
1 Fundamentals

1.1 Preliminaries

We have mentioned already at the beginning of the book that the fundamental role in ele-
mentary particle physics, that is, the SM and its extensions, is played by Lagrangians. They
encode the information about the particle content of a given theory and of fundamental
interactions between these particles that are characteristic for this theory. Therefore, it is
essential to start our presentation by discussing the general structure of various Lagrangians
that we will encounter in this book.

The theories we will discuss are relativistic quantum field theories, and it would appear
at first sight that this first step of our expedition is extremely difficult. Yet, the seminal
observation of Feynman that a given classical theory can be quantized by means of the path
integral method simplifies things significantly. We can formulate the quantum field theory
with the help of a Lagrangian of a classical field theory without introducing operators as
done in canonical quantization. Having it, a simple set of steps allows us to derive the
so-called Feynman rules and use them to calculate the implications of a given theory for
various observables that can be compared with experiment.

A very important role in particle physics is played by symmetries. They increase
significantly the predictive power of a given theory, in particular by reducing the number of
free parameters. In this context a very good example is quantum chromodynamics (QCD),
the theory of strong interactions. With eight gluons and three colors for quarks, there is
a multitude of interactions that, without the SU(3) symmetry governing them, could be
rather arbitrary. But the SU(3) symmetry implies certain conservation laws, and at the end
there is only a single parameter in QCD: the value of the strong coupling evaluated at some
energy scale that can be determined in experiment. Once this is done, all effects of strong
interactions can be uniquely predicted, even if this requires often very difficult calculations.

The case of QCD is however special as it is based on an exact nonabelian symmetry. We
will be more specific about this terminology later. In quantum electrodynamics (QED),
which is based on an exact abelian symmetry U(1), in addition to the value of the
electromagnetic coupling also the electric charges of quarks and leptons and generally
fermions, scalars, and vector particles in a given theory are free. They have to be
determined in experiment. In QCD all color charges are fixed by the SU(3) symmetry.

Yet QED, similar to QCD, is a very predictive theory because it is based on an exact
symmetry. This is generally not the case in nature, and on many occasions the symmetries
that we encounter in particle physics are only approximate, and the manner in which
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26 Fundamentals

they are broken has an impact on physical implications. Moreover, models with broken
symmetries often contain many new free parameters beyond the couplings, significantly
lowering the predictive power of the theory. A very prominent example is supersymmetry.

Our goal for the next pages is to write down Lagrangians, in fact Lagrangian densities,1

for simplest theories involving spin-0 particles (scalars), spin- 1
2 particles (fermions),

and spin-1 particles (vectors or vector bosons). In this context we will discuss various
symmetries that we will encounter later at various places in our book.

1.2 Lagrangians for Scalar Fields

1.2.1 Real Scalar Field

Let us consider the real scalar field ϕ ≡ ϕ(x) for which the Lagrangian, neglecting
interactions, reads

L (ϕ, ∂μϕ) =
1
2
(
∂μϕ

) (
∂μϕ

) − 1
2

m2ϕ2. (1.1)

Inserting this Lagrangian into the Euler–Lagrange equation,

δL
δϕ
= ∂μ

δL

δ
(
∂μϕ

) , (1.2)

where

δL (ϕ) = L (ϕ + δϕ) −L (ϕ), (1.3)

we find the Klein–Gordon (KG) equation(
� + m2

)
ϕ = 0 (1.4)

so that the only parameter in (1.1) m can be interpreted as the mass of the spin-0 particle
corresponding to the field ϕ.

1.2.2 Complex Scalar Field

We next promote ϕ in (1.1) to a complex scalar field. The Lagrangian takes now the
following form:

L (ϕ, ∂μϕ,ϕ∗, ∂μϕ∗) =
1
2
(
∂μϕ

∗
) (
∂μϕ

) − 1
2

m2ϕ∗ϕ. (1.5)

1 For simplicity, we will call these Lagrangian densities just Lagrangians.
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27 1.3 First Encounter with Symmetries

If ϕ and ϕ∗ are written as

ϕ =
1
√

2
(
ϕ1 + iϕ2

)
, ϕ∗ =

1
√

2
(
ϕ1 − iϕ2

)
, (1.6)

where ϕ1,2 are real, then these real fields satisfy separately the KG equation in (1.4).
Equivalently we have (

� + m2
)
ϕ = 0,

(
� + m2

)
ϕ∗ = 0. (1.7)

Before continuing, we have to discuss an important topic.

1.3 First Encounter with Symmetries

A symmetry is a transformation on the fields and x, which leaves the Lagrangian invariant.
Thus if there is a transformation R:

ϕ(x)
R−→ ϕ′(x ′), (1.8)

so that

L (ϕ(x))
R−→ L (ϕ′(x ′)) = L (ϕ(x)), (1.9)

then R is a symmetry of the Lagrangian.
The symmetry transformations that we will encounter in this book can be grouped in

three classes:

• Continuous transformations in space-time

x → x ′ + δx, ϕ(x) → ϕ′(x ′). (1.10)

These are the Lorentz transformations. We will not discuss them in this book as they
are the topic of introductory lectures on field theory. However, we will make sure that
our Lagrangians and their implications are consistent with Lorentz invariance. In the
Lagrangians in (1.1) and (1.5) this is achieved by contracting the indices μ.

• Continuous internal symmetries

ϕ(x) → ϕ(x) + δϕ(x) = ϕ′(x). (1.11)

These symmetries will play a crucial role in our book. One distinguishes between global
and local internal symmetries, and each of them can be either abelian or nonabelian.
What this really means will be explained in detail as we proceed.

• Discrete symmetries
A typical example of a discrete transformation is the flip of the sign of the field ϕ:

ϕ → −ϕ. (1.12)
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28 Fundamentals

However, the best-known discrete transformations are

Parity (P): t → t ′ = t, �x → �x ′ = −�x, (1.13)

Charge conjugation (C): Q → −Q, (1.14)

Time reversal (T): t → t ′ = −t, �x → �x ′ = �x. (1.15)

As we will see, QED and QCD interactions are invariant under these three transforma-
tions, while this is not the case of weak interactions.

1.4 Checking the Symmetries of Scalar Lagrangians

Armed with this elementary knowledge of symmetries, we can now investigate which
internal symmetries are present in the Lagrangians in (1.1) and (1.5). Specifically, let us
ask whether these Lagrangians are invariant under the following transformations:

i) ϕ(x) → ϕ′(x) = −ϕ(x) (discrete), (1.16)

ii) ϕ(x) → ϕ′(x) = eiθrϕ(x) (continuous global), (1.17)

iii) ϕ(x) → ϕ′(x) = eiθ(x)rϕ(x) (continuous local), (1.18)

where θ is a phase that is either independent of x (global transformation) or dependent on
x (local transformation). The parameter r is introduced to characterize a property of the
field under this transformation, not the transformation itself, and can be interpreted as the
conserved “charge,” as we will see later on.

The Lagrangian in (1.1) is clearly invariant under the discrete transformation in (1.16)
but fails completely with respect to the transformations in (1.17) and (1.18) as

ϕ2 → e2iθrϕ2. (1.19)

This is not surprising. The transformations in (1.17) and (1.18) promoted the real field to
a complex field and thus changed the nature of the field. Because the Lagrangian for a
complex field in (1.5) looks different than the Lagrangian in (1.1), it is not surprising that
(1.1) is not invariant under (1.17) and (1.18).

Yet there is a solution to this problem. We just set r = 0 so that ϕ does not transform at
all. One says it is a singlet under transformation (1.17) and (1.18), and its charge r vanishes.

We next investigate the Lagrangian (1.5) to find that indeed it is invariant under the
global transformation (1.17) as

ϕ → eiθrϕ, ϕ∗ → ϕ∗e−iθr (1.20)

leaves (1.5) unchanged provided θ is independent of x. In a more group theoretical
language the phase transformation in (1.20) is the simplest unitary transformation related
to the group U(1). The r can then be interpreted as a conserved charge. Indeed, the sign in
front of r in case of ϕ∗ is opposite to the one in the transformation of ϕ: the charges of ϕ
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29 1.5 Promotion of a Global U(1) Symmetry to a Local U(1) Symmetry

and ϕ∗ differ by sign and as known from elementary relativistic field theory ϕ∗ represents
the antiparticle to ϕ.

What about the last transformation (1.18) on our list? The last term in (1.5) is clearly
invariant under (1.18), but the first one is not! Indeed

∂μϕ
′ = ∂μ

(
eiθ(x)rϕ(x)

)
= eiθ(x)r∂μϕ(x) + ir∂μθ(x)

(
eiθ(x)rϕ(x)

)
, (1.21)

∂μϕ
′∗ = ∂μ

(
ϕ(x)∗e−iθ(x)r

)
= ∂μϕ(x)∗e−iθ(x)r − ir∂μθ(x)

(
ϕ(x)∗e−iθ(x)r

)
. (1.22)

Inserting these expressions into (1.5) we readily verify that the terms proportional to
∂μθ(x) break the symmetry. Thus (1.5) is not invariant under the transformation (1.18),
the local U(1) transformation.

There is no way out. We have to modify (1.5) to make it invariant under (1.18), or in
other words we have to promote the global U(1) symmetry present already in (1.5) to a
local U(1) symmetry.

There is a well-known procedure for how to perform this task with a very remarkable
result. The requirement of a local U(1) symmetry implies automatically the existence of a
new particle with spin-1 and a specific structure of the interaction of this new particle with
the original complex field ϕ that we introduced from the start. Let us present this procedure
that consists of four steps. We refrain from profound geometrical interpretations of
transformations encountered here, as they can be found in many textbooks on field theory.

1.5 Promotion of a Global U(1) Symmetry to a Local U(1) Symmetry

• Step 1
We introduce a vector particle Aμ to be called gauge boson in what follows. It is not

surprising that we have to introduce a vector field Aμ (x). After all, we have to cancel
terms involving ∂μθ(x).

• Step 2
We replace the derivative ∂μ by a covariant derivative Dμ, which transforms under

U(1) as the fields ϕ and ϕ∗:

Dμϕ → eiθ(x)r Dμϕ,
(
Dμϕ

)∗
→

(
Dμϕ

)∗
e−iθ(x)r . (1.23)

It is given by

Dμϕ =
(
∂μ − irgAμ

)
ϕ,

(
Dμϕ

)∗
=

(
∂μ + irgAμ

)
ϕ∗, (1.24)

where g is a real parameter, the gauge coupling characterizing the strength of the
interaction, and r can be again interpreted as the charge of ϕ. It is not necessarily an
electric charge but a charge related to a given local U(1) symmetry.

• Step 3
In order to satisfy (1.23) also Aμ has to transform under U(1) in a special manner:

Aμ → Aμ +
1
g
∂μθ(x). (1.25)
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30 Fundamentals

• Step 4
For Aμ to be interpreted as a physical particle, a kinetic term describing the motion of

this new particle has to be added to the original Lagrangian. This term must be invariant
under the transformation (1.25). This additional term is familiar from QED:

ΔL = −1
4

FμνFμν , Fμν = ∂μAν − ∂νAμ. (1.26)

The resulting Lagrangian takes the form

Lgauged =
(
Dμϕ

)∗ (
Dμϕ

) − m2ϕ∗ϕ − 1
4

FμνFμν . (1.27)

One can easily verify that it is invariant under the following set of transformations:

ϕ(x) → eiθ(x)rϕ(x), ϕ∗(x) → ϕ∗(x)e−iθ(x)r (1.28)

for scalar fields and (1.25) for Aμ.

The requirement that the Lagrangian is invariant under such a local symmetry is called
gauge principle. It is very restrictive for the Lagrangian, and some consequences
are discussed in the next section. Nowadays gauge invariance is not just a property
of the Lagrangian but rather the fundamental principle that determines the structure of
the Lagrangian.

1.6 A Closer Look at the U(1) Gauge Theory

The Lagrangian in (1.27) has certain properties that we would like to emphasize here.
While the scalar particle has a mass term consistent with the U(1) gauge symmetry, the

corresponding mass term for the gauge boson,

(ΔL )gauge
mass =

M2

2
AμAμ, (1.29)

is clearly not invariant under (1.25) and is absent in (1.27). Consequently, Aμ is a massless
gauge boson. The most prominent example of such a gauge boson is the photon.

The imposition of (local) gauge symmetry implies particular structure of the interactions
between ϕ and Aμ. This structure can be found by decomposing (1.27) into a free and
interacting Lagrangian:

Lgauged = Lfree +Lint, (1.30)

where

Lfree = ∂μϕ
∗∂μϕ − m2ϕ∗ϕ − 1

4
FμνFμν . (1.31)

Lint = −irgAμϕ∂
μϕ∗ + irgAμϕ

∗∂μϕ + g2r2 AμAμϕ∗ϕ. (1.32)
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31 1.6 A Closer Look at the U(1) Gauge Theory

Lfree describes the propagation of the fields ϕ and Aμ. These propagations can be repre-
sented by simple lines (propagators) for which mathematical expressions can be found. In
the case at hand these propagators are given in momentum space as follows

ϕ

k
= i

k2−m2+iε

Aμ

k
= − igμν

k2+iε and what we have written down are the simplest
Feynman rules with kμ the four-momentum of the propagating particle. We do not derive
these rules, as explicit derivations can be found in textbooks on quantum field theory, see,
for instance [11].

In Lint all terms involve Aμ, ϕ, and ϕ∗ at one point x, and these terms describe simply
the local interactions between the particles in question. Then g is the gauge coupling
describing the strength of the interaction and r the charge of ϕ.

With the help of path integral methods one can derive Feynman rules for the interactions
in (1.32). In fact, these rules can be read of from (1.32) by simply multiplying Lint by i and
replacing i∂μ by kμ. We find then for the vertices representing the first and the last term
in (1.32):

Aμ

ϕ ϕ∗
kμ

= −irgkμ

Aμ Aμ

ϕ ϕ∗
= ig2r2

and irgkμ for the second term. From the propagator and vertices, Feynman diagrams can be
constructed. Two examples are given in Figure 1.1. The first one represents the scattering
of ϕ and ϕ∗ with exchange of a photon, the second one the annihilation of these two fields
into the photon followed by their regeneration.

Finally, we note that there are no vertices involving Aμ only. This is typical for a U(1)
symmetry, which is an abelian symmetry: The gauge boson related to this symmetry carries
no charge, and consequently there are no interactions between Aμ. In fact, in the absence
of the field ϕ a theory based on a local U(1) symmetry is a free theory.

ϕ ϕ

Aμ

ϕ∗ ϕ∗

ϕ ϕ

Aμ
ϕ∗ ϕ∗

Figure 1.1 Feynman diagrams for a gauged U(1) theory for scalars whereϕ is a scalar particle and Aμ the gauge boson.
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32 Fundamentals

On the other hand, pure interactions between the fields ϕ and ϕ∗ consistent with U(1)
symmetry can be introduced by adding the following term to Lint:

ΔLint = −
1
4
λ
(
ϕ∗ϕ

)2 (1.33)

with λ describing the strength of this interaction. We will encounter this term elsewhere in
this book.

1.7 Nonabelian Global Symmetries

1.7.1 General Considerations

So far we have considered a very simple theory that contained the scalar particle ϕ,
its anti-particle ϕ∗ and one gauge boson Aμ. In general, theories contain several fields
ϕ1, . . . ϕN and also several gauge bosons Aa

μ, where the index a distinguishes between
different gauge bosons. If there are symmetries that involve these particles simultaneously,
then the corresponding transformations of the fields are more complicated, and also the
structure of the Lagrangian is modified relative to the U(1) theory considered until now.

To be able to efficiently discuss such theories, we have to recall certain elements of
group theory. The most common groups encountered in particle physics are U(N), SU(N),
and SO(N) groups:

• U(N): group of unitary N × N matrices,
• SU(N): as U(N) but with detU = 1,
• SO(N): group of orthogonal N × N matrices with determinant 1.

Here we will discuss only U(N) and SU(N) symmetries and postpone the discussion of
orthogonal transformations until later.

While the U(1) transformation on a given field had the simple form of just multiplication
by a phase factor

U (θ) = eiθ, (1.34)

in the case of U(N) and SU(N) transformations we have

U (θ1, . . . θm) = ei
∑m

a=1 θ
aT a

, (1.35)

where θa are the parameters of the group and Ta the corresponding generators. We
have m = N2 and m = N2 − 1 for U(N) and SU(N), respectively. The transformations
U (θ1, . . . θm) with θi being real satisfy the relations

U (θ1, . . . θm) ·U (θ′1, . . . θ′m) = U (θ′′1 , . . . θ′′m), (1.36)

where θ′′i is analytic in θj and θ′
k
. The T a are the generators of SU(N) and satisfy

commutation relations [
Ta, Tb

]
= i f abcT c , (1.37)
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33 1.7 Nonabelian Global Symmetries

with f abc being the group structure constants.2 They are simply numbers that for a given
group can be found in any book on group theory but I can also recommend the review
in [12]. In practice summations over indices a, b, c like the one over c in (1.37) are
performed, and we do not have to remember the values of f abc , except that they vanish for
two indices being equal. Useful formulas involving f abc will be presented in subsequent
chapters, when we will start doing explicit calculations. The fact that generally f abc � 0
expresses the nonabelian nature of the transformation: Ta and Tb do not commute, and
consequently the order of two unitary transformations matters. This fact has profound
physical implications, in particular when the global nonabelian symmetry is promoted
to the local one. Every set of N2 − 1 M × M matrices T a

r that fulfill (1.37) generates
a representation r of the Lie algebra. The index r in Ta

r labels the representation. For
example, for the fundamental representation of SU(N) one writes r = N and for the adjoint
r = G. By an unitary transformation of Ta

r , every representation of SU(N) can be such that
all T a

r are block diagonal:

T a
r =

����������

Ta(1)
r 0 . . . 0

0 Ta(2)
r

. . .
...

...
. . . . . . 0

0 . . . 0 T a(n)
r

���������	
. (1.38)

If there is only one block (n = 1), then the representation is called irreducible.
In contrast to U(1) transformations, which acted separately on each field ϕ, nonabelian

transformations act simultaneously on a set of fields that from theory group point of view
are the basis vectors of a given irreducible representation. These basis vectors denote a set
of quantum mechanical states and are said to constitute a multiplet: doublet, triplet, octet,
decouplet, etc. The transformations of the group transform a given field ϕi into linear
combinations of the fields belonging to a given multiplet.

The important group theoretical property of a nonabelian symmetry is the existence of
multiplets of a size characteristic for a given symmetry. For instance, while a doublet is
the smallest multiplet that transforms nontrivially in the case of SU(2) symmetry, in the
case of SU(3), it is a triplet. A singlet is of course always smaller. Moreover, while in
the case of SU(3), triplets, sextets, octets, and decouplets and specific larger multiplets are
present, a quartet or fiveplet is not possible in the case of SU(3).

This discussion shows that if already discovered particles do not fill out the full multiplet
of a given nonabelian symmetry, this symmetry predicts the existence of new particles
necessary to complete the multiplet in question. This was the case ofΩ that was the missing
member of the baryon decouplet of the global flavor SU(3) proposed by Gell–Mann or the
case of the charm quark in the SU(2) doublet involving also the strange quark.

2 One can also say that the T a are the elements of a Lie algebra that generate the Lie algebra (1.37). The number
of linear independent generators T a is the dimension of the Lie algebra or Lie group. A Lie group is called
nonabelian if at least one f abc is nonvanishing.
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If we restrict our attention first to the simplest multiplets of the SU(2) and SU(3) groups,
we can represent the doublets and triplets by column vectors

�ϕ =
������
ϕ1
...
ϕN

�����	
, �ϕ† =

(
ϕ†1, . . . ϕ†N

)
, (1.39)

with N = 2 and N = 3 for SU(2) and SU(3), respectively. The SU(N) transformations of
�ϕ and �ϕ† read

�ϕ′ = exp (iθaTa) �ϕ, (1.40)

�ϕ†′ = �ϕ†exp (−iθaTa) , (1.41)

where we have used Ta† = Ta and summation over a = 1, . . . N2 − 1 is understood.
The generators Ta can be represented by Hermitian N × N matrices, which we recall

here for completeness for N = 2 and N = 3:

T a =
⎧⎪⎨⎪⎩
σa/2 a = 1, 2, 3 SU(2),
λa/2 a = 1, . . . 8 SU(3)

. (1.42)

Here σa are the Pauli matrices and λa satisfying

Tr(λaλb) = 2δab (1.43)

are Gell–Mann matrices. Their explicit expressions are given in Appendix A.2. These
matrices are Hermitian and traceless, which follows from the unitarity of the transforma-
tions U and the requirement that in the case of SU(N), detU = 1:

det
(
eiT

)
= eiTr(T ) = 1 ⇒ Tr(T ) = 0. (1.44)

As

U(N) = SU(N) ⊗ U(1), (1.45)

a U(N) symmetry has an additional generator that is represented by a unit matrix.
We have used here the words representation and multiplet. As a given irreducible

representation of a given group implies automatically the size of a multiplet, both names
are used often in particle physics to denote a multiplet. We will follow this terminology
here as well.

The so-called adjoint representation is important for particle physics because the gauge
bosons Aa

μ of a SU(N) gauge theory belong to it. In the case of SU(3)C , with the subscript
C standing for color, we have eight gluons and in the case of SU(2)L three weak gauge
bosons. The generators of the adjoint representation are simply given by the structure
constants of the group. One can check that with (Tb

r )ac := i f abc the commutation relation
in (1.37) is fulfilled. The complex conjugated representation r̄ to a given representation r
is generated by

Ta
r̄ := −T a∗

r . (1.46)
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35 1.7 Nonabelian Global Symmetries

In the case of the fundamental representation of SU(N), which we denote by N, the complex
conjugated representation is denoted by N̄. For example quarks transform as triplets 3
under SU(3)C while their antiparticles transform as 3̄. If two representations r and r̄ are
equivalent, i.e., there exists a unitary matrix U such that Ta

r̄ = UTa
r U†, then we call r real.

For example, all representations of SU(2), especially the fundamental representation 2,
are real, whereas 3, the fundamental representation of SU(3), is not. A consequence is that
something like an “anti(iso)spin,” related to SU(2), does not exist, whereas antiquarks have
anticolors. Particles that are their own antiparticles transform under real representations of
the symmetry group.

1.7.2 Lagrangian and First Implications

The Lagrangian invariant under the transformations (1.40) and (1.41) is given as follows

L =
(
∂μ �ϕ

†
) (
∂μ �ϕ

) − �ϕ†M2 �ϕ, (1.47)

where M2 is the mass matrix (squared) of the field �ϕ. The fields in (1.47) belong to a
single multiplet. If there are several multiplets, for each of them (1.47) applies except
that M2 could be different for different multiplets. There is an immediate consequence of
a nonabelian symmetry. The masses of particles belonging to a given multiplet must be
degenerate. This means that M2 must be a unit matrix multiplied by m2. In order to see this,
we perform the transformations (1.40) and (1.41) on the last term in (1.47):

�ϕ†M2 �ϕ → �ϕ†e−iT
aθa

M2eiT
aθa

�ϕ (1.48)

and find that this term is invariant under these transformations if and only if M2 commutes
with all generators T a (Schur’s lemma):[

Ta, M2
]
= 0. (1.49)

This is only possible if M2 is proportional to the unit matrix.

1.7.3 Explicit Breakdown of a Global Nonabelian Symmetry

In reality the masses of physical particles belonging to a given multiplet are not exactly
equal to each other even if the mass splittings could be very small. This means that whereas
in this case the first term in (1.47) is still invariant under global nonabelian transformation,
the mass term in this equation is not. This type of symmetry breaking is called explicit
because it takes place at the level of the Lagrangian. In contrast, in Section 1.10.4 we will
discuss spontaneous symmetry breaking where the Lagrangian is still symmetric but only
the ground state breaks the symmetry. It is instructive to consider two examples of explicit
symmetry breaking: one of SU(2) symmetry, the other of SU(3). In the SU(2) case let us
assume that

M2 = ��
m2

1 0
0 m2

2

�	 , m1 � m2. (1.50)
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Inserting this matrix into (1.48) with T a = σa/2 we find[
σ1,2, M2

]
� 0,

[
σ3, M2

]
= 0. (1.51)

Evidently only one generator commutes with M2, and the symmetry has been reduced from
SU(2) down to U(1):

SU(2) → U(1), (1.52)

with T3 = σ3/2 playing the role of the generator of the leftover U(1) symmetry.
One easily finds that the nonvanishing commutator in (1.51) is proportional to

m2
1 − m2

2 and if this difference is small the breaking of symmetry can be regarded as a
small perturbation. Now the disparity of masses in the mass matrix led to the breakdown
of SU(2) to a U(1) symmetry and so at first sight the situation looks like in an abelian U(1)
theory: the fields ϕ1 and ϕ2 are unrelated to each other. However not everything has been
lost and the presence of the initial SU(2) symmetry left footprints which we would like to
identify. Indeed the charges of the fields ϕ1 and ϕ2 with respect to the leftover U(1) group
are not independent of each other, which would not be the case if ϕ1 and ϕ2 did not sit in
an SU(2) doublet together. In order to see this, we note that the leftover U(1) symmetry is
summarized by

�ϕ → exp
(
i
σ3

2
θ(3)

)
�ϕ, �ϕ = ��

ϕ1

ϕ2

�	 , (1.53)

or equivalently

ϕ1 → exp
(
i
1
2
θ(3)

)
ϕ1, ϕ2 → exp

(
−i

1
2
θ(3)

)
ϕ2. (1.54)

Comparing with the U(1) transformation in (1.20) we note that the charges r are fixed and
related to each other. Denoting this quantum number by T3 we have

T3(ϕ1) =
1
2

, T3(ϕ2) = −1
2

. (1.55)

This result is not surprising. T3 is the third component of the isospin.
This consideration can be extended to SU(3) by choosing for the mass matrix

M2 =
�����

m2 0 0
0 m2 0
0 0 m2

3

����	 . (1.56)

Inserting this matrix into (1.48) with �ϕ being this time three-dimensional vector, we
find that λ1, λ2, λ3, and λ8 commute still with M2, while this is not the case of λ4, λ5, λ6,
and λ7. Thus the symmetry has been reduced as follows

SU(3) → SU(2) ⊗ U(1), (1.57)

https://doi.org/10.1017/9781139524100.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781139524100.003
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with (λ1, λ2, λ3) being the generators of the leftover SU(2) and λ8 of U(1). Writing then

�ϕ → exp
(
i
λ8

2
θ(8)

)
�ϕ, �ϕ =

�����
ϕ1

ϕ2

ϕ3

����	 , (1.58)

with λ8 given in (A.21), we find the charges of ϕ1,2,3 with respect to the leftover U(1)
symmetry:

T8(ϕ1) = T8(ϕ2) =
1

2
√

3
, T8(ϕ3) = − 1

√
3

. (1.59)

Note that the T8 charges of ϕ1 and ϕ2 are equal to each other as these two fields form a
doublet under the leftover SU(2) symmetry.

1.7.4 More Complicated Global Symmetries

In general there can be several multiplets. For instance, three doublets

�ϕA = ��
ϕ1

ϕ2

�	 , �ϕB = ��
ϕ3

ϕ4

�	 , �ϕC = ��
ϕ5

ϕ6

�	 . (1.60)

The SU(2) symmetric Lagrangian is given then by

L =
∑

s=A,B,C

(
∂μ �ϕ

†
s

) (
∂μ �ϕs

) − ∑
s=A,B,C

m2
s �ϕ

†
s �ϕs, (1.61)

with the mass ms different for different doublets.
These examples should be sufficient to illustrate the basic features of global nonabelian

symmetries involving spinless particles. Some new features appear in the case of fermions,
as the left-handed fermions can generally transform differently than the right-handed ones.
We will discuss this issue soon.

1.8 Promotion of a Global Nonabelian Symmetry to a Local One

In Section 1.5 we have made this promotion for U(1) finding that this required the
introduction of a gauge boson that was massless and neutral with respect to the conserved
charge connected with the U(1) symmetry. We now want to see what happens when a
nonabelian global symmetry becomes a local symmetry, or in short it is gauged.

In order to have a transparent discussion let us just consider SU(N) symmetry. The
transformations in (1.40) and (1.41) become local transformations

�ϕ′(x) = exp (iθa (x)T a) �ϕ(x), (1.62)

�ϕ†′(x) = �ϕ†(x)exp (−iθa (x)T a) , (1.63)

and we find that the Lagrangian (1.47) is not invariant under these transformations due to
the appearance of the terms ∂μθa (x). These terms have to be cancelled, and this requires
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the introduction of new particles, gauge bosons, one for every ∂μθa (x) or equivalently
one for every generator of SU(N). The four steps of Section 1.5 can also be made here.
Only formulas are more complicated and, as we will see the resulting dynamics, differs
profoundly from the one of an abelian gauge theory. The four steps in the nonabelian case
are then as follows:

• Step 1
We introduce a vector particle Aa

μ for every generator Ta. Thus in the case of the
SU(N) group the local gauge invariance requires the existence of N2 − 1 gauge bosons.

• Step 2
We replace the derivatives ∂μ �ϕ and ∂μ �ϕ† by covariant derivatives

Dμ �ϕ =
(
∂μ − igAa

μTa
)
�ϕ,

(
Dμ �ϕ

)†
= �ϕ†

(
∂μ + igAa

μTa
)

, (1.64)

with g denoting the gauge coupling corresponding to the SU(N) group.
• Step 3

The transformation for the gauge fields is given by

Aa
μ → Aa′

μ = Aa
μ +

1
g
∂μθ

a (x) − f abcθb (x)Ac
μ (1.65)

with f abc being the structure constants introduced in (1.37).
• Step 4

The gauge invariant strength tensor corresponding to Aa
μ is given as follows

Fa
μν = ∂μAa

ν − ∂νAa
μ + g f abc Ab

μAc
ν . (1.66)

The resulting Lagrangian that is invariant under the transformations (1.62), (1.63),
and (1.65) is finally given as follows:

Lgauged =
(
Dμ �ϕ

)† (
Dμ �ϕ

) − m2 �ϕ† �ϕ − 1
4

Fa
μνFμν,a. (1.67)

At this point we want to mention that there exist at least two different conventions in the
literature, which results in some sign flips. More details on conventions can be found in
Appendix B. Here we only discuss two of them. If the transformation in (1.62) has opposite
sign in the exponential, then also the sign in front of g in the covariant derivative has to be
changed. We collect here the differences between these two conventions

• Convention 1 (used by us)

ϕ(x) → ϕ(x)′ = exp (iθa (x)T a) ϕ(x) (1.68)

Dμ = ∂μ − igAa
μTa (1.69)

Aa
μ (x) → Aa′

μ (x) = Aa
μ (x) +

1
g
∂μθ

a (x) − f abcθb (x)Ac
μ (1.70)

Fa
μν = ∂μAa

ν − ∂νAa
μ + g f abc Ab

μAc
ν (1.71)
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• Convention 2

ϕ(x) → ϕ(x)′ = exp (−iθa (x)T a) ϕ(x) (1.72)

Dμ = ∂μ + igAa
μTa (1.73)

Aa
μ (x) → Aa′

μ (x) = Aa
μ (x) +

1
g
∂μθ

a (x) + f abcθb (x)Ac
μ (1.74)

Fa
μν = ∂μAa

ν − ∂νAa
μ − g f abc Ab

μAc
ν (1.75)

Conventions 1 and 2 can be transformed into each other by flipping simultaneously the
signs of θa and g.

Let us then list the properties of the Lagrangian in (1.67) paying in particular attention
to those properties that distinguish it from the one in (1.27):

• The appearance of several gauge bosons, one for each generator of the symmetry group.
• All these gauge bosons are massless as the mass term

ΔLmass =
M2

2

∑
a

Aa
μAμ,a (1.76)

is clearly not invariant under (1.65), even if all these gauge bosons were degenerate in
mass. Thus the exact nonabelian gauge symmetry SU(3) of strong interactions implies
that all eight gluons are massless. On the other hand, this is a problem for heavy
W μ± and Zμ bosons. Indeed, the gauge bosons were introduced to be able to change
the phase of the wave function of all particles independently at each space-time point
without any observable consequence. Thus the gauge boson has to reconcile such phase
changes over arbitrary large distances. A force with an infinite range is associated with
a massless gauge boson. However, the weak force is short-ranged due to the masses of
W μ± and Zμ bosons. We will address this problem in Sections 1.10 and 1.11.

• In order to see the structure of the interactions present in (1.67), we separate the free
Lagrangian

Lfree = ∂μ �ϕ
†∂μ �ϕ − m2 �ϕ† �ϕ − 1

4
(
∂μAa

ν − ∂νAa
μ

) (
∂μAν,a − ∂νAμ,a) . (1.77)

The interactions of �ϕ with gauge bosons are then described by

L (1)
int = −ig∂μ �ϕ

†Ta �ϕAμ,a + ig �ϕ†Ta∂μ �ϕAμ,a + g2 �ϕ†TaTb �ϕAa
μAμ,b , (1.78)

where summation over repeated indices is understood. It is convenient to rewrite this
Lagrangian in the component form (i, j = 1, . . . N)

L (1)
int = −ig∂μϕ

†
i T

a
ijϕ j A

μ,a + igϕ†i T
a
ij∂μϕ j A

μ,a + g2ϕ†i
(
TaTb

)
i j
ϕ j A

a
μAμ,b . (1.79)

Using the matrix representations for the generators Ta, like the ones in terms of σa and
λa in (1.42), it is an easy matter to derive the Feynman rules for the relevant vertices.
One just uses kμ = i∂μ, multiplies L (1)

int by i, and simply reads of the coefficients in front
of the products of fields. While at first sight, in view of i, j = 1, . . . N , these interactions
look rather complicated, they have a very simple structure due to the SU(N) symmetry.
We will exhibit this in a moment. Moreover the indices i, j, the colors in the case of

https://doi.org/10.1017/9781139524100.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781139524100.003


40 Fundamentals

SU(3)C for the strong interactions, are seldom seen in practical calculations as one can
use “color algebra,” which we will develop in Section 2.7.

The remarkable facts about these interactions are

– there is only a single coupling g describing them,
– all “nonabelian” charges entering these interactions are fixed by the symmetry. They

are simply given in terms of the elements of the matrices T a.

• Finally, we discuss the last term in (1.67), which involves the gauge bosons only. We find
two types of interactions

L (2)
int = −

1
4
g f abc

(
∂μAa

ν

)
Aμ,b Aν,c + · · · (1.80)

L (3)
int = −

1
4
g2 f abd f adeAb

μAc
νAμ,d Aν,e. (1.81)

Evidently L (2)
int and L (3)

int describe triple and quartic gauge boson vertices, which again
are fully fixed by the symmetry up to the coupling g.

The presence of such couplings is a very important difference from the case of abelian
gauge theories, which are free theories in the absence of matter fields ϕi . The nonabelian
theories are interacting even when the matter fields are absent. This is because the gauge
bosons Aa

μ carry “color charges.” The presence of interactions between gauge bosons in
nonabelian theories has very profound dynamical implications to which we will return at
several places in this book.

1.9 Lagrangians for Fermions

1.9.1 Preliminaries

Until now we have considered only scalars as matter fields. Even if the Higgs particle has
been discovered recently, most of the known elementary particles are fermions: quarks and
leptons. In order to incorporate them into the framework presented until now, we have
to construct Lagrangians involving spin- 1

2 particles that possess global and local, abelian
and nonabelian symmetries. To this end it will be useful to recall some of the important
properties of fermions that distinguish them from scalars. In this context we follow the
conventions of Bjorken and Drell [13]. See also [14]. They differ from Weinberg’s well-
known book [15].

A fermion is described by a four-component spinor and its adjoint:

ψ, ψ̄ ≡ ψ†γ0, (1.82)

where γ0 is one of the Dirac matrices. There are different representations of these matrices,
which can be found in many textbooks. In particular we have
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γ0 = ��
1 0
0 −1

�	 , [γi] = �γ = ��
0 �σ

−�σ 0
�	 . (1.83)

Here �σ =
[
σ1, σ2, σ3

]
are 2 × 2 Pauli matrices given in Appendix A.2, and 1 stands for

the 2 × 2 unit matrix. We will use

γμ (μ = 0, 1, 2, 3), γ5 = ��
0 1

1 0
�	 = iγ0γ1γ2γ3 (1.84)

with

{
γμ, γν

}
= 2gμν ,

{
γ5, γμ

}
= 0. (1.85)

Note that

γ†5 = γ5, γ2
5 = 1. (1.86)

Some other properties of Dirac matrices are collected in Appendix A, and the full set can
be found in any textbook for quantum field theory, in particular in [13, 14].

We next introduce left-handed (LH) and right-handed (RH) fermion fields

ψL =
1
2
(
1 − γ5

)
ψ ≡ PLψ, ψR =

1
2
(
1 + γ5

)
ψ ≡ PRψ. (1.87)

Their adjoints are given by

ψ̄L = ψ̄
1
2
(
1 + γ5

)
= ψ̄PR, ψ̄R = ψ̄

1
2
(
1 − γ5

)
= ψ̄PL . (1.88)

Consequently, using

ψ = ψL + ψR, ψ̄ = ψ̄L + ψ̄R, (1.89)

we find very important properties for Dirac structures that will appear at many places in
this book:
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ψ̄γμψ = ψ̄LγμψL + ψ̄RγμψR (vector), (1.90)

ψ̄ψ = ψ̄LψR + ψ̄RψL (scalar), (1.91)

ψ̄γμγ5ψ = −ψ̄LγμψL + ψ̄RγμψR (axial vector), (1.92)

ψ̄γ5ψ = ψ̄LψR − ψ̄RψL (pseudo scalar). (1.93)

We note that vector-type terms with γμ and γμγ5 connect only fields of the same
helicity, whereas the scalar-type terms connect only fields of opposite helicity. The latter
case is often called helicity flip. With this information at hand we can present Lagrangians
involving fermions that possess global and local, abelian and nonabelian symmetries.

1.9.2 Abelian Global Symmetry

Our starting point is the free Lagrangian for a fermion with mass m. It can be found by
demanding that through Euler–Lagrangian equations the Dirac equation follows:(

iγμ∂
μ − m

)
ψ = 0. (1.94)

This turns out to be

Lfree = ψ̄
(
iγμ∂

μ
)
ψ − mψ̄ψ. (1.95)

We note the appearance of a vector and a scalar structure discussed earlier. However,
for the time being we will not decompose ψ into ψL and ψR and present first Lagrangians
and their symmetries for the full ψ. That is, we assume first that ψL and ψR transform
identically under symmetries considered by us. We will see that this works for QCD and
QED but fails for weak interactions that break within the SM parity P maximally. There are
also important global (flavor) symmetries under which ψL and ψR transform differently.
These will also be discussed in our book.

Evidently the Lagrangian in (1.95) is invariant under a global U(1) transformation

ψ → eiθrψ, ψ̄ → ψ̄e−iθr . (1.96)

1.9.3 Nonabelian Global Symmetry

If several fermionic fields are present, so that

ψ =
������
ψ1
...
ψN

�����	
, ψ̄ =

(
ψ̄1, . . . , ψ̄N

)
, (1.97)
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the Lagrangian in (1.95) is invariant under SU(N) or U(N) global symmetry:

ψ → exp (iθaTa) ψ, ψ̄ → ψ̄exp (−iθaTa) , (1.98)

where again summation over repeated indices is understood. One of the implications of
nonabelian symmetries is the equality of masses of ψ1, . . . ψN belonging to a multiplet.

1.9.4 Abelian Local Symmetry

The Lagrangian having a local U(1) symmetry can be constructed following the steps of
Section 1.5 with the result

Lgauged = ψ̄
(
iγμDμ

)
ψ − mψ̄ψ − 1

4
FμνFμν , (1.99)

where

Dμ = ∂μ − irgAμ (1.100)

is the covariant derivative, g the gauge coupling, and r the charge of ψ under the U(1)
symmetry. Fμν is given in (1.26). The local U(1) transformation is given by (1.98) with
θa replaced by θa (x). The transformation on Aμ is as in (1.25), and also the covariant
derivative in (1.100) is identical to the scalar case in (1.24). However as we deal now with
the interaction of a vector particle Aμ with a fermion and not a scalar, the structure of
the first two terms in (1.99), the so-called kinetic terms, differs from the one in (1.27). In
particular the fermionic Lagrangian is linear in the covariant derivative, while the scalar
Lagrangian involves a product of Dμ and Dμ necessary to obtain a Lorentz invariant
Lagrangian. This, of course, has direct implications on the structure of interactions.

Similar to the scalar case, we can derive the Feynman rules for this theory. For the
fermion propagator we just have

ψ

k

i
/k −m+ iε = i /k+m

k2 −m2 + iε
,

where /k = γμkμ. The interaction vertex is then

Aμ
ψ

ψ

= igrγμ

where as commonly done we do not show explicitly external fields, Aμ, ψ̄,ψ on the right-
hand side of this rule.
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1.9.5 Nonabelian Local Symmetry

Proceeding as in Section 1.8 we find the Lagrangian

L = ψ̄
(
iγμDμψ

)
− mψ̄ψ − 1

4
Fa
μνFμν,a, (1.101)

where ψ and ψ̄ are given in (1.97) and

Dμψ =
(
∂μ − igAa

μTa
)
ψ, (1.102)

with g being the gauge coupling and Aa
μ the gauge bosons corresponding to the genera-

tors Ta. This Lagrangian is invariant under the transformation (1.98) for fermions with
θa replaced by θa (x) and (1.65) for gauge bosons. The pure gauge sector, in particular
interactions among different gauge bosons, did not change relative to the scalar case.

The interaction of a given gauge boson with fermions belonging to a given multiplet
takes the form

Aa
μ

i

j

= igγμ (Ta)i j .

We again note that all these interactions are given entirely in terms of a single-gauge
coupling g and various “charges” (T a)i j , which are fully fixed by the symmetry.

1.9.6 Important Properties

Let us end the first discussion of fermionic Lagrangians by stressing several properties of
both the interaction and the mass term. To this end it is sufficient to rewrite the interaction
and mass terms in (1.99) in terms of ψL and ψR:

Lint = +gr
(
ψ̄LγμAμψL + ψ̄RγμAμψR

)
(1.103)

Lmass = −m
(
ψ̄RψL + ψ̄LψR

)
. (1.104)

We observe

• The gauge interactions connect only fields of the same helicity. There is no helicity flip.
• A mass term connects fields of opposite helicity. Thus, in order to dynamically generate

a mass term, a helicity flip is needed. An exception is the so-called Majorana mass term
in the case of neutrinos or generally neutral fermions.

• The two properties imply that if the interactions in a given theory are just gauge
interactions and there is no mass term, there is no way to generate masses of fermions
radiatively through interactions.
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• The strength of gauge interactions of ψL and ψR is the same if ψL and ψR transform
identically under the gauge group. This is the case of vectorial gauge theories (only
γμ matters). Prominent examples are QED and QCD.

• However, quite often ψL and ψR transform differently under global and gauge symmetry
groups. Such symmetries are called chiral. The SU(3)L ×SU(3)R chiral global symmetry
of QCD and the SU(2)L gauge symmetry of the SM are well-known examples.

• If ψL and ψR transform differently under a given symmetry group, local or global,
fermion mass terms are forbidden by the symmetry. This is also the case for gauge bosons
in general, as we have already seen on previous pages.

As we will see in the next chapter, both the masses of weak gauge bosons W± and Z0 as
well as of all quarks and leptons are forbidden by SU(2)L . This is clearly a disaster, and one
could ask whether one could simply introduce some explicit terms in the Lagrangian that
would break SU(2)L so that masses of weak gauge bosons and of quarks and leptons would
become nonzero. Fortunately it turns out that this is not possible without destroying other
properties of the SM related in particular to its renormalizability, a topic of Section 4.2. It is
fortunate because otherwise the theory would not be as predictive as it is. Yet, the problem
of the generation of gauge boson and fermion masses in the presence of exact symmetry in
a given Lagrangian must be solved somehow. This is what we will do next.

1.10 Spontaneous Symmetry Breakdown (SSB)

1.10.1 Preliminaries

If the Lagrangian possesses a certain symmetry S but the ground state (vacuum) is not
invariant under such symmetry transformation, then we call S a spontaneously broken
symmetry. Both discrete and continuous symmetries can be spontaneously broken. In
Section 1.10.2 we will first discuss SSB of a discrete symmetry and in Section 1.10.3 of
a continuous symmetry. But first we want to outline here the connection between vacuum
expectation values (vev) and SSB.

Let us consider an infinitesimal transformation of a continuous symmetry as in (1.40) by
expanding the exponential and keeping only the term linear in θa

ϕi → ϕ′i = ϕi + iθaTa
ijϕ j . (1.105)

For an unbroken symmetry we have

〈0|ϕi |0〉
!
= 〈0|ϕ′i |0〉 = 〈0|ϕi |0〉 + iθaTa

ij 〈0|ϕ j |0〉. (1.106)

For an irreducible representation Ta this implies

〈0|ϕ j |0〉 = 0. (1.107)
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According to the Noether theorem there is a conserved charge Qa that corresponds to the
generator T a of the symmetry. As shown in many books on quantum field theory, these
charges also generate the symmetry transformation in the following manner

ϕ′i = eiθ
aQa

ϕie
−iθaQa

. (1.108)

Considering only infinitesimal transformations and comparing with (1.106) this means

iθaTa
ijϕ j = iθa [

Qa,ϕi
]

. (1.109)

Now for an unbroken symmetry the vacuum is neutral, i.e., Qa |0〉 = 0. Together with
(1.109) we conclude that for an uncharged vacuum the vacuum expectation value has to
vanish:

Qa |0〉 = 0 ⇒ 〈0|ϕ j |0〉 = 0. (1.110)

If, on the other hand, at least one component ϕ j has a nonvanishing vacuum expectation
value, we have

vj := 〈0|ϕ j |0〉 � 0, Qa |0〉 � 0. (1.111)

Consequently the vacuum is charged under the symmetry, and all symmetries under
which ϕ j transforms nontrivially are spontaneously broken while the symmetries
under which ϕ j transforms as a singlet are unbroken. Because we do not want to break
Lorentz invariance ϕ j can only be a scalar field and, for example, not a vector field.

1.10.2 Spontaneous Breakdown of a Discrete Symmetry

In order to introduce the concept of spontaneous symmetry breakdown of a symmetry we
consider the Lagrangian for a real scalar field

L =
1
2
(
∂μϕ

) (
∂μϕ

) − V (ϕ), (1.112)

where the potential is given by

V (ϕ) =
1
2
μ2ϕ2 +

1
4
λϕ4, λ > 0. (1.113)

The parameter λ describes the strength of the scalar interactions with itself. The condition
λ > 0 ensures that the potential is bounded from below. The parameter μ will play a
crucial role in a moment. Evidently the Lagrangian (1.112) is invariant under the discrete
symmetry

ϕ → −ϕ. (1.114)

We next look at the term quadratic in ϕ and consider two cases.

• μ2 > 0
Comparing (1.113) with (1.1) we conclude that μ = m is just the mass of ϕ. In Fig. 1.2

we show V (ϕ) for this case. We observe that V (ϕ) has a unique minimum at ϕ = 0. This
is the ground state of the theory, which as usually done will be called vacuum. Thus
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V ( )

Figure 1.2 Potential for a real scalar field with μ2 > 0.

+v–v

V ( )

Figure 1.3 Potential for a real scalar field with μ2 < 0.

ϕvac = 0, μ2 > 0. (1.115)

Moreover the vacuum is symmetric with respect to ϕ → −ϕ. Nothing exciting so far.
• μ2 < 0

This case is more interesting. Indeed, from

∂V
∂ϕ
= ϕ

(
μ2 + λϕ2

)
= 0, (1.116)

we learn as seen in Fig. 1.3 that there are two minima so that

ϕvac = ±v, v =

√
−
μ2

λ
. (1.117)

The potential looks still symmetric under ϕ → −ϕ but in order to calculate predictions of
the theory we have to choose the ground state. This breaks the symmetry. Indeed sitting
in one of the two vacuua the world does not look symmetric anymore. The best proof
of this is that flipping the sign of ϕ we move to a different world with ϕvac having
opposite sign.

Let us investigate the consequences of SSB. To this end we expand ϕ(x) around the
vacuum state ϕ = v

ϕ(x) = v + η(x), ηvac = 0, (1.118)

with η describing fluctuations around this vacuum.
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The Lagrangian (1.112) expressed in terms of η is given as follows

L =
1
2

(∂μη)(∂μη) − λv2η2 − λvη3 − 1
4
λη4 + const., (1.119)

where the constant terms do not involve η and are physically irrelevant. From the second
term we find the mass of η:

mη =
√

2λv =
√
−2μ2. (1.120)

The same result can also be obtained from

∂2V

∂ϕ2 = μ
2 + 3λϕ2���ϕ=v = −2μ2 = m2

η. (1.121)

We collect a few lessons from this simple exercise:

• Useful formula for scalar masses

m2
η =
∂2V

∂ϕ2

�����ϕ=v . (1.122)

• There are two degenerate vacua connected by the original symmetry ϕ → −ϕ.
• η has a nonvanishing mass given in (1.120).
• The Lagrangian in (1.119) is clearly not invariant under η → −η because of the η3 term.

While these results are still not terribly exciting, we will see that they will turn out to be
useful in the context of the spontaneous breakdown of continuous symmetries.

1.10.3 Spontaneous Breakdown of a Continuous Abelian Global Symmetry

We next consider the generalization of (1.112) to a complex scalar field ϕ:

L =
1
2
(
∂μϕ

∗
) (
∂μϕ

) − V (ϕ∗,ϕ), (1.123)

where the potential is given by

V (ϕ∗,ϕ) = μ2ϕ∗ϕ +
1
4
λ(ϕ∗ϕ)2, λ > 0. (1.124)

This Lagrangian is invariant under the U(1) symmetry

ϕ → eiθϕ, ϕ∗ → ϕ∗e−iθ. (1.125)

This symmetry is spontaneously broken for μ2 < 0. Indeed, we find now

��ϕvac��2 = −2μ2

λ
≡ v2

2
, v =

√
−4
μ2

λ
. (1.126)

The resulting potential is shown in Fig. 1.4. It looks like a Mexican hat.
The profound difference from the case of the discrete symmetry is the full circle of

degenerate minima connected by the original symmetry as the minimum condition (1.126)
does not fix the phase of ϕvac. We choose now one of this vacua as our ground state, and
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V

Figure 1.4 Potential for a complex scalar field with μ2 < 0.

this breaks the U(1) symmetry spontaneously. Let us find the mass spectrum after SSB. To
this end we write

ϕ(x) =
1
√

2
(
ϕ1(x) + iϕ2(x)

)
, (1.127)

with ϕ1 and ϕ2 being real. The vacuum condition now reads

ϕ2
1 + ϕ

2
2
���vac
= v2. (1.128)

We next choose the vacuum to be (
ϕ1,ϕ2

)
vac = (v, 0) , (1.129)

and having two degrees of freedom we introduce two fields η and ξ, which describe
fluctuations around the vacuum (1.129)

ϕ(x) =
1
√

2
(
v + η(x) + iξ(x)

)
. (1.130)

Inserting this expression into (1.123) we find after some algebra

L =

[
1
2

(∂μη)(∂μη) − 1
2

m2
ηη

2
]
+

[
1
2

(∂μξ)(∂μξ)

]
+ interactions, (1.131)

with

m2
η =
∂2V

∂ϕ2
1

������(v,0)

= −2μ2, (1.132)

m2
ξ =
∂2V

∂ϕ2
2

������(v,0)

= 0. (1.133)

The striking difference from the breakdown of a discrete symmetry is the appearance of
a massless particle in addition to a massive one. The appearance of a massless particle
can easily be understood by noting that the potential V is flat in the ϕ2 direction. It does
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not cost any energy to move along this direction and this is only possible for a massless
particle. This massless particle is called Goldstone boson. In the ϕ1 direction the potential
is not flat, and it costs some energy to move along it: the particle η has a mass.

This important result of the appearance of a massless particle as the consequence of a
spontaneous breakdown of a continuous global symmetry is a special case of the Goldstone
theorem, which states that for each broken symmetry there is one Goldstone boson. As the
U(1) symmetry has only one generator, we have only one massless boson in our example.

1.10.4 Generalization to the Nonabelian Case

In order to better understand the implications of the Goldstone theorem, we will now
generalize our considerations to a nonabelian global symmetry. In principle we could
consider the breakdown of an SU(N) group, but it is easier to consider in this case first
the breakdown of an orthogonal group, simply because in this case the fields are real. This
was also the strategy in the book of Bailin and Love [16] from which we benefited a lot
when presenting the following material and where further details can be found.3 SU(2) and
SU(3) groups will be worked out in detail in the context of the SM and its extensions later
in our book.

We consider then n real fields, which form an n-dimensional representation described
by a column vector

�ϕ(x) =
������
ϕ1(x)

...
ϕn(x)

�����	
. (1.134)

The relevant Lagrangian

L =
1
2
(
∂μ �ϕ

�
) (
∂μ �ϕ

) − V ( �ϕ� �ϕ) (1.135)

is invariant under infinitesimal global transformation

�ϕ → �ϕ + δ �ϕ, δ �ϕ = iθaTa �ϕ, (1.136)

where a = 1, . . . N . In component form we have

δϕi = i (θaTa)i j ϕ j . (1.137)

T a are n × n Hermitian matrices, but iTa must be real to keep the real character of the
fields ϕi , and consequently Ta must be antisymmetric, precisely what the generators of
an orthogonal group are. We have seen in the previous example that the invariance of L

under a given symmetry still played an important role after SSB. Let us then investigate
the implications of the invariance in this more complicated case.

From the invariance of V we have

δV =
∂V
∂ϕi

δϕi = i
∂V
∂ϕi

(θaTa)i j ϕ j = 0. (1.138)

3 See chapter 13 in [16].
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But the θa are arbitrary, and consequently for every generator Ta we have

∂V
∂ϕi

(Ta)i jϕ j = 0 a = 1, . . . N . (1.139)

We next consider SSB, that is, in the vacuum

〈0| �ϕ |0〉 = �v or 〈0|ϕi |0〉 = vi , (1.140)

and

∂V

∂ �ϕ

������ϕ=�v = �0 or
∂V
∂ϕi

�����ϕi=vi

= 0. (1.141)

Differentiating (1.139) with ϕk we find

∂2V
∂ϕk∂ϕi

(Ta)i jϕ j +
∂V
∂ϕi

(Ta)ik = 0, (1.142)

and evaluating it at the minimum (1.141), we find

(
∂2V
∂ϕk∂ϕi

)
�ϕ=�v

(Ta)i jvj = 0, (1.143)

which summarizes the implications of a global invariance around the ground state.
We next expand around the vacuum

�ϕ = �v + �̃ϕ or ϕi = vi + ϕ̃i , (1.144)

with

〈0|ϕ̃i |0〉 = 0. (1.145)

Expanding in small fluctuations ϕ̃i and using (1.141), we find

L =
1
2

⎡⎢⎢⎢⎢⎣(∂μϕ̃i)(∂μϕ̃i) − ϕ̃i ϕ̃ j

(
∂2V
∂ϕi∂ϕ j

)
�ϕ=�v

⎤⎥⎥⎥⎥⎦ − V (�v) + O(ϕ̃3). (1.146)

Consequently, the mass spectrum after SSB is described on the basis of (ϕ̃1, . . . , ϕ̃n) by
n × n mass matrix squared (

M2
)
i j
=

(
∂2V
∂ϕi∂ϕ j

)
�ϕ=�v

. (1.147)

But according to (1.143), which followed from global invariance, this matrix satisfies the
equations (

M2
)
ki

(Ta)i j vj = 0, a = 1, . . . N (1.148)
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or more compactly

M2Ta�v = 0, a = 1, . . . N . (1.149)

We now denote the symmetry group by G and assume that it is broken spontaneously to its
subgroup H ⊂ G. The generators Ta can now be divided into X a and Y a

Y a ⊂ H ; Y a = Ta a = 1, . . .M (1.150)

X a ⊂ G/H ; X a = Ta a = M + 1, . . . N , (1.151)

with Y a building the subgroup H and the broken generators X a belonging to the so-called
coset space. They are just the remaining generators, but by itself they do not build a
subgroup of G.

Now in the case of the subgroup H the vacuum is invariant, and this means

Y a�v = 0 or (Y a)i j vj = 0. (1.152)

This allows to satisfy (1.149) trivially and gives no constraint on M2. On the other hand,
for broken generators

X a�v � 0 or (X a)i j vj � 0, (1.153)

and the conditions in (1.149) imply zero eigenvalues in the mass matrix M2. In other words,

�Ua ≡ X a�v or (Ua)i = (X a)i jvj (1.154)

are the eigenvectors corresponding to zero masses.
In summary, for every broken generator X a there is a massless Goldstone boson that is

a linear combination of the fields ϕ̃i and given by

(
ϕ̃1, . . . ϕ̃n

)
X a

������
v1
...
vn

�����	
=

(
�̃ϕ
)�

X a�v. (1.155)

1.10.5 Summary

We conclude that a spontaneous breakdown of a global symmetry generated another
problem: new massless particles for each broken generator. Such massless particles, if
they would exist in nature, would have been discovered already a long time ago. On
the other hand, the lightest mesons like pions and kaons could be regarded as nearly
Goldstone bosons of a broken global SU(3)L × SU(3)R symmetry, which would be exact
at the level of Lagrangian if pions and kaons were massless. But as pions and kaons have
masses, SU(3)L ×SU(3)R has to be broken explicitly so that these mesons at the end obtain
small masses. Consequently they are not true Goldstone bosons but the so-called pseudo-
Goldstone bosons. A very nice article on such bosons in general terms is the one by Steven
Weinberg [17].

An explicit breakdown of a global symmetry has no theoretical problems and combined
with spontaneous symmetry turns out to be useful for the description of the physics of
lightest mesons as we just mentioned.
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On the other hand, explicit breakdown of a gauge symmetry is not allowed as it spoils
the renormalization of such theories. Only spontaneous breakdown is admitted. From the
Goldstone theorem it follows that if a global symmetry is spontaneously broken physical
massless, spin-0 bosons, the Goldstone bosons, emerge. What happens now if one breaks
a local symmetry spontaneously? We will discover soon that the “flat” directions (Ta)i jvj
of a local symmetry correspond to unphysical gauge degrees of freedom, i.e., the gauge
symmetry is broken but we do not get physical Goldstone bosons. Yet at first sight the
appearance of these Goldstone bosons (one for each broken generator) seems to be a new
problem, but it turns out to be a way to generate the masses of gauge bosons without
breaking explicitly the gauge symmetry of the Lagrangian. Indeed, a massless gauge boson,
like the photon, has only two degrees of freedom corresponding to its two transverse
polarizations. On the other hand, a massive gauge boson like W± and Z0 has three degrees
of freedom, the third one corresponding to its longitudinal polarization. It is the Goldstone
boson of a spontaneously broken gauge symmetry that provides the third degree of freedom
to every gauge boson corresponding to a broken generator. Thus at the end W± and Z0

are massive, and Goldstone bosons do not appear in the particle spectrum. That’s why
the Goldstone bosons of a local symmetry are unphysical. One can say that they have
been eaten by the gauge bosons. In the next section we will discuss this mechanism for
generation of masses of gauge bosons in explicit terms.

1.11 Higgs Mechanism

1.11.1 U(1) Symmetry

Let us then gauge the Lagrangian in (1.123) so that

Lgauged =
(
Dμϕ

)∗ (
Dμϕ

) − V (ϕ∗,ϕ) − 1
4

FμνFμν . (1.156)

This Lagrangian is invariant under simultaneous U(1) transformations of ϕ and Aμ:

ϕ → ϕeiθ(x) , Aμ → Aμ +
1
g
∂μθ(x). (1.157)

This invariance will be crucial for the removal of Goldstone bosons from the physical mass
spectrum. We again write after SSB

ϕ(x) =
1
√

2
(
v + η(x) + iξ(x)

) ≈ 1
√

2
exp

(
i
ξ(x)
v

) (
v + η(x)

)
, (1.158)

but this time it will be useful to also have the last expression in (1.158).
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For the discussion of the mass generation for gauge bosons only the covariant derivative
Dμϕ is of interest as only there the scalars and gauge bosons interact with each other. We
have then

Dμϕ =
1
√

2

[
∂μη − i

(
vgAμ − ∂μξ

)
− igAμ

(
η + iξ

)]
. (1.159)

Of particular interest is the second term on the r.h.s. of this equation. We can rewrite it as
follows

vgAμ − ∂μξ = gv

(
Aμ −

1
gv
∂μξ

)
≡ gvA′μ. (1.160)

Note that the original field Aμ and A′μ are related by gauge transformation in (1.157) with

θ(x) = −ξ(x)
v

. (1.161)

This transformation performed on the field ϕ in (1.158) results in

ϕ → ϕ′ =
1
√

2
(
v + η

)
. (1.162)

But we know that such a gauge transformation leaves the Lagrangian invariant, and
consequently this Lagrangian rewritten in terms of A′μ and ϕ′ describes the same physics
as the original Lagrangian. In this new Lagrangian the Goldstone boson is not seen; it has
been gauged away.

Dropping now the prime in (1.162) and denoting η = H with H standing for a Higgs
particle, this discussion shows that due to the gauge invariance of L we are allowed to
write

ϕ =
1
√

2
(v + H) , (1.163)

Dμϕ =
1
√

2

(
∂μH − ivgAμ − igAμH

)
. (1.164)

Consequently we obtain

Lgauged =
1
2
∂μH∂μH − 1

4
FμνFμν − 1

2
m2

H H2 +
1
2

M2
AAμAμ + · · · , (1.165)

which implies

M2
A = v2g2, m2

H = −2μ2. (1.166)

Indeed, the gauge boson is now massive. Its mass depends on the gauge coupling g and v.
In a given theory MA can be predicted if g and v have been determined somewhere else.
On the other hand, mH is rather arbitrary as μ is a parameter in the potential V .

It should be remarked that the explicit disappearance of the Goldstone boson from the
theory is only possible in the unitary gauge in which ϕ takes the form (1.162). This gauge
is very useful for exhibiting the physical spectrum, but it is less convenient for Feynman
diagram calculations. Therefore quite generally the latter calculations are done in other
gauges, the so-called covariant gauges, in which Goldstone bosons appear in loop diagrams
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and one has to take these contributions into account in order to obtain a physical result that
is gauge independent. The Feynman rules involving Goldstone bosons in the case of the
SM can be found in Appendix B.

1.11.2 Nonabelian Gauge Symmetry

We next gauge the Lagrangian (1.135) to obtain

L =
1
2
(
Dμ �ϕ

�
) (

Dμ �ϕ
) − V ( �ϕ� �ϕ) − 1

4
Fa
μνFμν,a. (1.167)

All these symbols have been defined earlier. We now consider as in Section 1.10.4
spontaneous symmetry breakdown G → H with unbroken generators denoted by Y a and
the broken ones by X a. We have

Y a�v = 0, a = 1, . . .M (1.168)

X a�v � 0, a = M + 1, . . . N , (1.169)

and the Goldstone bosons are given in (1.155). Expanding around the vacuum as
in (1.144)–(1.146) we find(

Dμ �ϕ
)� (

Dμ �ϕ
)
=

(
∂μ �̃ϕ

)� (
∂μ �̃ϕ

)
+ g2 Aa

μAμ,b�v�TaTb�v

− ig
(
∂μ �̃ϕ

)�
Tb�vAμ,b + ig�v�Ta∂μ �̃ϕAμ,a + · · ·

(1.170)

The last two terms vanish for Ta = Y a but are nonvanishing for T a = X a. From (1.155)
we know that these terms for a = M + 1, . . . N represent mixed terms involving Goldstone
bosons and the gauge bosons corresponding to broken generators X a. As in the case of
abelian symmetry, they can be gauged away by going to the unitary gauge.

The mass spectrum of this theory after SSB is as follows

• The masses of gauge bosons can be read of from the second term on the r.h.s. of (1.170).
The gauge boson mass matrix is simply given as follows

1
2
(
M2

A

)ab
= g2�v�TaTb�v. (1.171)

As Ta includes both Y a and X a satisfying (1.168) and (1.169), this matrix has both
vanishing and nonvanishing entries so that after diagonalization we will find massless
gauge bosons corresponding to the generators of the unbroken subgroup H and the
massive gauge bosons corresponding to the remaining generators of G.

• The masses of physical Higgs particles are the nonvanishing eigenvalues of the matrix
in (1.147): (

M2
)
i j
=

(
∂2V
∂ϕi∂ϕ j

)
�ϕ=�v

, i, j = 1, . . . n. (1.172)
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The vanishing entries correspond to the Goldstone bosons. The number of physical Higgs
particles, NH , is just given by

NH = n − NGB = n − (N − M) (1.173)

with n denoting the number of ϕi fields and N − M the number of broken generators.
As NH is a positive number, it is evident that in order to break a given group G down
to H , sufficient food in the form of ϕi has to be provided such that the gauge bosons
corresponding to the broken generators become massive.

1.11.3 Summary

In this chapter we have presented the most important aspects of gauge theories that are
necessary in order to follow the next chapters. In this context we have discussed also global
symmetries, which, similar to local symmetries, play an important role in particle physics.
In fact the first symmetries discussed in particle physics like SU(2), SU(2)L × SU(2)R,
SU(3)L × SU(3)R, and SU(3) were all global symmetries. Even if in the 1970s gauge
symmetries took over the leadership, due to significant development of flavor physics in
the late 1980s and the following three decades, global symmetries play these days again
a very important role, and we will discuss other important consequences of them in later
chapters of this book.

With all this information at hand we are ready to move to Part II of our book in order
to describe the SM of electroweak and strong interactions. This will allow us to begin to
discuss the main topic of our book, namely weak decays of mesons and later leptons as
well as other interesting rare processes.

WE ARE READY TO CLIMB TO THE BASE CAMP: THE STANDARD MODEL!
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