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SOME NEW GENERALISATIONS OF INEQUALITIES OF HARDY AND
LEVIN-COCHRAN-LEE

ALEKSANDRA CIZMESIJA AND JOSIP PECARIC

In this paper finite versions of Hardy's discrete, Hardy's integral and the Levin-
Cochran-Lee inequalities will be considered and some new generalisations of these
inequalities will be derived. Moreover, it will be shown that the constant factors
involved in the right-hand sides of the integral results obtained are the best possible.

1. INTRODUCTION

During the 1920's, G. H. Hardy (see [6], or [8]) proved two highly important classical
inequalities, the so-called Hardy's discrete and integral inequalities. They are stated in
the following two theorems.

THEOREM A. Ifp e R, p > 1, and a = (a,i, a^,...) is a sequence of non-negative
real numbers, then the inequality

(1)

holds, unless a,, = 0 for all n 6 N. The constant (p/(p — l ) ) p is the best possible.

THEOREM B. Let p, k € R, p > 1 and k ^ 1. Suppose f is a non-negative
measurable function such that x1"*^/ G 1^(0, oo), and the function F is defined on
(0,oo) by

f
Jo

rXf(t)dt,
/o

F(x) =

f(t)dt,
\ J X

Then

f
Jx

unJess / = 0. The constant (p/\k - l | ) p is the best possible.
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We also need to consider a pair of well-known exponential integral inequalities, dis-
covered much later, in the eighties. They are given in

THEOREM C. Let a, 7 e R, a ^ 0, and f be a positive measurable function on
(0,00) suet that /0°° a:7"1 /^) dx < 00. Then the inequalities

(3) f°°x-'-1 exp [~ f* tf-1 log f(t) dt] dx ^ e^a fV^/fcc) dx,

for a > 0, and

(4) j f V 1 exp [~ jf°° f*"1 log/(t) dt

for a < 0, ioid. Tie constant e7/a is the best possible for both inequalities.

Inequality (3) is due to Cochran and Lee, [3], while inequality (4) represents its
companion result, proved by Love in [7] (see also [8] for both results). Because of the
reasons explained in [4] and [5], these results will be called the Levin-Cochran-Lee
inequalities.

A natural problem closely related to this topic is to investigate inequalities of the
same type as relations (l)-(4), but with one difference: the series on both sides of (1) are
replaced by their partial sums and the outer integrals in (2)-(4), instead of being over
(0,00), are taken over some of its subsets.

In our paper [4] (see also [5]), it was shown that if both series in Hardy's discrete
inequality are restricted to a finite number of terms, n, then the best possible constant
for (1) can be replaced with a smaller constant dependent on n. That result is

THEOREM D. Ifp and a are as in Theorem A and n € N, n > 1, is arbitrary,
then

unless a\ = • • • = <!„ = 0.

On the other hand, two papers, [1] and [2] appeared recently, that deal with some
new generalisations of Hardy's integral inequality (2). Bicheng, Zhuohua and Debnath
proved the following:

THEOREM E. Let real numbers p and b be such that p > 1 and b > 0, and let f
be a non-negative measurabie function.

(i) If 0 < /0
6 fp(x) dx<oo, then
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The constant (p/{p - l ))p is the best possible.

(ii) If 0 < fi° xPf(x) dx < oo, then

The constant p* is the best possible.

Note that Theorem E considered only two particular cases of the parameter k from
inequality (2): k = p in (i), and A; = 0 in (ii).

The main objective of this paper is to obtain generalisations of all the previously
mentioned discrete and integral inequalities. First, Theorem D will be improved by
providing a smaller upper bound for the left-hand side of inequality (5). That result will
prove that the best possible constant factor for the infinite case is not the best possible for
the finite series. Furthermore, Theorem E will be generalised to cover all the admissible
choices of the parameter k from Hardy's integral inequality (2), that is, the analysis of
the finite versions of inequality (2) will be completed. Moreover, the same procedure will
be applied to the Levin-Cochran-Lee inequalities (3) and (4) to derive their versions for
intervals (0,6) and (6, oo). Finally, it will be shown that the constants involved in the
right-hand sides of all these integral inequalities are the best possible.

The method that will be used in the proofs is mainly based on mixed-means in-
equalities related to discrete and integral power means, obtained in [4] and [9] (see also
[5]). The desired relations will be proved by a careful analysis of the proofs of Theorem
A, Theorem B and Theorem C given in [4].

2. GENERALISATION OF HARDY'S DISCRETE INEQUALITY

In this section we give an improvement of Theorem D.

THEOREM 1 . Let p € R, p > 1, and let a = (ai, 02,...) be a sequence of non-
negative real numbers. Then the inequality

" /1 * \P / " \ p JL / y>*-i /-

w 5Z(iE*) <--'(L'-*) £(»-!?£
holds for aline N. Equality holds if and only ifn > 1 and ai = • • • = a* = 0, or n = 1.

PROOF: Let n e N be fixed. The discrete non-weighted mixed (l,p)-means inequality,
obtained in [9], is

(9)
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n
with equality only if ax = • • • = a,,. Denote Sn = J2 l~lfv. Starting from (9), a simple

J=I
calculation yields the following sequence of relations:

iE-) ^ E(jE«) 1
i=i / L*=i v i=i ' J

Jt=i

The inequality in the second line of (10) is obtained by applying Jensen's inequality to
the convex function I ^ I ' . The last term in this inequality is equal to

so (8) is proved. To complete the proof, we discuss the conditions for achieving equality
in (8). The case n = 1 is trivial. Observe that for n > 1 equality will occur if and only
if there is equality in (9) and in Jensen's inequality, that is, only if

O l = • • • = On a n d o? = a f + o5 = ---

that is, ai = • • • = On = 0. D

REMARK 1. Note that f̂ "1/" < / " ar1'" dx = (p/(p - l))nf*-lV', since the left-hand
i=i

side of this inequality is obviously the lower Darboux sum for f£ x~llpdx. Therefore,
inequality (8) is sharper than the relation

53 l~llp 1 is the best possible
1=1 /

constant factor a« involved in the right-hand side of (8) or not. However, the contribution
of Theorem 1 is in providing an explicit upper bound for a«, dependent on n and less
than(p / (p- l ) ) p .

3. GENERALISATION OF HARDY'S INTEGRAL INEQUALITY

Our next step is to obtain an integral version of Theorem 1. The results that
generalise the inequalities (6) and (7) are given in the following theorem.
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THEOREM 2 . Let p, k and b be real numbers such that p > 1, k ^ 1 and 6 > 0,

and let f be a non-negative measurable function.

(i) If k > 1 and 0 < Jo* z*-fc/*(x) dx < oo, then

(ii) If k < 1 and 0 < / " ^ / " ( a : ) dx < oo, then

The constant (p/|fc — l | ) p is the best possible for both inequalities.

P R O O F : The proof is based on a careful analysis of some results obtained in [4] (see

also [5]). Consider the case k > 1 first. In [4] we proved the following inequality for

non-negative measurable functions:

1/*

where the parameters a, 6, a, 7, r, s € R are such that a < b and r < s,r,s ^0. Ifr = l,
s = p> 1, a = 1, 7 = p — A; + l, a = 0 and 6 > 0 is arbitrary, (13) can be written in the
form

Since fix«k-1Vri-1dx = (p/(fc - l))^*"1)/", the right-hand side of (14) is equal to

r1-)" \-s f"x«k-1V>»-1 f Z*1 t^f cr(t)dt] l / Pd

/"' x((fc-D/P)-i T <r* dt dz
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so (11) is proved. The inequality in the second line of (15) is obtained by using Jensen's
inequality for the convex function x •-*• xp, applied to the term [f£ 1?~kfv{t) dt] , while
the equality in the fourth line of (15) is a consequence of Fubini's theorem. Note that
the inequality sign in (15) is strict, owing to the conditions on / from the statement of
Theorem 2.

We prove that the constant B = (p/(k- l))p is the best possible for inequality (11).
If it is not true, then there exists a smaller constant C, 0 < C < B, such that

Since 0 < (p/(k — 1 + y))p /* B as y \ 0, there exists a small positive number e such
that 0 < C < (p/(k - 1 + e))p < B. Let the function fe : (0,6] -> R be defined by
f£(x) = X((*-I+<0/J>)-I. Then we have

f. t1 - (!) " * < / W w * jf*-1*
and therefore,

]
This contradicts (16), so B is the best possible constant for (11).

The proof of (12) is similar. It is based on the relation

also obtained in [4], that holds for non-negative measurable function / and a, 7,6, r,s €
R such that b > 0 and r < s , r , s ^ 0 . Inequality (12) follows by starting from (17),
rewritten with r = 1, s = p > 1, a = 1, 7 = p — k + 1 and arbitrary b > 0 as parameters,
then applying Jensen's inequality, and finally, by using Fubini's theorem. Now, it is only
left to prove that D = (p/(l — k))p is the best possible constant for (12). If it is not true,
then the constant factor D on the right-hand side of this relation can be replaced with a
smaller constant 0 < K < D. Considering e > 0 such that K < (p/(l - k + e))p < D,
and the function ge : [b, 00) —>• R denned by ge(x) = x((*-1-e)/rt-1, as in the previous
case we obtain
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This is a contradiction, and hence D is the best possible constant for (12). That completes
the proof. D

4. SOME IMPROVEMENTS O F THE L E V I N - C O C H R A N - L E E INEQUALITIES

To conclude this paper, we establish generalisations of inequalities (3) and (4) from
Theorem C of the same type as the improvements of (1) and (2) obtained in the previous
two sections. We also discuss the best possible constants for these inequalities. The
results are given in the next theorem.

THEOREM 3 . Let a, 7, b € R be such that a ^ O and b > 0, and let f be a
positive measurable function.

(i) If a > 0 and 0 < /0*af-1/(:r) dx < 00, then

(18) y V 1 exp [£ J' f-i log /(*) dtl dx < e7/aAl - (f ) 1 x<~lf{x) dx.

(ii) If a < 0 and 0 < f™x''-1f(x) dx < 00, then

j fV 1 exp [-£ j P If1 log /(«) <ft] dx < e7/ajT[l - Q) °] s^ /(19)

Tie constant e7^a is the best possible for both inequalities.

P R O O F : First, let a > 0. To begin the proof, we consider the following inequality from
[4] (see also [5]):

^ f " "
where a, 6, s € R are such that a <b and s > 0. If this is rewritten with 5 = 1 and o = 0,
we have

(20) I x7"1 exp [— r t"-1 log f[t) <ft] dx

Since J 0 V - 1 logxdx = (6°/a)(log6 - (I/a)), the second line of (20) is equal to

(21) < efla • ̂  • / x0"1 fXf-lf{t)dtdx.
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The inequality in (21) was obtained by Jensen's inequality for the convex function i n e 1 ,
applied to the term log [/o

s<7~1/(*) dt]. Note that under the conditions of the theorem
the inequality really is strict. Further, using Fubini's theorem the last line in (21) is equal
to

e7/a • £ •

so inequality (18) is proved. Consider the case a < 0 now. The companion result (19)
can be derived by the same technique, but this time we start from the relation

(22) ^ ^

( a f°° r i r°° l x^s i

where s is a positive real parameter. This is obtained in [4] (se also [5]). Inequality (19)
is a consequence of (22) rewritten for 5 = 1 , Jensen's inequality and Fubini's theorem.

We prove that e1^" is the best possible constant for (18). For any e > 0 and the
function f£ : (0,6] -* R defined by f£(x) = ae~'r/axas-"', the left-hand side of (18) is
equal to:

— (ae - 7 ) /
^ O

Lc = J x7"1 exp [ ^ I* t"-1 log fe{t) dt] dx

= f^x7-1exp[^log(ae-7/a)
JO L3"

= ae~e / iffi-'(i
Jo

toe

while on the right-hand side of (18) we have

e

The desired result follows immediately, since

1 ^ —• < ee -»• 1, as e -> 0.

The proof that e^a is the best possible constant for (19) is similar, if the function
g£ : [b, oo) -> R, g£(x) = -ae"7/axQ£"'1', is considered. D
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