MAXIMAL CONNECTED TOPOLOGIES

J. PELHAM THOMAS

(Received 9 January 1967)

If (X, \mathcal{F}) is a set X with topology \mathcal{F} we shall say that \mathcal{F} is connected if (X, \mathcal{F}) is a connected topological space. We shall investigate the existence of and the properties of maximal connected topologies.

If $A \subset X$ the interior of A will be denoted Int (A) and the closure of A will be $\operatorname{Cl}(A)$. If it is necessary to distinguish between topologies on the same set we shall use subscripts. For example $\operatorname{Cl}_2(A)$ will denote the closure of set A with respect to topology \mathcal{F}_2 . If S is a set of subsets of X, $\Phi(S)$ will denote the topology generated by S. If $V \subset X$ we let $(V, \mathcal{F}|V)$ denote the set V with the topology induced by \mathcal{F} . If \mathcal{F}_1 and \mathcal{F}_2 are topologies on X we shall denote $K(\mathcal{F}_1, \mathcal{F}_2) = \{x \in X | x \text{ has a neighborhood for } \mathcal{F}_2 \text{ which is not a neighborhood of } x \text{ for } \mathcal{F}_1\}$.

Parts of this paper were taken from the author's dissertation done under the supervision of Dr. E. E. Enochs at the University of South Carolina.

DEFINITION 1. A topology \mathcal{F} on a set X will be said to be *finer* than a topology \mathcal{F}_1 on X if $\mathcal{F}_1 \subset \mathcal{F}$. If in addition we have $\mathcal{F} \neq \mathcal{F}_1$ we say that \mathcal{F} is *strictly finer* than \mathcal{F}_1 . A connected topology \mathcal{F} will be said to be maximal connected if \mathcal{F}_1 strictly finer than \mathcal{F} implies \mathcal{F}_1 is not connected.

EXAMPLE 1. Let X be any non-empty set and let $x \in X$. Define \mathcal{F} by letting $V \in \mathcal{F}$ if $V \subset X$ and $V = \emptyset$ or $x \in V$. Then \mathcal{F} is maximal connected.

EXAMPLE 2. Let X be any set, $x \in X$. Let $V \subset X$ belong to \mathcal{T} if and only if $x \notin V$ or V = X. Then \mathcal{T} is maximal connected.

We note that each of these examples is T_0 . This condition is necessary.

THEOREM 1. Let \mathcal{F}_1 be a maximal connected topology on X. Then (X, \mathcal{F}_1) is T_0 .

PROOF. Suppose $x, y \in X$, $x \in \operatorname{Cl}_1(\{y\})$, $y \in \operatorname{Cl}_1(\{x\})$, $x \neq y$. Let $\mathscr{F}_2 = \Phi(\mathscr{F}_1 \cup \{\{y\}\})$. Then \mathscr{F}_2 is strictly finer than \mathscr{F}_1 , hence \mathscr{F}_2 is not connected. Suppose (A, B) is an open partition of (X, \mathscr{F}_2) . Then either $\{x, y\} \subset A$ or $\{x, y\} \subset B$ for the neighborhoods of x are the same for \mathscr{F}_1 and \mathscr{F}_2 . So suppose $\{x, y\} \subset A$. Then $A \in \mathscr{F}_1$ for there exists an open \mathscr{F}_1 neighborhood V of $x, V \subset A$. But V is a neighborhood of y contained in A,

and every other point of A has a neighborhood contained in A since the neighborhoods of $z \neq y$ are the same for \mathcal{F}_1 and \mathcal{F}_2 . Clearly $B \in \mathcal{F}_1$. Thus (A, B) is an open partition of (X, \mathcal{F}_1) , a contradiction.

Neither of the topological spaces in the previous examples are T_1 . However, there do exist maximal connected topologies which are T_1 , as the following example will show. To the author's knowledge it is an open question whether there are maximal connected T_2 topologies.

Example 3. Let X be an infinite set and let $\mathscr F$ be the filter of complements of finite sets, $\mathscr U$ an ultrafilter finer than $\mathscr F$. Let $\mathscr F_1=\varPhi(\mathscr U)$. Then $\mathscr F_1$ is maximal connected and T_1 .

Theorem 2. Let (X, \mathcal{F}_1) be a finite connected topological space. Then there exists a maximal connected topology \mathcal{F}_2 on X such that $\mathcal{F}_1 \subset \mathcal{F}_2$. The proof is easy and will be left to the reader.

THEOREM 3. Let (X, \mathcal{F}_1) be a maximal connected topological space and let V be an open connected subset of (X, \mathcal{F}_1) . Then $(V, \mathcal{F}_1|V)$ is maximal connected.

PROOF. If $(V, \mathcal{F}_1|V)$ is not maximal connected let \mathcal{S}_1 be a topology on V such that \mathcal{S}_1 is strictly finer than $\mathcal{F}_1|V$ and (V, \mathcal{S}_1) is connected. Let $W \subset V$ be such that $W \in \mathcal{S}_1 - (\mathcal{F}_1|V)$. Then $\mathcal{S}_2 = \Phi(\mathcal{F}_1|V \cup \{W\})$ is connected and is strictly finer than $\mathcal{F}_1|V$. Let $\mathcal{F}_2 = \Phi(\mathcal{F}_1 \cup \{W\})$. Then \mathcal{F}_2 is strictly finer than \mathcal{F}_1 so let (A, B) be an open partition of (X, \mathcal{F}_2) . Then either $V \subset A$ or $V \subset B$, for otherwise $(V \cap A, V \cap B)$ is an open partition of $(V, \mathcal{F}_2|V) = (V, \mathcal{S}_2)$, so assume $V \subset A$. Hence $K(\mathcal{F}_1, \mathcal{F}_2) \subset W \subset V \subset A$, which implies $A \in \mathcal{F}_1$ since $V \in \mathcal{F}_1$. Clearly $B \in \mathcal{F}_1$. Hence (A, B) is an open partition of (X, \mathcal{F}_1) which is impossible.

DEFINITION 2. Let a and b be points of a set S and let $H_1, H_2, \cdots H_n$ be a finite collection of subsets of S. This collection is said to be a *simple chain from a to b* if and only if

- i) $a \in H_1 H_2$, $b \in H_n H_{n-1}$
- ii) $H_i \cap H_j \neq \emptyset$, if and only if $|i-j| \leq 1$, $i = 1, 2, \dots, n$, $j = 1, 2, \dots, n$.

The above definition is a slight modification of that given by [1] in that we require $a \notin H_2$ and $b \notin H_{n-1}$. It is easy to see that with this change the following theorem, also from [1], remains valid.

THEOREM 4. A space S is connected if and only if given any two points a and b of S and any open covering $\{G_{\alpha}\}$ of S, there exists a finite subcollection of $\{G_{\alpha}\}$ which is a simple chain from a to b.

THEOREM 5. Let (X, \mathcal{F}_1) be a topological space where X has at least two elements and \mathcal{F}_1 is such that every intersection of open sets is open. Let

I be the set of all isolated points of (X, \mathcal{F}_1) and let J = X - I. If $x \in J$ let V_x be the smallest neighborhood of x, (i.e. the intersection of all open neighborhoods of x). Then in order that (X, \mathcal{F}_1) be maximal connected it is necessary and sufficient that all of the following three statements be true:

- i) $\bigcup_{x \in J} V_x = X$.
- ii) If $x \neq x'$, x and $x' \in J$, then $V_x \cap V_{x'}$ has at most one point.
- iii) If $a, b \in (X, \mathcal{F}_1)$ then there exists exactly one simple chain from a to b of open sets V_x .

PROOF. Suppose (X, \mathcal{F}_1) is maximal connected.

- i) If $z \in X$ is in no V_x , then $\{z\}$ is open and closed which is impossible.
- ii) We shall show first that $V_x-\{x\}\subset I$ for every $x\in J$. Suppose $z\in V_x\cap J,\ z\neq x$. Let $\mathscr{F}_2=\varPhi(\mathscr{F}_1\cup\{\{z\}\})$, which is strictly finer than \mathscr{F}_1 . Hence, we can let (A,B) be an open partition of (X,\mathscr{F}_2) . Since $K(\mathscr{F}_1,\mathscr{F}_2)=\{z\}$ and $x\notin\{z\}$, we may assume $V_x\subset A$. But then (A,B) is an open partition of (X,\mathscr{F}_1) , which is impossible. Thus $z\in I$.

From the above we see that if $x, x' \in J$ then $V_x \cap V_{x'} \subset I$. Suppose $\{y_1, y_2\} \subset V_x \cap V_{x'}, y_1 \neq y_2$ and let $V'_{x'} = V_{x'} - \{y_2\}$. Let $\mathcal{F}_3 = \Phi(\mathcal{F}_1 \cup \{V'_{x'}\})$, which is strictly finer than \mathcal{F}_1 . Let (A, B) be an open partition of (X, \mathcal{F}_3) and suppose $x' \in A$. Then $V'_{x'} \subset A$ and $V_x \notin A$ since $K(\mathcal{F}_1, \mathcal{F}_3) = \{x'\}$. Thus we have $y_1 \in A$ and $y_2 \in B$. But then $x \in \operatorname{Cl}_3(A) \cap \operatorname{Cl}_3(B)$ since $\{y_1, y_2\} \subset V_x$. This is a contradiction.

iii) That there exists a simple chain of elements V_x from a to b is a consequence of connectedness (Theorem 4). Hence, suppose there are two such simple chains, $C_1 = \{V_{x_i}\}, i = 1, \cdots, n \text{ and } C_2 = \{C_{y_i}\}, j = 1, \cdots, m$. Let $S = \bigcup V_x$, $V_x \in C_1 \cup C_2$. Then S is open and connected and hence maximal connected for $\mathcal{F}_1|S$ by Theorem 3. Let j be the smallest integer such that $V_{x_j} \neq V_{y_j}$. If j = 1, we know that $V_{x_j} \cap V_{y_j} = \{a\}$ by ii). If $j \geq 2$ we have $V_{y_j} \cap V_{y_{j-1}} = V_{y_j} \cap V_{x_{j-1}}$, a single point, say c, again by ii). Let y = a if j = 1 and y = c otherwise. Let $V'_{y_j} = V_{y_j} - \{y\}$, and let $\mathcal{F}_2 = \Phi(\mathcal{F}_1 \cup \{V'_{y_j}\})$, which makes $\mathcal{F}_2|S$ strictly finer than $\mathcal{F}_1|S$, so $(S, \mathcal{F}_2|S)$ is not connected. But $S_2 = V'_j \cup (\cup V_{y_i}, i = j+1, \cdots, m)$ is connected for $\mathcal{F}_2|S$, $S_1 = \cup V_x$, $V_x \in C_1$, is connected for $\mathcal{F}_2|S$, and $b \in S_1 \cap S_2$, so $S_1 \cup S_2 = S$ is connected for $\mathcal{F}_2|S$, which is a contradiction.

To show that the conditions are sufficient suppose they hold for (X, \mathcal{F}_1) . We show first that (X, \mathcal{F}_1) is connected. Let $a \in (X, \mathcal{F}_1)$. With each $b \in X$ there is a simple chain C_b of sets V_x from a to b, by iii), and clearly $\cup V_x$, $V_x \in C_b$ is connected. Hence $X = \cup V_x$, $b \in X$, $V_x \in C_b$, is connected.

Suppose now that \mathcal{F}_2 is strictly finer than \mathcal{F}_1 and that (X, \mathcal{F}_2) is

connected. Let $V \in \mathcal{F}_2 - \mathcal{F}_1$. We may assume $x \in V \subset V_x$ for some $x \in J$. Then $V_x - V$ consists entirely of isolated points, by ii), and is non-empty. Let M be the open covering of (X, \mathcal{F}_2) consisting of all V_y such that $y \neq x, \ y \in J$, all $\{z\}$ such that $z \in V_x - V$, and V. Let $w \in V_x - V$. Let $C' = \{M_1, \cdots, M_n\}$ be a simple chain of elements of M from x to w. Note that since V is the only element of C which contains x we have $M_1 = V$. Hence, let $\{v\} = V \cap M_2$ and let $C' = C - \{V\}$. Then C' is a simple chain from v to w of elements of M. Furthermore, $V \notin C'$ and $V_x \notin C'$, so C' consists entirely of sets V_y , $y \neq x$, and hence is a simple chain from v to w of elements V_y . But $C'' = \{V_x\}$ is also such a chain which contradicts iii). Thus (X, \mathcal{F}_1) is maximal connected. This completes the proof.

The preceding theorem give us a means of quickly determining all the maximal connected topologies on small finite sets. We represent the members of I by solid dots and the members of J by open dots. We represent V_x by a line segment on which we place the dots representing x and the isolated points which are in V_x . The order of the dots on the line segment is immaterial. Thus if $X = \{a, b, c\}$ and $\mathcal{F} = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$ our sketch is

$$b \quad a \quad c \quad \text{or} \quad a \quad b \quad c$$

We can thus easily see and sketch all the non-homeomorphic maximal connected topologies on small finite sets by disregarding the naming of elements. We sketch below all the non-empty maximal connected topologies with less than 6 elements.

It should be an interesting counting problem to discover the number of maximal connected topologies on a set with n elements. To the author's knowledge this question is as yet unanswered.

Theorem 5 gives us a good source of examples for answering general questions about maximal connected topological spaces.

Example 4. The quotient of a maximal connected topological space by an equivalence relation is not necessarily maximal connected. For, let (X, \mathcal{F}) be

$$a$$
 b
 c

and let $R = \{\{a, b\}, \{c, d\}\}$. Note that $\{a, b\}$ is neither open nor closed. Then the quotient topology on X/R is the trivial topology which is not T_0 and hence not maximal connected by Theorem 1.

EXAMPLE 5. The product of maximal connected spaces is not necessarily maximal. For $\overset{a}{\circ} \overset{b}{\bullet}$ is maximal connected but the product topology $\mathscr{T}_1 = \{\phi, \{(b, b)\}, \{(b, a), (b, b)\}, \{(a, b), (b, b)\}, X \times X\}$ is not maximal since $\Phi(\{\{(x, y)\} | (x, y) \in X \times X, (x, y) \neq (a, a)\})$ is connected and strictly finer than \mathscr{T}_1 .

EXAMPLE 6. A door space (X, \mathcal{T}) is a topological space having the property that if $A \subset X$ then either $A \in \mathcal{T}$ or $X-A \in \mathcal{T}$. Examples 1, 2, 3 and Theorem 6 suggest the possibility that every maximal connected space is a door space. This is not the case for

is not a door space since $\{a,b\}$ is neither open nor closed. A semi-door space (X,\mathcal{F}) is a space having the property that for $A \subset X$ there exists $B \in \mathcal{F}$ such that either $B \subset A \subset \mathrm{Cl}(B)$ or $B \subset X - A \subset \mathrm{Cl}(B)$. The space

$$a \circ b \circ f$$

is maximal connected but not semi-door. For $A = \{b, c, d, f\}$ does not satisfy the condition.

THEOREM 6. In order that (X, \mathcal{F}_1) be maximal connected it is necessary that whenever $A \subset X$ and A is connected and X-A is connected, $A \in \mathcal{F}_1$ or $X-A \in \mathcal{F}_1$.

PROOF. If either A or X-A is empty the proposition is trivial so suppose $A \neq \emptyset$, $X-A \neq \emptyset$. Suppose neither A nor X-A is open. Let $\mathscr{F}_2 = \Phi(\mathscr{F}_1 \cup \{A\})$. Then \mathscr{F}_2 is strictly finer than \mathscr{F}_1 hence not connected,

so there exist $U, V \in \mathcal{F}_2$ such that (U, V) is an open partition of (X, \mathcal{F}_2) . Suppose $U \cap (X-A)$ and $V \cap (X-A)$ are non-empty. Then $(U \cap (X-A), V \cap (X-A))$ is an open partition of X-A for \mathcal{F}_2 . But

$$((X-A), \mathcal{F}_1|(X-A)) = ((X-A), \mathcal{F}_2|(X-A))$$

so $(U \cap (X-A), V \cap (X-A))$ is an open partition of $(X-A, \mathcal{F}_1|(X-A))$ which is a contradiction. Thus either $U \subset A$ or $V \subset A$, so assume $U \subset A$. If U = A we have $V = X-A \in \mathcal{F}_2$, and hence $V \in \mathcal{F}_1$, which is impossible. Hence, $V \cap A \neq \emptyset$, and therefore $(U, V \cap A)$ is an open partition of $(A, \mathcal{F}_2|A)$. But if $x \in A$ the neighborhoods of x for $\mathcal{F}_1|A$ are the same as those for $\mathcal{F}_2|A$, hence $(U, V \cap A)$ is an open partition of $(A, \mathcal{F}_1|A)$ which is a contradiction, hence the result.

Note: The conditions of the above theorem are not sufficient for they hold for the reals R with the order topology \mathcal{F} , but $\Phi(\mathcal{F} \cup \{Q\})$, where Q denotes the rationals, is strictly finer than \mathcal{F} and is connected.

Reference

 Dick Wick Hall and Guilford L. Spencer, II, Elementary Topology (John Wiley and Sons, New York 1955).

The University of North Carolina at Charlotte (Now at Western Carolina University)