X_{5} (parameter 0) and two elsewhere, these latter being in general distinct from X_{0}, X_{5} and from each other. The parameters of the latter pair on, say, Γ_{0} are zeros of the quadratic

$$
\lambda \epsilon^{3}\left(\epsilon^{4}+\epsilon^{3}\right)+2 \mu \phi+\nu \epsilon^{4}\left(\epsilon^{3}+\epsilon^{4}\right) \phi^{2}
$$

and coincide when

$$
\mu^{2}=\nu \lambda\left(\epsilon^{4}+\epsilon^{3}\right)^{2}=4 \nu \lambda \cos ^{2}(\pi / 7) .
$$

This agrees with (1.2) then being a cone whose vertex is on Γ_{0}. Similarly (1.2) is a cone whose vertex is on Γ_{1} when

$$
\mu^{2}=4 \nu \lambda \cos ^{2}(2 \pi / 7)
$$

and a cone whose vertex is on Γ_{2} when

$$
\mu^{2}=4 \nu \lambda \cos ^{2}(4 \pi / 7) .
$$

5. The polar primes of (3.3) with respect to Q_{0}, Q_{1}, Q_{2} are found to be

$$
L=M, L=\epsilon M, L=\epsilon^{2} M
$$

where

$$
L \equiv \sum_{j=0}^{5} \phi^{j} x_{j}, \quad M \equiv \sum_{j=0}^{5}(\epsilon \phi)^{j} x_{j} .
$$

All three contain the solid $L=M=0$ which is therefore the space conjugate to (3.3) in the sense of Section 1. This space, as remarked in Section 2, meets \mathscr{J} in the ten vertices of a pentahedron. How are these ten points distributed among the Γ_{i} ?

Take the point with parameter θ on Γ_{0}. The conjugate solid is $L=M=0$ with ϕ therein replaced by θ. Substitution from the first member of (3.4) shows that it meets Γ_{0} in any points satisfying both the conditions (summations running from $j=1$ to $j=6$)

$$
\begin{aligned}
\sum \theta^{6-j}\left(1-\epsilon^{j}\right) \phi^{j-1} & =0=\sum(\epsilon \theta)^{6-j}\left(1-\epsilon^{j}\right) \phi^{j-1} \\
\sum \theta^{-j}\left(1-\epsilon^{j}\right) \phi^{j} & =0=\sum(\epsilon \theta)^{-j}\left(1-\epsilon^{j}\right) \phi^{j} \\
\sum\left(\epsilon \theta^{-1} \phi\right)^{j} & =\sum\left(\theta^{-1} \phi\right)^{j}=\sum\left(\epsilon^{-1} \theta^{-1} \phi\right)^{j} .
\end{aligned}
$$

These conditions hold, with each sum -1 , when

$$
\begin{equation*}
\phi=\epsilon^{2} \theta, \epsilon^{3} \theta, \epsilon^{4} \theta, \epsilon^{5} \theta \tag{5.1}
\end{equation*}
$$

and the solid conjugate to a point of Γ_{0} is quadrisecant to Γ_{0}.
In order to find where this same solid meets Γ_{1} one has to substitute not from the first but from the second member of (3.4).

The resulting conditions are

$$
\begin{aligned}
& \sum \theta^{6-j}\left(1-\epsilon^{2 j}\right) \psi^{j-1}=0=\sum(\epsilon \theta)^{6-j}\left(1-\epsilon^{2 j}\right) \psi^{j-1} \\
& \sum \theta^{-j}\left(1-\epsilon^{2 j}\right) \psi^{j}=0=\sum(\epsilon \theta)^{-j}\left(1-\epsilon^{2 j}\right) \psi^{j} \\
& \sum\left(\theta^{-1} \psi\right)^{j}=\sum\left(\epsilon^{2} \theta^{-1} \psi\right)^{j}, \sum\left(\epsilon^{-1} \theta^{-1} \psi\right)^{j}=\sum\left(\epsilon \theta^{-1} \psi\right)^{j} .
\end{aligned}
$$

All four sums here are -1 when

$$
\begin{equation*}
\psi=\epsilon^{2} \theta, \epsilon^{3} \theta, \epsilon^{4} \theta \tag{5.2}
\end{equation*}
$$

The same solid is found, similarly, to meet Γ_{2} where

$$
\begin{equation*}
\chi=\epsilon^{2} \theta, \epsilon^{5} \theta, \epsilon^{6} \theta, \tag{5.3}
\end{equation*}
$$

and all its ten intersections with \mathscr{J} are accounted for.
6. These ten points $(5.1,2,3)$ are collinear in threes on the edges of the pentahedron, trisecants of the Jacobian curve. No individual Γ_{i}, being a rational normal curve, can have any trisecants; but chords of one Γ_{i} may meet a second, and there may be transversals, trisecant to \mathscr{J} by meeting each Γ_{i} once. Both possibilities are realised.

The trivial remark that $1+\epsilon^{j}-1=\epsilon \cdot \epsilon^{j-1}$ leads one to write

$$
\left(1-\epsilon^{2 j}\right) \theta^{j-1}-\left(1-\epsilon^{j}\right) \theta^{j-1}=\epsilon\left(1-\epsilon^{j}\right)(\epsilon \theta)^{j-1}
$$

which shows that the join of $\psi=\theta$ on Γ_{1} to $\phi=\theta$ on Γ_{0} meets Γ_{0} again at $\phi=\epsilon \theta$. Similarly the join of $\chi=\theta$ on Γ_{2} to $\psi=\theta$ on Γ_{1} meets Γ_{1} again at $\psi=\epsilon^{2} \theta$, and the join of $\phi=\theta$ on Γ_{0} to $\chi=\theta$ on Γ_{2} meets Γ_{2} again at $\chi=\epsilon^{4} \theta$.

So six of the ten edges of the above pentahedron are recognized, namely those containing the triads of collinear points

$$
\begin{array}{ll}
\phi=\psi=\epsilon^{2} \theta, \phi=\epsilon^{3} \theta ; & \psi=\chi=\epsilon^{2} \theta, \psi=\epsilon^{4} \theta ; \\
\phi=\psi=\epsilon^{3} \theta, \phi=\epsilon^{4} \theta ; & \chi=\phi=\epsilon^{2} \theta, \chi=\epsilon^{6} \theta ; \\
\phi=\psi=\epsilon^{4} \theta, \phi=\epsilon^{5} \theta ; & \chi=\phi=\epsilon^{5} \theta, \chi=\epsilon^{2} \theta .
\end{array}
$$

Since $\phi=\psi(=\theta)$ is a $(1,1)$ correspondence, between the two quintic curves Γ_{0} and Γ_{1}, with united points at X_{0} and X_{5} the chords of Γ_{0} which meet Γ_{1} generate a rational scroll R_{0} of order $[1, \mathrm{p} .16] 5+5-2$ $=8 ; \Gamma_{0}$ is a nodal curve on R_{0}. Similarly for octavic scrolls R_{1} and R_{2} with nodal curves Γ_{1} and Γ_{2}. These scrolls contribute 24 to the total order [3, pp. 205, 209] 40 of the scroll of trisecants of \mathscr{J}; the residue, of order 16, is provided by the transversals whose existence is quickly proved. For, when $\epsilon^{7}=1$,

$$
1-\epsilon+\epsilon\left(1-\epsilon^{2}\right)+\epsilon^{3}\left(1-\epsilon^{4}\right)=0
$$

Here write ϵ^{j} for ϵ and multiply by $\epsilon^{a(j-1)}$:

$$
\begin{align*}
\left(1-\epsilon^{j}\right) \epsilon^{a(j-1)}+\epsilon\left(1-\epsilon^{2 j}\right) \epsilon^{(a+1)(j-1)} & \tag{6.1}\\
& +\epsilon^{3}\left(1-\epsilon^{4 j}\right) \epsilon^{(a+3)(j-1)}=0,
\end{align*}
$$

showing that the points $\phi=\epsilon^{a} \theta, \psi=\epsilon^{(a+1)} \theta, \chi=\epsilon^{(a+3)} \theta$ on $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ are collinear. For $a=2,3$ one has two edges of the above pentahedron. Moreover there is a second relation

$$
1-\epsilon+\epsilon^{-2}\left(1-\epsilon^{2}\right)+\epsilon^{-6}\left(1-\epsilon^{4}\right)=0
$$

giving rise to

$$
\begin{align*}
\left(1-\epsilon^{j}\right) \epsilon^{a(j-1)}+\epsilon^{-2}\left(1-\epsilon^{2 j}\right) & \epsilon^{(a-2)(j-1)} \tag{6.2}\\
& +\epsilon^{-6}\left(1-\epsilon^{4 j}\right) \epsilon^{(a-6)(j-1)}=0
\end{align*}
$$

showing that
$\phi=\epsilon^{a} \theta, \psi=\epsilon^{a-2} \theta, \chi=\epsilon^{a-6} \theta$ on $\Gamma_{0}, \Gamma_{1}, \Gamma_{2}$ are collinear. For $a=4,5$ one notes the remaining two edges of the pentahedron. All three Γ_{i} are nodal on the scroll of transversals. For instance: through the point $\psi=\epsilon^{a} \theta$ on Γ_{1} pass two transversals, one joining it to $\chi=\epsilon^{a+2} \theta$ on Γ_{2} and $\phi=\epsilon^{a-1} \theta$ on Γ_{0}, the other joining it to $\chi=\epsilon^{a-4} \theta$ on Γ_{2} and $\phi=\epsilon^{a+2} \theta$ and Γ_{0}. These facts are patent on dividing (6.1) by ϵ^{j-1} and multiplying (6.2) by $\epsilon^{2(j-1)}$.

In the figure ψ_{k} means the point on Γ_{1} whose parameter is $\epsilon^{k} \theta$, and similarly for Γ_{2} and Γ_{0}.

References

1. H. F. Baker, Principles of geometry, Vol. VI (Cambridge, 1933).
2. E. Bertini, Introduzione alla geometria proiettiva degli iperspazi (Messina, 1923).
3. W. L. Edge, A special net of quadrics, Proc. Edinburgh Math. Soc. (2) \& (1936), 185-209.
4. -_ Notes on a net of quadric surfaces V: The pentahedral net, Proc. London Math. Soc. (2) 47 (1942), 455-480.
5. -_ A special polyhedral net of quadrics, Journal London Math. Soc. (2) 22 (1980), 46-56.

Inveresk House, Musselburgh, Scotland

[^0]: Received January 22, 1980.

