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Existence of specific eternal solutions in exponential self-similar form to the
following quasilinear diffusion equation with strong absorption

∂tu = Δum − |x|σuq ,

posed for (t, x) ∈ (0, ∞) × R
N , with m > 1, q ∈ (0, 1) and σ = σc := 2(1 − q)/

(m − 1) is proved. Looking for radially symmetric solutions of the form

u(t, x) = e−αtf(|x| eβt), α =
2

m − 1
β,

we show that there exists a unique exponent β∗ ∈ (0, ∞) for which there exists a
one-parameter family (uA)A>0 of solutions with compactly supported and
non-increasing profiles (fA)A>0 satisfying fA(0) = A and f ′

A(0) = 0. An important
feature of these solutions is that they are bounded and do not vanish in finite time, a
phenomenon which is known to take place for all non-negative bounded solutions
when σ ∈ (0, σc).

Keywords: porous medium equation; spatially inhomogeneous absorption; eternal
solutions; exponential self-similarity; global solutions

2020 Mathematics Subject Classification: 35C06; 34D05; 35A24; 35B33; 35K65

1. Introduction and main results

The goal of the present paper (and also of its second part [22]) is to address the
problem of existence and classification of some specific solutions to the following
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2 R. G. Iagar and P. Laurençot

porous medium equation with strong absorption

∂tu − Δum + |x|σuq = 0, (t, x) ∈ (0,∞) × R
N , (1.1)

in the range of exponents

m > 1, q ∈ (0, 1), σ = σc :=
2(1 − q)
m − 1

. (1.2)

On the one hand, equation (1.1) features, in the range of exponents given in (1.2),
a competition between the degenerate diffusion term, which tends to conserve the
total mass of the solutions while expanding their supports, and the absorption
term which leads to a loss of mass. As it has been established and will be explained
below, absorption becomes stronger as its exponent q decreases and dominant in
the range we are dealing with, leading to specific, although sometimes surprising
phenomena such as finite time extinction, instantaneous shrinking and localization
of the supports of the solutions. On the other hand, the weight |x|σ with σ > 0
affects the absorption in the sense of enhancing its effect over regions far away from
the origin, where |x| is large, while reducing its strength near x = 0, where |x|σ is
almost zero (and formally there is even no absorption at x = 0).

The balance between these two effects has been best understood in the spa-
tially homogeneous case σ = 0 of equation (1.1). A lot of development has been
done several decades ago in the range q > m > 1 where the diffusion is strong
and the absorption is not leading the dynamics of the equations, see for example
[27–32, 34] and references therein. In this range, the previous knowledge of the
porous medium equation and its self-similar behaviour had a strong influence in
developing the theory. The intermediate range 1 < q � m is not yet totally under-
stood in higher space dimensions. In dimension N = 1 it has been shown that
solutions are global in time but their supports are localized if the initial condi-
tion is compactly supported; that is, there exists a radius R > 0 not depending
on time such that suppu(t) ⊆ B(0, R) for any t > 0. Self-similar solutions might
become unbounded [12, 33] and thus a delicate analysis of the large time behaviour,
involving the formation of boundary layers, is needed, see [11]. Such descriptions
are still lacking in dimension N � 2.

More related to our study, still assuming that σ = 0, the range q ∈ (0, 1) is the
most striking one, where the absorption term dominates the diffusion and leads
to two new mathematical phenomena. On the one hand, the finite time extinction
stemming from the ordinary differential equation ∂tu = −uq obtained by neglect-
ing the diffusion has been established by Kalashnikov [25, 26], emphasizing the
dominance of the absorption term. On the other hand, instantaneous shrinking of
supports of solutions to equation (1.1) (with σ = 0) emanating from a bounded
initial condition u0 such that u0(x) → 0 as |x| → ∞ takes place; that is, for any
non-negative initial condition u0 ∈ L∞(RN ) such that u0(x) → 0 as |x| → ∞ and
τ > 0, there is R(τ) > 0 such that suppu(t) ⊆ B(0, R(τ)) for all t � τ . This rather
unexpected behaviour is once more due to the strength of the absorption, which
involves a very quick loss of mass and has been proved in [1] after borrowing ideas
from previous works [14, 26] devoted to the semilinear case. Finer properties of
the dynamics of equation (1.1) for σ = 0 in this range, such as the behaviour near
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Eternal solutions to a porous medium equation 3

the extinction time or even the extinction rates, are still lacking in a number of
cases and seem (up to our knowledge) to be available only when m + q = 2 in [16],
revealing a case of asymptotic simplification. Completing this picture with the cases
when m + q �= 2 appears to be a rather complicated open problem.

Drawing our attention now to the spatially inhomogeneous equation (1.1) when
σ > 0, recent results have shown that the magnitude of σ has a very strong influence
on the dynamics of equation (1.1) and, in some cases, the weight actually allows for
a better understanding of the dynamics. More precisely, the analysis performed by
Belaud and coworkers [3–5], along with the instantaneous shrinking of supports for
bounded solutions to equation (1.1) proved in [21], shows that, for 0 < σ < σc, any
non-negative solution to equation (1.1) with bounded initial condition vanishes
in finite time. A more direct proof of this result is given by the authors in the
recent short note [20]. On the contrary, after developing the general theory of well-
posedness for equation (1.1), we have focussed on the range σ > σc in our previous
work [21] and proved that, in the latter, finite time extinction depends strongly on
how concentrated is the initial condition in a neighbourhood of the origin. More
precisely, initial data which are positive in a ball B(0, δ) give rise to solutions with
a non-empty positivity set for all times,

{x ∈ R
N : u(t, x) > 0} �= ∅ for all t > 0, (1.3)

when σ > σc, while initial data which vanish in a suitable way as x → 0 and with a
sufficiently small L∞ norm lead to solutions vanishing in finite time, as proved in
[20] where optimal conditions are given. All these cases of different dynamics are
consequences of the two types of competitions explained in the previous paragraphs.

The exponent σc = 2(1 − q)/(m − 1) thus appears to separate the onset of extinc-
tion in finite time for arbitrary non-negative and bounded initial conditions which
occurs for lower values of σ and the positivity property (1.3) which is known to take
place for higher values of σ, in particular for initial conditions which are positive in
a ball B(0, δ). According to [20], when σ = σc, there are non-negative solutions to
equation (1.1) vanishing in finite time, their initial conditions having a sufficiently
small L∞-norm and decaying to zero in a suitable way as x → 0, and the issue
we address here is whether the positivity property (1.3) also holds true for some
solutions to equation (1.1) when σ = σc. We actually construct specific solutions
to equation (1.1) with σ = σc featuring this property and these solutions turn out
to have an exponential self-similar form as explained in detail below. In particular,
they are defined for all t ∈ R.

Main results. We are looking in this paper for some special solutions to
equation (1.1) with m, q and σ = σc as in (1.2) having an exponential self-similar
form; that is,

u(t, x) = e−αtf(|x|eβt), (t, x) ∈ (0,∞) × R
N . (1.4)

Notice that solutions as in (1.4) are actually defined for all t ∈ (−∞, ∞); that is,
they are not only global in time but eternal. Even if solutions of form (1.4) are
rather unexpected for parabolic equations due to the irreversibility of time, several
equations are known to have such solutions but usually in critical cases separat-
ing different behaviours. Parabolic equations featuring this property include the
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two-dimensional Ricci flow [13, 18], the fast diffusion equation with critical expo-
nent mc = (N − 2)/N in space dimension N � 3 [15], a viscous Hamilton–Jacobi
equation featuring singular diffusion of p-Laplacian type, p ∈ (2N/(N + 1), 2)
and critical gradient absorption [19], and the related reaction-diffusion equation
∂tu − Δum − |x|σuq = 0 [23, 24]. Concerning the latter, the critical value of σ is
exactly the same as in (1.2), but the dynamic properties of the solutions strongly dif-
fer from the present work, since the spatially inhomogeneous part is a source term,
introducing mass to the equation. Eternal solutions are also available for kinetic
equations, such as the spatially homogeneous Boltzmann equation for Maxwell
molecules [7, 9] or Smoluchowski’s coagulation equation with coagulation kernel
of homogeneity one [6, 8]. Let us finally mention that, besides solutions of the form
(1.4), another important class of self-similar eternal solutions of evolution problems
is that of travelling wave solutions of form (t, x) �→ u(x − ct) in space dimension
N = 1, which are available for scalar conservation laws and parabolic equations
such as the celebrated Fisher-KPP equation, see [10, 17, 35] and the references
therein.

Returning to ansatz (1.4), setting ξ = |x|eβt and performing some direct calcu-
lations, we readily find that the self-similar exponents must satisfy the condition

α =
2

m − 1
β, (1.5)

where β becomes a free parameter for our analysis, while the profile f solves the
differential equation

(fm)′′(ξ) +
N − 1

ξ
(fm)′(ξ) + αf(ξ) − βξf ′(ξ) − ξσfq(ξ) = 0, ξ > 0. (1.6)

The solutions to equation (1.6) we are looking for in this first part of a two-part
work are solutions taking positive values at ξ = 0. To this end, let us observe that
we can fix, without loss of generality, the initial condition as

f(0) = 1, f ′(0) = 0. (1.7)

Indeed, given a > 0 and a solution f to (1.6)–(1.7), we can readily obtain by direct
calculations that the rescaled function

g(ξ; a) = af(a−(m−1)/2ξ) (1.8)

solves (1.6) with initial conditions g(0; a) = a, g′(0; a) = 0. This leaves us with the
task of solving the Cauchy problem (1.6)–(1.7), which is performed in the next
result.

Theorem 1.1. Let m, q and σ = σc as in (1.2). There exists a unique exponent
β∗ > 0 (and corresponding α∗ = 2β∗/(m − 1)) such that, for α = α∗ and β = β∗,
the Cauchy problem (1.6)–(1.7) has a compactly supported, non-negative and non-
increasing solution f∗ ∈ C1([0, ∞)) with (f∗)m ∈ C2([0, ∞)). The function U∗

defined by

U∗(t, x) = e−α∗tf∗(|x|eβ∗t), (t, x) ∈ R × R
N ,

is then a self-similar solution to equation (1.1) in exponential form (1.4).
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Let us point out that, in strong contrast with the range σ > 2(1 − q)/(m − 1)
analysed in [21] and where the self-similarity exponents were uniquely determined,
in the present case we have two free parameters for the shooting technique: both
the initial value of the solution at x = 0 and the self-similar exponent β. Thus, in
order to have uniqueness, we need to fix this initial value in view of rescaling (1.8),
as explained above.

One of the interesting features of this work is the fact that the proof of theorem 1.1
is based on a mix between various techniques. We employ mainly a shooting tech-
nique with respect to the free parameter β, but in order to study the interface
behaviour and establish the uniqueness in theorem 1.1, we transform (1.6) into
a quadratic three-dimensional autonomous dynamical system and study a specific
local behaviour and critical point in the associated phase space. Let us stress here
that we have to go deeper than the analogous study of the interface behaviour
in [21, § 4], since in some cases we need a second order local expansion near the
interface point.

We end up this presentation by mentioning that the present work is the first
part of a two-part analysis of eternal solutions to equation (1.1) and will be fol-
lowed by a companion work [22] in which a second and rather surprising type of
profiles, presenting a dead-core, is identified and classified, by employing a quite dif-
ferent bunch of techniques based on the complete analysis of an auxiliary dynamical
system. Altogether, the existence of such a variety of self-similar solutions in expo-
nential form shows that the dynamics of equation (1.1) in the critical case σ = σc

is expected to be rather complex and to depend on many features of the initial
conditions (such as concentration near x = 0, magnitude of ‖u0‖∞ and location of
the points where the maximum is attained, to name but a few) and is definitely a
challenging problem.

2. Proof of theorem 1.1

The proof of theorem 1.1 is based on a shooting method with respect to the free
exponent β and follows the same strategy as [21, § 4]. However, a number of prepara-
tory results are proved in a different way and the analysis near the interface requires
to be improved in some cases with the help of a phase space analysis. We divide
this section into several subsections containing the main steps of the proof.

2.1. Existence of a compactly supported self-similar solution

Let β > 0 and α = 2β/(m − 1). Recalling the differential equation (1.6) satis-
fied by the self-similar profiles f and setting for simplicity F = fm, we study, as
explained in the Introduction, the Cauchy problem

F ′′(ξ) +
N − 1

ξ
F ′(ξ) + αf(ξ) − βξf ′(ξ) − ξσfq(ξ) = 0, (2.1a)

F (0) = 1, F ′(0) = 0. (2.1b)

We obtain from the Cauchy–Lipschitz theorem that problem (2.1) has a unique
positive solution F (·;β) ∈ C2([0, ξmax(β))) defined on a maximal existence interval
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for which we have the following alternative: either ξmax(β) = ∞ or

ξmax(β) < ∞ and lim
ξ→ξmax(β)

[
F (ξ;β) +

1
F (ξ;β)

]
= ∞.

We next define

ξ0(β) := inf{ξ ∈ (0, ξmax(β)) : f(ξ) = 0} ∈ (0, ξmax(β)], (2.2)

and

ξ1(β) := sup{ξ ∈ (0, ξ0(β)) : f ′ < 0 on (0, ξ)}. (2.3)

We readily notice from (2.1a) and the C2-regularity of F that

F ′′(0;β) = − 2β

(m − 1)N
< 0, (2.4)

so that ξ1(β) > 0. Let us now study more precisely the behaviour of F (·;β) near
ξ0(β) when ξ0(β) is finite.

Lemma 2.1. Consider β > 0 such that ξ0(β) < ∞. Then ξmax(β) = ξ0(β) and F =
F (·;β) ∈ C1([0, ξ0(β)]) satisfies F (ξ0(β)) = 0 and

F ′(ξ0(β)) = ξ0(β)1−N

∫ ξ0(β)

0

ξN−1
∗ [ξσ

∗ fq(ξ∗) − (α + Nβ)f(ξ∗)] dξ∗,

recalling that f = F 1/m. Furthermore, if ξ0(β) = ξ1(β) and F ′(ξ0(β)) = 0, then the
extension of F by zero on (ξ0(β), ∞) belongs to C2([0, ∞)) and is a solution to
(2.1) on [0, ∞) with

F (ξ0(β)) = F ′(ξ0(β)) = F ′′(ξ0(β)) =
(
F 1/m

)′
(ξ0(β)) = 0.

Also, the extension of f by zero on (ξ0(β), ∞) belongs to C1([0, ∞)).

Proof. As ξ0(β) < ∞, then the above alternative implies that ξmax(β) = ξ0(β) and

lim
ξ→ξ0(β)

F (ξ) = 0. (2.5)

Moreover, it follows from (2.1a) that

d
dξ

[
ξN−1F ′(ξ) − βξNf(ξ)

]
= ξN−1 [ξσfq(ξ) − (α + Nβ)f(ξ)] (2.6)

for ξ ∈ [0, ξ0(β)); hence, after integration over (0, ξ),

ξN−1F ′(ξ) − βξNf(ξ) =
∫ ξ

0

ξN−1
∗ [ξσ

∗ fq(ξ∗) − (α + Nβ)f(ξ∗)] dξ∗.

Since we have already established in (2.5) that F and f have a continuous extension
on [0, ξ0(β)], we may take the limit ξ → ξ0(β) in the above identity and complete
the proof of the first statement of lemma 2.1.
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Now, assuming that ξ0(β) = ξ1(β) and F ′(ξ0(β)) = 0, we integrate identity (2.6)
over (ξ, ξ0(β)) and find

−ξN−1F ′(ξ) + βξNf(ξ) =
∫ ξ0(β)

ξ

ξN−1
∗ [ξσ

∗ fq(ξ∗) − (α + Nβ)f(ξ∗)] dξ∗

for ξ ∈ (0, ξ0(β)). Owing to the non-negativity of f and −F ′ on (0, ξ0(β)), we
further obtain

0 � −ξN−1 F ′(ξ)
ξ0(β) − ξ

� 1
ξ0(β) − ξ

∫ ξ0(β)

ξ

ξN−1
∗ [ξσ

∗ fq(ξ∗) − (α + Nβ)f(ξ∗)] dξ∗

for ξ ∈ (0, ξ0(β)). Since f(ξ0(β)) = 0, the right-hand side of the above inequality
converges to zero as ξ ↗ ξ0(β) and we conclude that F ′′(ξ0(β)) is well-defined and
equal to zero. Therefore, the extension of F by zero on (ξ0(β), ∞) is a C2-smooth
function on [0, ∞), as claimed. Similarly, for ξ ∈ (0, ξ0(β)),

0 � βξN f(ξ)
ξ0(β) − ξ

� 1
ξ0(β) − ξ

∫ ξ0(β)

ξ

ξN−1
∗ [ξσ

∗ fq(ξ∗) − (α + Nβ)f(ξ∗)] dξ∗

from which we deduce that f ′(ξ0(β)) is well-defined and equal to zero. Hence, the
extension of f by zero on (ξ0(β), ∞) belongs to C1([0, ∞)). �

We now introduce the following three sets:

A := {β > 0 : ξ0(β) < ∞ and F ′(ξ;β) < 0 for ξ ∈ (0, ξ0(β)]},
C := {β > 0 : ξ1(β) < ξ0(β)},
B := (0,∞) \ (A ∪ C),

and observe that A ∩ C = ∅. Let us first show that the sets A and C are non-empty
and open.

Lemma 2.2. The set A is non-empty and open and there exists βu > 0 such that
(βu, ∞) ⊆ A.

Proof. Set g(ξ;β) = f(ξ/
√

β;β) for ξ ∈ [0,
√

βξ0(β)], or equivalently f(ξ;β) =
g(ξ

√
β;β) for ξ ∈ [0, ξ0(β)]. Setting also G := gm, we obtain by straightforward

calculations that g (and thus G) solves the Cauchy problem

G′′(ζ) +
N − 1

ζ
G′(ζ) +

2
m − 1

g(ζ) − ζg′(ζ) − β−(σ+2)/2ζσgq(ζ) = 0, (2.7a)

G(0) = 1, G′(0) = 0, (2.7b)

where ζ = ξ
√

β. Noticing that in the limit β → ∞ the last term in (2.7a) van-
ishes, we proceed exactly as in the proof of [21, lemma 4.4] (see also the proof of
[36, theorem 2] from where the idea comes) to conclude that there exists βu > 0
such that (βu, ∞) ⊆ A. We omit here the details as they are totally similar to the
ones in the quoted references. That A is open is an immediate consequence of the
continuous dependence of f(·;β) on β. �
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8 R. G. Iagar and P. Laurençot

As for the set C, we do not need a rescaling in order to prove that it is non-empty.

Lemma 2.3. The set C is non-empty and open and there exists βl > 0 such that
(0, βl) ⊆ C.

Proof. We obtain by letting β → 0 in (2.1) that the limit equation is

H ′′(ξ) +
N − 1

ξ
H ′(ξ) − ξσHq/m(ξ) = 0, (2.8a)

with initial conditions

H(0) = 1, H ′(0) = 0. (2.8b)

By the Cauchy–Lipschitz theorem, problem (2.8) has a unique positive solution
H ∈ C2([0, ξH)) defined on a maximal existence interval for which we have the
following alternative: either ξH = ∞ or

ξH < ∞ and lim
ξ→ξH

[
H(ξ) +

1
H(ξ)

]
= ∞.

It follows from (2.8) that

d
dξ

(ξN−1H ′(ξ)) = ξN−1

[
H ′′(ξ) +

N − 1
ξ

H ′(ξ)
]

= ξN+σ−1Hq/m(ξ) > 0.

Hence ξN−1H ′(ξ) > 0 and thus H ′(ξ) > 0 for any ξ ∈ (0, ξH). Given δ ∈ (0, ξH)
fixed, we have H ′(δ) > 0 and H(ξ) > 1 for any ξ ∈ (0, δ). The continuous depen-
dence with respect to the parameter β in (2.1) ensures that there exists βl > 0 such
that

F (ξ;β) >
1
2
, ξ ∈ [0, δ], F ′(δ;β) >

H ′(δ)
2

> 0

for any β ∈ (0, βl). Recalling (2.2) and (2.3), we conclude that ξ1(β) ∈ (0, δ) and
ξ0(β) > δ for any β ∈ (0, βl); that is, ξ1(β) < ξ0(β) for β ∈ (0, βl) and (0, βl) ⊆ C.
We use once more the continuous dependence with respect to the parameter β of
F (·;β) to conclude that C is open. �

We infer from lemmas 2.2 and 2.3 that the set B is non-empty and closed. The
instantaneous shrinking of supports of bounded solutions to equation (1.1) proved
in [21, theorem 1.1], together with the definition of the set A, readily gives the
following characterization of the elements in the set B.

Lemma 2.4. Let β ∈ B. Then ξ0(β) = ξ1(β) < ∞ and (fm)′(ξ0(β);β) = 0.

The proof is immediate and is given with details in [21, lemma 4.6]. We thus
conclude that, for any element β ∈ B, we have an eternal self-similar solution to
equation (1.1) in form (1.4) with profile f(·;β) as in lemma 2.4.
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2.2. Monotonicity

In this section, we prove the following general monotonicity property of the
profiles f(·;β) solving (2.1) with respect to the parameter β.

Lemma 2.5. Let 0 < β1 < β2 < ∞. Then

f(ξ;β1) > f(ξ;β2) for any ξ ∈ (0,min{ξ1(β1), ξ1(β2)}) .

Proof. Consider β2 > β1 > 0 and pick X ∈ (0, min{ξ1(β1), ξ1(β2)}). Then

Fi := F (·;βi) > 0, F ′
i < 0, in (0,X).

Since β2 > β1 and F1(0) = F2(0) = 1, F ′
1(0) = F ′

2(0) = 0, we infer from (2.4) that
F2 < F1 in a right-neighbourhood of ξ = 0. We may thus define

ξ∗ := inf{ξ ∈ (0,X) : F1(ξ) = F2(ξ)} > 0,

and notice that F2(ξ) < F1(ξ) for any ξ ∈ (0, ξ∗). Assume for contradiction that
ξ∗ < X. Then F2(ξ∗) = F1(ξ∗). We introduce for any λ � 1 the following family of
rescaled functions

Gλ(ξ) := λmF2(λ−(m−1)/2ξ), ξ ∈ [0, ξ∗], (2.9)

which are also solutions to (2.1a) with β = β2, and adapt an optimal barrier argu-
ment from [37] (see also [21, lemma 4.12]). Owing to the monotonicity of F1 and
F2 on [0, X], we first note that

min
ξ∈[0,ξ∗]

Gλ(ξ) = Gλ(ξ∗) = λmF2(λ−(m−1)/2ξ∗) � λmF2(ξ∗),

whence

lim
λ→∞

min
ξ∈[0,ξ∗]

Gλ(ξ) = ∞,

while F1(ξ) � 1 for ξ ∈ [0, ξ∗]. Consequently, the optimal parameter

λ0 := inf{λ � 1 : Gλ(ξ) > F1(ξ), ξ ∈ [0, ξ∗]} (2.10)

is well defined and finite. Since F2 < F1 on (0, ξ∗), we also deduce that λ0 > 1. The
definition of λ0 guarantees that there exists η ∈ [0, ξ∗] such that

Gλ0(η) = F1(η), Gλ0 � F1 in [0, ξ∗]. (2.11)

On the one hand, we infer from the monotonicity of F2 and the property λ0 > 1
that

F1(ξ∗) = F2(ξ∗) < λm
0 F2(ξ∗) < λm

0 F2(λ
−(m−1)/2
0 ξ∗) = Gλ0(ξ∗),

which rules out the possibility that η = ξ∗. On the other hand,

Gλ0(0) = λm
0 F2(0) = λm

0 > 1 = F1(0),

so that η > 0. Consequently, η ∈ (0, ξ∗) and we derive from (2.11) that Gλ0 − F1

attains a strict minimum at ξ = η, which, together with the definition of η, implies

https://doi.org/10.1017/prm.2024.29 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.29


10 R. G. Iagar and P. Laurençot

that

Gλ0(η) = F1(η), G′
λ0

(η) = F ′
1(η), G′′

λ0
(η) � F ′′

1 (η). (2.12)

Since both Gλ0 and F1 are solutions to (2.1a) with parameters β2 and β1,
respectively, we infer from (2.12) that

0 = G′′
λ0

(η) +
N − 1

η
G′

λ0
(η) +

2β2

m − 1
G

1/m
λ0

(η) − β2η
(
G

1/m
λ0

)′
(η) − ησG

q/m
λ0

(η)

� F ′′
1 (η) +

N − 1
η

F ′
1(η) +

2β2

m − 1
F

1/m
1 (η) − β2η

(
F

1/m
1

)′
(η) − ησF

q/m
1 (η)

= − 2β1

m − 1
F

1/m
1 (η) + β1

η

m
F

(1−m)/m
1 (η)F ′

1(η) +
2β2

m − 1
F

1/m
1 (η)

− β2
η

m
F

(1−m)/m
1 (η)F ′

1(η)

= (β2 − β1)F
(1−m)/m
1 (η)

[
2

m − 1
F1(η) − η

m
F ′

1(η)
]

> 0,

which leads to a contradiction. We have thus established that F2 < F1 on (0, X)
and the proof is complete due to the arbitrary choice of X ∈ (0, ξ1(β2)) ∩
(0, ξ1(β1)). �

Let us remark that, in contrast to the range σ > σc studied in [21, § 3], in our
case the profiles f(·;β) are ordered in a decreasing way with respect to the shooting
parameter β.

2.3. Interface behaviour

The goal of this section is deriving the local behaviour near the interface point
ξ0(β) for profiles f(·;β) with β ∈ B. We begin with a formal calculation. Let us
drop for simplicity β from the notation and assume that, at the interface, we have

f(ξ) ∼ A(ξ0 − ξ)θ, f ′(ξ) ∼ −Aθ(ξ0 − ξ)θ−1, as ξ → ξ0 = ξ0(β),

for some A > 0 and θ > 0 to be determined. We also obtain formally that

(fm)′(ξ) ∼ −mθAm(ξ0 − ξ)mθ−1, (fm)′′(ξ) ∼ mθ(mθ − 1)Am(ξ0 − ξ)mθ−2,

both equivalences holding true as ξ → ξ0. Inserting this ansatz in (1.6) gives, as
ξ → ξ0,

mθ(mθ − 1)Am(ξ0 − ξ)mθ−2 − N − 1
ξ0

mθAm(ξ0 − ξ)mθ−1

+ βξ0Aθ(ξ0 − ξ)θ−1 +
2β

m − 1
A(ξ0 − ξ)θ − Aqξσ

0 (ξ0 − ξ)qθ = 0.

We thus have four possibilities of balancing the dominating powers.

• mθ − 2 = θ − 1 < qθ. This implies θ = 1/(m − 1), but in this case mθ − 1 =
θ > 0 and thus this choice leads to A = 0.
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Eternal solutions to a porous medium equation 11

• θ − 1 = qθ < mθ − 2. This implies θ = 1/(1 − q) and mθ − 2 > qθ leads
straightforwardly to m + q > 2.

• mθ − 2 = qθ < θ − 1. This implies θ = 2/(m − q) and the inequality θ − 1 > qθ
easily gives m + q < 2.

• mθ − 2 = qθ = θ − 1. This implies that θ = 1/(m − 1) = 1/(1 − q) and
m + q = 2.

Looking now at the constant A in front of the previous ansatz, we find the
following three cases:

Case 1. m + q > 2. According to the formal calculation, we expect θ = 1/(1 − q)
and then βξ0Aθ = Aqξσ

0 , which leads to

A1−q =
(1 − q)ξσ−1

0

β
. (2.13)

Case 2. m + q = 2. We expect θ = 1/(1 − q) = 2/(m − q) and

mθ(mθ − 1)Am + βξ0Aθ − Aqξσ
0 = 0;

that is, A = A∗ with A∗ being the unique positive solution to

m(m + q − 1)
(1 − q)2

Am−q
∗ +

βξ0

1 − q
A1−q

∗ − ξσ
0 = 0.

Since m + q = 2 and σ = 2 in that case, the above equation simplifies to

m

(1 − q)2
Am−q

∗ +
βξ0

1 − q
A

(m−q)/2
∗ − ξ2

0 = 0. (2.14)

Case 3. m + q < 2. We expect θ = 2/(m − q) and mθ(mθ − 1)Am = Aqξσ
0 , hence

Am−q =
(m − q)2

2m(m + q)
ξσ
0 . (2.15)

In order to prove in a rigorous way all these estimates near the interface, we
proceed as in [21]. We start with some general upper bounds at the interface, but
omit the proof, as it is totally similar to that of [21, lemma 4.7].

Lemma 2.6. Assume that β ∈ B and set f = f(·;β) and ξ0 = ξ0(β). Then

|(fm−q)′(ξ)| � 2N−1ξσ
0 (ξ0 − ξ), ξ ∈

(
ξ0

2
, ξ0

)
, (2.16)

and

f(ξ) � βq−1ξ
(σ−1)/(1−q)
0 (ξ0 − ξ)1/(1−q), ξ ∈

(
ξ0

2
, ξ0

)
. (2.17)

Moreover, there exists C1 > 0 depending only on N , m and q such that

f(ξ) � C1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q), ξ ∈

(
ξ0

2
, ξ0

)
. (2.18)
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12 R. G. Iagar and P. Laurençot

The following consequences of lemma 2.6 are drawn in the same way as in
[21, lemmas 4.8 and 4.9].

Corollary 2.7. Let β ∈ B and set f = f(·;β) and ξ0 = ξ0(β). Then

lim sup
ξ→ξ0

(
f (m−q)/2

)′
(ξ) > −∞.

In addition, if m + q > 2 then

lim sup
ξ→ξ0

(
fm−1

)′
(ξ) = 0.

The estimates given in corollary 2.7 allow us to proceed as in [21, propositions
4.10 and 4.11] in order to identify the precise algebraic rate at which f(·;β) vanishes
at the interface, which depends on the sign of m + q − 2 as follows.

Proposition 2.8. Let β ∈ B and set f = f(·;β) and ξ0 = ξ0(β).

(a) If m + q < 2, then, as ξ → ξ0,

f(ξ) = K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q) + o((ξ0 − ξ)2/(m−q)), (2.19)

where

K1 :=

[
m − q√

2m(m + q)

]2/(m−q)

.

(b) If m + q = 2, then σ = 2 and, as ξ → ξ0,

f(ξ) = K1ξ
2/(m−q)
0 K2(β)(ξ0 − ξ)2/(m−q) + o((ξ0 − ξ)2/(m−q)), (2.20)

where K1 is defined in part (a) and

K2(β) :=

[√
1 +

β2

4m
− β

2
√

m

]2/(m−q)

.

(c) If m + q > 2, then, as ξ → ξ0,

f(ξ) = K3(β)ξ(σ−1)/(1−q)
0 (ξ0 − ξ)1/(1−q) + o((ξ0 − ξ)1/(1−q)), (2.21)

where

K3(β) :=
[
1 − q

β

]1/(1−q)

.

Let us notice here that the values of K1, K2(β) and K3(β) in (2.19), (2.20) and
(2.21) correspond to the values of A obtained through the formal deduction in
(2.15), (2.14) and (2.13), respectively. It is now worth pointing out that there is
no explicit dependence on β in the behaviour (2.19) when m + q < 2. This is why
we need to perform some rather serious extra work in order to identify the second
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order of the expansion at the interface when m + q ∈ (1, 2), as formal computations
(which are rather tedious and we do not give here) reveal that β shows up in an
explicit way in this next order, a feature that will be very helpful in the proof of
the uniqueness issue. More precisely, we have the following asymptotic expansions.

Proposition 2.9. Let m + q < 2, β ∈ B and set f = f(·;β) and ξ0 = ξ0(β). Then,
as ξ → ξ0,

f(ξ) = K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q)

− K0(β)ξ(σ+m+q−2)/(m−q)
0 (ξ0 − ξ)(4−m−q)/(m−q) (2.22)

+ o((ξ0 − ξ)(4−m−q)/(m−q)),

where K1 is defined in (2.19) and

K0(β) :=
(m − q)βK2−m

1

m(1 − q)(m + q + 2)
. (2.23)

Proof. As in the proof of [21, proposition 4.10], we introduce the new dependent
variables

X (ξ) :=
√

mξ−(σ+2)/2f (m−q)/2(ξ),

Y(ξ) :=
√

mξ−σ/2f (m−q−2)/2(ξ)f ′(ξ),

Z(ξ) :=
α√
m

ξ(2−σ)/2f (2−m−q)/2(ξ),

(2.24)

as well as a new independent variable η via the integral representation

η(ξ) :=
1√
m

∫ ξ

0

f (q−m)/2(ξ∗)ξ
σ/2
∗ dξ∗, ξ ∈ [0, ξ0). (2.25)

Introducing (X, Y, Z) defined by (X , Y, Z) = (X ◦ η, Y ◦ η, Z ◦ η), we see that
(X, Y, Z) solves the quadratic autonomous dynamical system⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = X

[
m − q

2
Y − σ + 2

2
X

]

Ẏ = −m + q

2
Y 2 −

(
N − 1 +

σ

2

)
XY − XZ +

m − 1
2

Y Z + 1

Ż = Z

[
2 − m − q

2
Y +

2 − σ

2
X

]
.

(2.26)

Observe that, owing to (2.19),

lim
ξ→ξ0

η(ξ) = ∞,

so that studying the behaviour of (X , Y, Z)(ξ) as ξ → ξ0 amounts to that of
(X, Y, Z)(η) as η → ∞. Furthermore, we argue as in [21, proposition 4.10] to
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deduce from (2.19) and corollary 2.7 that

(X,Y,Z)(η) ∈ (0,∞) × (−∞, 0) × (0,∞), η > 0,

and

lim
η→∞(X,Y,Z)(η) =

(
0,−

√
2

m + q
, 0

)
.

We are thus interested in the behaviour near the critical point (0, −√
2/(m + q), 0).

We translate this point to the origin of coordinates by setting

W = Y +
√

2
m + q

. (2.27)

We then find by direct calculation that system (2.26) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẋ = − m − q√
2(m + q)

X +
m − q

2
XW − σ + 2

2
X2

Ẇ =
(
N − 1 +

σ

2

) √
2

m + q
X +

√
2(m + q)W − m − 1√

2(m + q)
Z

−
(
N − 1 +

σ

2

)
XW − XZ − m + q

2
W 2 +

m − 1
2

WZ

Ż = − 2 − m − q√
2(m + q)

Z +
2 − m − q

2
WZ +

2 − σ

2
XZ.

(2.28)

Introducing F(V) = (F1, F2, F3)(V) defined for V = (V1, V2, V3) ∈ R
3 by

F1(V) := − m − q√
2(m + q)

V1 +
m − q

2
V1V2 − σ + 2

2
V 2

1

F2(V) :=
(
N − 1 +

σ

2

) √
2

m + q
V1 +

√
2(m + q)V2 − m − 1√

2(m + q)
V3

−
(
N − 1 +

σ

2

)
V1V2 − V1V3 − m + q

2
V 2

2 +
m − 1

2
V2V3

F3(V) := − 2 − m − q√
2(m + q)

V3 +
2 − m − q

2
V2V3 +

2 − σ

2
V1V3,

and denoting the semiflow associated with the dynamical system

V̇(η) = F(V(η)), η > 0, V(0) = V0 ∈ R
3, (2.29)

by ϕ(·;V0), we deduce from (2.28) that V∗ := (X, W, Z) = ϕ(·;V∗(0)) is defined
on [0, ∞) with

lim
η→∞V∗(η) = 0. (2.30)
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Eternal solutions to a porous medium equation 15

The matrix associated with the linearization of system (2.29) at the origin is

M =
√

2
m + q

⎛
⎝ −m−q

2 0 0
N − 1 + σ

2 m + q −m−1
2

0 0 − 2−m−q
2

⎞
⎠

having three distinct eigenvalues

λ1 = − m − q√
2(m + q)

, λ2 =
√

2(m + q), λ3 = − 2 − m − q√
2(m + q)

,

with corresponding eigenvectors (not normalized)

E1 =
(

1,−2(N − 1) + σ

3m + q
, 0

)
, E2 = (0, 1, 0), E3 =

(
0,

m − 1
2 + m + q

, 1
)

.

Then 0 is a hyperbolic point of ϕ and has a two-dimensional stable manifold Ws(0).
According to the proof of the stable manifold theorem (see e.g. [2, theorem 19.11]),
there is an open neighbourhood V of zero in R

3, an open neighbourhood V0 of
zero in R

2 and a C2-smooth function h : V0 → R such that h(0, 0) = ∂xh(0, 0) =
∂zh(0, 0) = 0 and the local stable manifold

WV
s (0) := {V0 ∈ Ws(0) : ϕ(η;V0) ∈ V for all η � 0}

satisfies

WV
s (0) ⊆ {xE1 + h(x, z)E2 + zE3 : (x, z) ∈ V0},

its tangent space at 0 being RE1 ⊕ RE3. Since {ϕ(η;V∗(0)) : η � η0} is included
in Ws(0) ∩ V for η0 large enough by (2.30), we conclude that ϕ(η;V∗(0)) belongs
to WV

s (0) for η � η0. Consequently, there are functions (x, z) : [η0, ∞) → V0 such
that

(X,W,Z)(η) = ϕ(η;V∗(0)) = x(η)E1 + h(x(η), z(η))E2 + z(η)E3

for η � η0. In fact, x(η) = X(η), z(η) = Z(η) and

W (η) = −2(N − 1) + σ

3m + q
X(η) +

m − 1
2 + m + q

Z(η) + h(X(η), Z(η)). (2.31)

Let us notice from (2.24) that

Z(ξ) = αm(q−1)/(m−q)X (2−m−q)/(m−q)(ξ),

which implies that X(η) = o(Z(η)) as η → ∞, since (2 − m − q)/(m − q) < 1.
Recalling also that h is C2-smooth with h(0, 0) = ∂xh(0, 0) = ∂zh(0, 0) = 0, we
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infer from (2.31) that

W (η) =
m − 1

2 + m + q
Z(η) + o(Z(η)) as η → ∞,

or equivalently, undoing the change of variable (2.25) and the translation (2.27),
we get as ξ → ξ0,

Y(ξ) = −
√

2
m + q

+
m − 1

2 + m + q
Z(ξ) + o(Z(ξ)). (2.32)

Moreover, we readily infer from the already obtained local behaviour (2.19) and the
definition of Z in (2.24) that, as ξ → ξ0,

Z(ξ) ∼ α√
m

K
(2−m−q)/2
1 ξ

(2−σ)/2+σ(2−m−q)/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q).

Inserting the previous expansion into (2.32) and recalling the definition of Y in
(2.24), we find

2
√

m

m − q
ξ−σ/2

(
f (m−q)/2

)′
(ξ) = −

√
2

m + q

+
α(m − 1)K(2−m−q)/2

1

(2 + m + q)
√

m
ξ
(2−σ)/2+σ(2−m−q)/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

+ o
(
(ξ0 − ξ)(2−m−q)/(m−q)

)
,

which leads to, since α = 2β/(m − 1),

(
f (m−q)/2

)′
(ξ)

= −K
(m−q)/2
1 ξ

σ/2
0

(
1 − ξ0 − ξ

ξ0

)σ/2

+ (1 − q)K0(β)K(m−q−2)/2
1 ξ

[2(m−q)+σ(2−m−q)]/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

×
(

1 − ξ0 − ξ

ξ0

)σ/2

+ o
(
(ξ0 − ξ)(2−m−q)/(m−q)

)

= −K
(m−q)/2
1 ξ

σ/2
0

(
1 − σ(ξ0 − ξ)

2ξ0

)
+ o(ξ0 − ξ)

+ (1 − q)K0(β)K(m−q−2)/2
1 ξ

[2(m−q)+σ(2−m−q)]/2(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

+ o
(
(ξ0 − ξ)(2−m−q)/(m−q)

)
.
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Recalling that (2 − m − q)/(m − q) < 1, we end up with(
f (m−q)/2

)′
(ξ) = −K

(m−q)/2
1 ξ

σ/2
0

+ (1 − q)K0(β)K(m−q−2)/2
1 ξ

[2(m−q)+σ(2−m−q)]/2(m−q)
0 (2.33)

× (ξ0 − ξ)(2−m−q)/(m−q)

+ o
(
(ξ0 − ξ)(2−m−q)/(m−q)

)
.

Integrating (2.33) over (ξ, ξ0) and then taking powers 2/(m − q) give

f(ξ) = K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q)

×
[
1 − (m − q)K0(β)

2K1
ξ
(m+q−2)/(m−q)
0 (ξ0 − ξ)(2−m−q)/(m−q)

+o
(
(ξ0 − ξ)(2−m−q)/(m−q)

)]2/(m−q)

= K1ξ
σ/(m−q)
0 (ξ0 − ξ)2/(m−q) − K0(β)ξ(σ+m+q−2)/(m−q)

0 (ξ0 − ξ)(4−m−q)/(m−q)

+ o
(
(ξ0 − ξ)(4−m−q)/(m−q)

)
,

as stated. �

2.4. Uniqueness

We are now ready to complete the proof of theorem 1.1 by showing that the set B
contains at most one element. Taking into account the previous preparations, this
proof borrows ideas from the analogous one in [21, § 4.4].

Proof of theorem 1.1: uniqueness. Assume for contradiction that there are β1 ∈ B
and β2 ∈ B such that 0 < β1 < β2 < ∞. By lemma 2.4, we have ξ0(β1) = ξ1(β1) and
ξ0(β2) = ξ1(β2), so that lemma 2.5 implies that f1(ξ) > f2(ξ) and F1(ξ) > F2(ξ) for
any ξ ∈ (0, min{ξ0(β1), ξ0(β2)}), with fi := f(·;βi) and Fi := fm

i for i = 1, 2. In
particular, ξ0(β2) < ξ0(β1).

As in the proof of lemma 2.5, see (2.9)–(2.10), we introduce the rescaled version
Gλ of F2 defined by

Gλ(ξ) := λmF2

(
λ−(m−1)/2ξ

)
, ξ ∈ [0,∞), λ � 1, (2.34)

recalling that F2 is well-defined on [0, ∞) by lemma 2.1, and define the optimal
parameter

λ0 := inf {λ � 1 : Gλ(ξ) > F1(ξ), ξ ∈ [0, ξ0(β1)]} ∈ (1,∞), (2.35)

its existence being ensured by the fact that

lim
λ→∞

min
ξ∈[0,ξ0(β1)]

Gλ(ξ) = lim
λ→∞

Gλ(ξ0(β1)) = lim
λ→∞

λmF2(λ−(m−1)/2ξ0(β1))

� lim
λ→∞

λmF2

(
ξ0(β2)

2

)
= ∞.
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According to the definition of λ0 in (2.35) and the compactness of the interval
[0, ξ0(β1)], we deduce that there is η ∈ [0, ξ0(β1)] such that F1(η) = Gλ0(η) and
F1 � Gλ0 on [0, ξ0(β1)]. Arguments very similar to the ones employed in the proof
of lemma 2.5, along with lemma 2.1, then discard the possibility that either η = 0
or η ∈ (0, ξ0(β1)), thus showing that η = ξ0(β1). Consequently,

F1(ξ0(β1)) = 0 = Gλ0(ξ0(β1)), 0 < F1(ξ) < Gλ0(ξ), ξ ∈ [0, ξ0(β1)), (2.36)

and we also obtain the following equality implied by the equality of the supports
in (2.36) and rescaling (2.34)

ξ0(β1) = λ
(m−1)/2
0 ξ0(β2). (2.37)

We now split the analysis into the three cases already set apart at the beginning of
§ 2.3, according to the sign of m + q − 2.

Case 1. m + q < 2. We recall that, in this case, proposition 2.9 gives

fi(ξ) = K1ξ0(βi)σ/(m−q)(ξ0(βi) − ξ)2/(m−q)

− K0(βi)ξ0(βi)(σ+m+q−2)/(m−q)(ξ0(βi) − ξ)(4−m−q)/(m−q) (2.38)

+ o((ξ0(βi) − ξ)(4−m−q)/(m−q)),

as ξ → ξ0(βi), i = 1, 2. In order to simplify the calculations, we can work at the
level of fi by noticing that rescaling (2.34) reduces to

gλ0(ξ) := G
1/m
λ0

(ξ) = λ0f2

(
λ
−(m−1)/2
0 ξ

)
. (2.39)

We thus infer from (2.38) and (2.39) that

gλ0(ξ) = λ0K1ξ0(β2)σ/(m−q)
(
ξ0(β2) − λ

−(m−1)/2
0 ξ

)2/(m−q)

− K0(β2)λ0ξ0(β2)(σ+m+q−2)/(m−q)(ξ0(β2) − λ
−(m−1)/2
0 ξ)(4−m−q)/(m−q)

+ o

((
ξ0(β2) − λ

−(m−1)/2
0 ξ

)(4−m−q)/(m−q)
)

= λ0K1

(
λ
−(m−1)/2
0 ξ0(β1)

)σ/(m−q)

λ
−(m−1)/(m−q)
0 (ξ0(β1) − ξ)2/(m−q)

− K0(β2)λ0

(
λ
−(m−1)/2
0 ξ0(β1)

)(σ+m+q−2)/(m−q)

λ
−(m−1)(4−m−q)/2(m−q)
0

× (ξ0(β1) − ξ)(4−m−q)/(m−q) + o
(
(ξ0(β1) − ξ)(4−m−q)/(m−q)

)
.

Noticing that the powers of λ0 appearing in the (rather tedious) previous cal-
culations cancel out due to the precise value of σ given in (1.2), we further
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obtain

gλ0(ξ) = K1ξ0(β1)σ/(m−q)(ξ0(β1) − ξ)2/(m−q)

− K0(β2)ξ0(β1)(σ+m+q−2)/(m−q)(ξ0(β1) − ξ)(4−m−q)/(m−q)

+ o
(
(ξ0(β1) − ξ)(4−m−q)/(m−q)

)
= f1(ξ) + (K0(β1) − K0(β2))ξ0(β1)(σ+m+q−2)/(m−q)

× (ξ0(β1) − ξ)(4−m−q)/(m−q)

+ o
(
(ξ0(β1) − ξ)(4−m−q)/(m−q)

)
.

Since β1 < β2, we deduce from (2.23) that K0(β1) < K0(β2). Thus, gλ0(ξ) < f1(ξ)
in a left neighbourhood of ξ0(β1), whence (by raising to power m) Gλ0(ξ) < F1(ξ)
in the same left neighbourhood of ξ0(β1), and we have reached a contradiction to
(2.36).

Case 2. m + q = 2. In this case, proposition 2.8 (b) gives

Fi(ξ) = Km
1 ξ0(βi)2m/(m−q)Km

2 (βi)(ξ0(βi) − ξ)2m/(m−q) + o
(
(ξ0(βi) − ξ)2m/(m−q)

)
as ξ → ξ0(βi), i = 1, 2. We thus have

Gλ0(ξ) = λm
0 Km

1 ξ0(β2)2m/(m−q)Km
2 (β2)

(
ξ0(β2) − λ

−(m−1)/2
0 ξ

)2m/(m−q)

+ o
(
(ξ0(β2) − λ

−(m−1)/2
0 ξ)2m/(m−q)

)
= λm

0 Km
1 (λ−(m−1)/2

0 ξ0(β1))2m/(m−q)Km
2 (β2)λ

−m(m−1)/(m−q)
0

× (ξ0(β1) − ξ)2m/(m−q)

+ o
(
(ξ0(β1) − ξ)2m/(m−q)

)
= Km

1 ξ0(β1)2m/(m−q)Km
2 (β2)(ξ0(β1) − ξ)2m/(m−q)

+ o
(
(ξ0(β1) − ξ)2m/(m−q)

)

=
[
K2(β2)
K2(β1)

]m

F1(ξ) + o
(
(ξ0(β1) − ξ)2m/(m−q)

)
,

the powers of λ0 cancelling out due to m + q = 2. Noticing that we can write

K2(β) =

[√
1 +

β2

4m
+

β

2
√

m

]−2/(m−q)

,

we easily observe that K2 is a decreasing function of β, thus K2(β2) < K2(β1)
since β2 > β1. Therefore, Gλ0(ξ) < F1(ξ) in a left neighbourhood of ξ0(β1), which
contradicts (2.36).
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Case 3. m + q > 2. We recall that, in this case, proposition 2.8 (c) gives

Fi(ξ) = Km
3 (βi)ξ0(βi)m(σ−1)/(1−q)(ξ0(βi) − ξ)m/(1−q) + o((ξ0(βi) − ξ)m/(1−q))

as ξ → ξ0(βi), i = 1, 2. Using then rescaling (2.34) and identity (2.37), we readily
infer that

Gλ0(ξ) = λm
0 Km

3 (β2)ξ0(β2)m(σ−1)/(1−q)
(
ξ0(β2) − λ

−(m−1)/2
0 ξ

)m/(1−q)

+ o

((
ξ0(β2) − λ

−(m−1)/2
0 ξ

)m/(1−q)
)

= λm
0 Km

3 (β2)
(
λ
−(m−1)/2
0 ξ0(β1)

)m(σ−1)/(1−q)

λ
−(m−1)m/2(1−q)
0

× (ξ0(β1) − ξ)m/(1−q)

+ o
(
(ξ0(β1) − ξ)m/(1−q)

)
= Km

3 (β2)ξ0(β1)m(σ−1)/(1−q)(ξ0(β1) − ξ)m/(1−q) + o((ξ0(β1) − ξ)m/(1−q))

=
[
K3(β2)
K3(β1)

]m

F1(ξ) + o((ξ0(β1) − ξ)m/(1−q)).

Since K3(β2) < K3(β1) for β2 > β1, we find that Gλ0(ξ) < F1(ξ) in a left neigh-
bourhood of ξ0(β1), which is again a contradiction to (2.36).

The previous contradictions imply that there cannot be two different values of
the exponent β in the set B, completing the proof. �
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20 R. G. Iagar and Ph. Laurençot. Finite time extinction for a diffusion equation with spatially
inhomogeneous strong absorption. Differ. Integr. Equ. 36 (2023), 1005–1016.
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