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Abstract. We use some fundamental work of Bernstein to study parabolic induction in reduc-
tive p-adic groups. In particular, we determine when parabolic induction from a component of
the Bernstein decomposition of a Levi subgroup to the corresponding component of the full
group is an equivalence of categories.

Mathematics Subject Classification (2000). 22E50.

Key words. equivalence of categories, parabolic induction, smooth representation.

Let F be a non-Archimedean local field (with finite residue field) and G the group of
F-points of a connected reductive algebraic group defined over F. Let Q be a para-
bolic subgroup of G with Levi factor M. Write ig for the normalized parabolic
induction functor from M (M), the category of smooth complex representations of M,
to M(G), the corresponding category for G.

In this paper, we study the qualitative behaviour of the functors ig . To state our
results, we need to recall the explicit block decomposition of R(G) underlying the
theory of the Bernstein centre. We refer to this, following [9], as the Bernstein decom-
position. (See [2], or the summary account in [9], for more details.)

Let ¢ be an irreducible supercuspidal representation of a Levi subgroup L of G
and write X(L) for the group of unramified characters of L. Define a full subcategory
N(L.0)(G) of N(G) as follows: a smooth representation = of G belongs to Nz »(G) if
and only if each irreducible subquotient of 7 appears as a subquotient of i%(av) for
some v € X(L) and some parabolic subgroup P of G with Levi factor L. The sub-
categories Mz »)(G), often called components, are indecomposable and split the full
smooth category N(G):

NG = [T Rwo(G). (*)

(L.0)
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(Of course, there is considerable redundancy in our indexing of the various sub-
categories. Indeed, let g; be irreducible supercuspidal representations of the Levi sub-
groups L; of G, i =1, 2. Then

ER(leﬂl)(G) = ER(defz)(G)

if and only if there is a g € G with gL,g~! = L, %61 = 0,v for some v € X(L,), by,
e.g., Theorem 2.9 of [4].)

In concrete terms, () says that each object V in (G) contains, for each pair (L, o)
as above, a maximal G-subspace V(z q) in N(1,»(G) and that V=3, ) Vir.¢. The
sum is direct since objects in distinct N, (G)’s have disjoint sets of irreducible sub-
quotients; for the same reason, G-homomorphisms preserve such sums, and thus one
obtains the categorical decomposition (x).

We now fix a Levi subgroup L of G and an irreducible supercuspidal represen-
tation ¢ of L. We assume that the Levi factor M of the parabolic subgroup Q of
G contains L. We can thus form the categories N (M) and R »(G). The
restriction of ig to N, (M) defines a functor from N (M) to R »(G) which
we again denote by if.

Our main result, Theorem 3.1, gives a necessary and sufficient condition for

i§: RiL.oy(M) = RLo)(G) (*)
to be an equivalence of categories. To state the condition, let
N(L,0)=1{n€ Ng(L) : "o = ov, for some v € X(L)}.

We also put W(L,o) = N(L,s)/L and write WY (L, ) for the corresponding object
for M. Thus WM(L,s) = (N(L,0) N M)/L. We show that () is an equivalence of
categories if and only if W(L,s) = WY (L, ) (equivalently, if and only if N(L, ) is
contained in M).

This generalizes Theorem 12.4 of [9] which gives the ‘if’ direction under the
assumption that the components N (M) and N, »(G) admit types satisfying cer-
tain auxiliary conditions. In place of types, we use a construction from [3]. Here
Bernstein constructs an explicit faithfully projective object H(GLJ) in each of the cate-
gories Mz »(G). For our purposes, the construction has the key property that
H(GL’G) =~ ig(ﬂf‘fqa)). Theorem 3.1 follows easily using some elementary categorical
algebra and the main technical result of [4], Mackey’s theorem for the composition
of Jacquet restriction and parabolic induction. (In fact, at this stage we only need
that the objects I1{; ,, and I/ , are faithful.)

Let 7 be an irreducible object in N »(M). As an immediate consequence of
the above, we see that i§(n) is irreducible whenever W(L, ¢) = WY(L, ¢). In parti-
cular, if W(L,s)= {1}, then i§o is irreducible. (We also prove this case more
directly in Section 2.) In Section 4, we give an example where W(L, o) # {1}
and iS(ov) is irreducible for all v € X(L). Thus parabolic induction can fail to
be an equivalence of categories but still always take irreducible objects to irredu-
cible objects.
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The example arose from our work on SLy [13, 14]. There we were led to consider
whether the action (induced by conjugation) of W(L, ¢) on the set Irr(L, o) of equiva-
lence classes of irreducible objects in Mz 5 (L) always admits a fixed point. In other
words, given an irreducible supercuspidal representation ¢ of a Levi subgroup L of
SLy(F), can one always find an unramified twist of ¢ that is fixed (up to equivalence)
by W(L, 0)? P. Kutzko quickly pointed out an example where the answer is negative.
For this example, the argument establishing that the fixed-point set Irr(L, 6)" &% is
empty also easily implies that i$(gv) is irreducible for all v € X(L).

We also note that if L is a maximal Levi subgroup of a general group G, then the
feature we have emphasized in the example, that Irr(L, ¢)"©?) is empty, in fact char-
acterizes all such examples. That is, we show that if L is maximal in G, then
iS: N (L) = N (G) takes irreducible objects to irreducible objects but is not
an equivalence of categories if and only if Irr(L, 6)"&? is empty.

In the final part of the paper, we look at parabolic induction in the context of the
equivalences of categories, due to Bernstein, recalled in Section 1. More precisely, by
a general result in categorical algebra, Theorem 1.3 of [1] or Theorem 1.1 below, the
faithfully projective object H(GL’G) induces an equivalence of categories

N(.0)(G) = mod — Endg H(GL_U),

the category of right modules over the endomorphism ring of H(GL,G). Hence
ig: NL.0(M) = Nz +(G) corresponds to a certain functor 2 mod — B — mod — A
where A = Endg H(GL‘J) and B = Endy Hf‘zﬂ). Now ig gives rise to a homomorphism
of rings tp: B — A (in fact, an embedding of rings, as ig is faithful). We show that
t is equivalent to the functor

M M®g A:mod — B — mod — A, ()

where A is viewed as a left B-module via f¢. This description is of course reminiscent
of, and indeed was motivated by, the treatment of parabolic induction in [9]. In an
earlier version of the paper, we used it, along with the general observation that a
functor of the form (7) is an equivalence of categories if and only if ¢y is an iso-
morphism, to give a more roundabout proof of the main result. Here we simply
remark that it yields a transparent proof that parabolic induction takes finitely gen-
erated objects to finitely generated objects, which is proved by other means in [2, 3].
(Remark 1.3 below gives yet another proof.)

1. Some Results of Bernstein

As above, let ¢ be an irreducible supercuspidal representation of a Levi subgroup
L of G. In this section, we recall Bernstein’s construction of an explicit faithfully
projective object in the category N »(G). (We review the relevant elementary cate-
gorical algebra in subsection 1.1 below.)

The construction has two stages. The first, when L = G, is straightforward. Let X
denote the resulting faithfully projective object in R, ,(L). The more difficult stage,
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when L # G, relies crucially on the observation that parabolic induction takes pro-
jective objects to projective objects. This property of induction is a formal conse-
quence of Bernstein’s second adjoint theorem (see Subsection 1.3 below).

It follows easily that @@ PeP(L) i$ X is then a faithfully projective object in Rz, »(G),
where P(L) denotes the set of parabolic subgroups of G with Levi component L. In
fact, Bernstein proves that the isomorphism class of i% X is independent of the choice
of P € P(L). Hence, for any P € P(L), i% X is itself faithfully projective in R »(G).
This more precise result is central to our applications.

A proof of the second adjoint theorem is outlined in Rumelhart’s notes [3].
Bushnell’s paper [5] contains a different proof. In view of this reference, we simply
state the result here and provide full proofs for the remainder of Bernstein’s con-
struction. We emphasize, therefore, that the proofs in this section are due to
Bernstein and are taken, with a few (minor) changes in detail and exposition, from
the account in [3]. They are included for completeness and for the reader’s conveni-
ence. In addition, we use a part of one proof later in the paper (in the proof of
Proposition 4.3).

1.1. Let A be an Abelian category with direct sums and let Ab denote the category
of Abelian groups. We recall some elementary categorical algebra.

An object P in A is projective if the functor Hom(P, —): 4 — Ab is exact. An
object Fin A is faithful, or a generator, if Hom(F, —): A — Ab is a faithful functor,
i.e., 1s injective on morphisms. It is easy to see that an exact functor between Abelian
categories is faithful if and only if it takes nonzero objects to nonzero objects. Thus,
if P is projective in A, then P is faithful if and only if Hom(P, X) # 0 for each non-
zero object X in A. An object Sin A is small if the functor Hom(S, —): 4 — Ab pre-
serves direct sums, i.e., for any family of objects {4;},c; in 4, the natural morphism

P Hom(s. 4;) — Hom (S, P A,-)

iel iel
is an isomorphism.
Finally, an object P in 4 is, by definition, faithfully projective (or a progenerator)
if P is projective, faithful and small. The following is a special case of a theorem of
Gabriel. (Versions are also due independently to Freyd and Mitchell.)

THEOREM. Let A be an Abelian category with direct sums and a faithfully projective
object P. Then the functor
A Hom(P, A): A — mob — End P
is an equivalence of categories.
Here, of course, End P = Hom(P, P) and the right End P-module structure on

Hom(P, A) is given by composition:
f-g=fog, feHom(P,A), geEndP.
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1.2.  We first recall the construction of a faithfully projective object in Mz 5 (L).
Let A; denote the maximal split torus in the centre of L. Then A;L° has finite
index in L where L° =, xa) Kerv. Hence

O'|L0:O'1€9~~690',~

with each ¢; irreducible (and supercuspidal). Let £ denote the compactly induced
representation indfo a1. (As the representations ¢; are L-conjugate (up to isomorph-
ism), the isomorphism class of X is independent of the choice of irreducible compo-
nent g, of ¢|L°.)

We verify that X is faithfully projective in M 4 (L). Let IT be an object in
R0 (L). Then IT|L° is a direct sum of copies of the various ¢; and

Hom/(Z, IT) = Hom, (ind%, a1, IT) = Hom,o(ay, IT|L°).

It follows that Hom, (X, —) is exact, i.e., X is projective.

If TT#£ 0, then IT has an irreducible subquotient isomorphic to ov for some
v € X(L). Thus there is an L-subspace IT; of IT and a surjective L-homomorphism
from ITy — ov. Since

Hom/(Z, ov) = Hom;o(o1, o|L°) # 0,

2 also surjects onto gv. By the projectivity of X, Hom(Z, I1;) # 0 and so, a fortiori,
Hom/, (%, IT) # 0.

Finally, since o, is irreducible and therefore finitely generated and since compact
induction takes finitely generated objects to finitely generated objects, we see that X
is finitely generated. It follows immediately that X is small in (L) or, equivalently,
in SR(L,O-)(L).

Theorem 1.1 now yields the following:

PROPOSITION. With notation as above, the functor
I+ Hom (X, IT): Mz (L) - mod —End, 2

is an equivalence of categories.

1.3. Next let L be a proper Levi subgroup of G. Let P € P(L) where, as above,
P(L) denotes the set of parabolic subgroups of G with Levi component L.
Write U for the unipotent radical of P and U for the unipotent radical of the
L-opposite P of P.

General existence theorems show easily that the parabolic induction functor
iS: M(L) — N(G) admits a right adjoint. However, identifying this adjoint in explicit
representation-theoretic terms is decidedly nontrivial. This is the content of the
following theorem, often called Bernstein’s second adjoint theorem or, simply, the
second adjoint theorem.
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THEOREM. The normalized Jacquet functor ry: M(G) — R(L) is right adjoint to
iS: (L) — N(G), i.e., for objects V in R(G) and W in N(L), there exist natural
isomorphisms, in V and W,

Homg(i$ W, V) = Homy (W, r5 V).

COROLLARY. The functor i$: N(L) — R(G) takes projective objects to projective
objects.
Proof. Let W be an object in N(L). By the second adjoint theorem,

Homg(ilg W, =)= Homy (W, =) org.

Elementary arguments show that the functor r; is exact. It follows that
Homg(i§ W, —) is exact whenever W is projective in R(L). O

We now show that @ pp(, if Z is faithfully projective in Rz »(G). It is immedi-
ate, from the above corollary, that this object is projective. To see that it is faithful,
let IT be an object in M, »(G) with irreducible subquotient #. Thus IT contains a
G-subspace IT; such that there is a G-surjection II; — n. Thereis a parabolic sub-group
Py of G with Levi factor L; and an irreducible supercuspidal representation g; of L
such that 7 is a quotient of z'(;;]al. Since 7 is in Nz 4)(G), it is also a subquotient of
i$(av), for some P’ € P(L) and some v € X(L). Theorem 2.9 of [4] then implies that
there is a g€ G with ¢L; = L,%g; =~ ov and so n is a quotient of i§(av) for
some P € P(L). The second adjoint theorem then implies that Hom, (ov, rjm) # 0.
Hence, since X surjects onto ov, Homy (X, rjm) # 0. Applying the second adjoint
theorem once more, we deduce that there is a nonzero, and therefore surjective,
G-homomorphism from i§ ¥ to n. Since % T is projective, Homg(i$ X, I1;) # 0 and
50, a fortiori, Homg(@D pep(r i3 Z, TT) # 0.

To see that P pep(y) i 9% is small in Mz ,(G) (or, equivalently, in R(G)), it clearly
suffices to show that i§ ¥ is small for each P € P(L). It is immediate that the functor
rigt M(G) — N(L) preserves direct sums. (This is also a formal consequence of the
(elementary) fact that r; admits a right adjoint.) Hence, for any family of objects
{(Vi}ier in R, (G), there is a natural isomorphism

Homg (iﬁ 2, @ V,) =~ Hom,, (Z, @ rUVi>.
iel iel
We therefore obtain the following diagram
®D,.; Homg(i§ X, V;) — Homg(i§ Z, B, Vi)
>~ N
@D,.; Homy(Z, r; V7)) —> Hom,(Z, Dici i Vi)

where the bottom horizontal arrow is an isomorphism since X is small in Ji(L).
A routine computation, using naturality of the isomorphism in the second adjoint

https://doi.org/10.1023/A:1020549802818 Published online by Cambridge University Press


https://doi.org/10.1023/A:1020549802818

PARABOLIC INDUCTION AND THE BERNSTEIN DECOMPOSITION 119

theorem, shows that the diagram commutes. It follows that the top horizontal arrow
must be an isomorphism and, hence, that i}g Y is small.

Remark. Alternatively, one could observe, as in [2] or [3], that parabolic induction
takes finitely generated objects to finitely generated objects, whence i$ T is finitely
generated and therefore small.

On the other hand, this property of parabolic induction is itself a consequence of
the above argument showing that i§ X is small. Indeed, the argument clearly shows
that i§ W is small in R(G) whenever W is small in R(L). It is not hard to verify that
an object ¥ in M(G) is small if and only if the union of a countable chain of proper
G-subspaces of V' is also proper. (For module categories, this is exercise (b) on page
54 of [1].) In particular, a countably generated small object in M(G) is in fact finitely
generated. Now let W be a finitely generated object in R(L). Then i§ W is clearly
countably generated. Since W is small, i$ W is also small and so must be finitely
generated.

1.4. We have noted that ®peppyis  is a faithfully projective object in
N(L.0) (G). For our applications we will need Bernstein’s significantly sharper result:

THEOREM. The isomorphism class of i$ T is independent of the parabolic subgroup

P e P(L).
Proof. Let P, P' € P(L). Then there is a sequence Py = P,..., P, = P in P(L)
such that the following holds: foreachi=1,...,n — 1, P; and P;y, are contained in

a parabolic subgroup Q = Q; of G such that Q has a Levi factor M containing L as a
maximal (proper) Levi subgroup. Note that M N P; and M N P, | are both parabolic
subgroups of M having Levi component L. By transitivity of parabolic induction,

G5~ Gy G ~ Gy
ip, X lQ(l%ﬁPi 2), ip, X = lQ(lAAj[[um 2).

Thus, to prove the theorem, we may assume that L is a maximal Levi subgroup of G.
In this case, P(L) = {P, P} for any fixed element P of P(L).

Let N(L, o) be the group of elements n in Ng(L) such that "o = gv for some
v e X(L) and set W(L,0) = N(L,0)/L. Since L is maximal, |W(L,0)| <2. We
assume first that W(L, o) # {1}. Then P = P and "X = ¥ where w is the unique
nontrivial element of W(L, o). Hence

1.5. Suppose now that W(L, ¢) = {1} (and L is maximal). This case requires a more
elaborate argument. The key step is contained in the following proposition:

PROPOSITION. If L is a maximal Levi subgroup of G and W(L, ¢) = {1}, then %o is
irreducible.
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Proof. Suppose that 7 is a nonzero subquotient of i$a. Then, by Corollary 7.2.2 of
[11], rym # 0. Hence, the length of iSo is less than or equal to the length of ryiSa.
Since the composition factors of ryige are the various "o for w € W(L) = Ng(L)/L
(e.g., by 2.12 of [4]), we see that the length of iSe is at most |[W(L)|.

We may assume therefore that W(L) # {1}. Hence, as L is maximal, W(L) = {1, w}
with w # 1. Suppose that i$a is reducible. Then we have a short exact sequence

0— m —>i1§a—>n2—>0 (1.5.1)

with 7; irreducible for i = 1, 2. Applying the exact functor ry, we obtain another
short exact sequence

0— rym — rUiga — rymy, — 0.

Since rym; £ 0 for i =1, 2 and rUiI‘fo has composition factors ¢ and "o, we must
have
rpm 2 %e and  rym 2o, (1.5.2)

or

rpmy 2o and rpm 22 Vo

Note that "¢ is not isomorphic to ¢ as, by assumption, w¢ W(L,g). It follows that
the sequence (1.5.1) cannot split. Indeed, if it did split, we would have nonzero
G-homomorphisms n; — i$ ¢ (i =1, 2) and thus also nonzero L-homomorphisms
rymni — o (i =1, 2). Then (1.5.2) would imply "o = g. We conclude that (1.5.1) does
not split and so, in particular, ¢ cannot be unitary.

Since ¢ is supercuspidal, this simply means that 4, the maximal split torus in the
centre of L, acts by a nonunitary character y,: 4; — C*. Let A denote the maximal
split torus in the centre of G. Then the restriction homomorphism

Ve v Ag: X(G) — X(Ag) (1.5.3)

is surjective. (Indeed, it is easy to verify that the 4% = 45N G°, whence Ag/A%
embeds into G/G°. Applying the exact functor Hom(—, C*), we obtain surjectivity
of (1.5.3).) In particular, there exists a v € X(G) such that v = |,|~' on A¢. There-
fore, by tensoring the sequence (1.5.1) with v and adjusting o, we may assume that
%, =1 on Ag.

As L is maximal, the split torus Ay /A is one-dimensional. Since the action of w
on this torus (induced by conjugation) is nontrivial of order two, we have

waw™ ' =a7' (mod Ag), ae€ A;.

Hence [",| = |y,I7". Let 4] denote the semigroup of strictly positive (with respect
to P) elements in A;. (Thus a € A} if and only if @"Ka™" \ {1} as n — oo for some,
or equivalently for all, compact open subgroups K of U.) Since y, is nonunitary
and A;/Ag is one-dimensional, we see that [y,| > 1 or |y,| <1 on A4]. Applying
Casselman’s square-integrability criterion [11] and (1.5.2), it follows that one of
the representations n; (i =1, 2), and only one, is square-integrable-mod-centre.
Let n denote this representation. Of course, 7 is, in particular, unitary.
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Let X,(x) = Hom(%, R.y) where R.( denotes the (divisible) multiplicative group
of nonzero positive real numbers. Then, as in (1.5.3), the restriction homomorphism

N>l XI(L) g Xr(AL)

is surjective. In fact, since X,(A4;) is torsion-free and A; L’ has finite index in L, this
map is an isomorphism.

We may therefore write ¢ = o¢n where oy is unitary and # is the unique element of
X,(L) whose restriction to 4; equals |y,|. Since 7 is a subquotient of i$(aon), the
contragredient ¥ of 7 is a subquotient of ig(ayn~"!). Similarly, 7, the complex con-
jugate of 7, is a subquotient of i§(Gon). As m and oy are unitary, ©" = 7, oy = Gy.
Therefore, n¥ is a subquotient both of i§(ayn~"!) and iS(ayn), whence

ayn ' =ayn or “(aynh =ayn.
Taking contragredients and rearranging, ¢y 2 gon’ or "oy = ool where (=
n~'("n)~! € X,(L). On examining central characters, the first possibility implies that
n =1 (since X,(Ar) = X,(L) is torsion-free). This in turn implies that ¢ is unitary.
However, we have already noted that ¢ must be nonunitary. Therefore this possibi-
lity cannot occur. The second possibility also cannot occur since, by assumption,

w¢ W(L, o).
This contradiction shows that our original assumption that iJs is reducible is false
and thus completes the proof of the proposition. OJ

Write p(z,6): R(L) — N1 (L) for the projection functor (implied by the Bernstein
decomposition of L) and set rg"”) = P(L,o) O FU-

COROLLARY. With the same hypotheses as above, the functor

g7 Rio)(G) = Ro(L)

takes nonzero objects to nonzero objects.

Proof. Let m be an irreducible object in N ,(G). It suffices to show that
r(,f’”)n # 0. However, from the proposition, n 2 i$(av) for some v € X(L). Therefore,
(L.0)_ ~
ryn = ov #0. [

1.6. We show now that the functor 7'”: R »(G) = R»(L) is an equivalence

of categories (keeping the hypotheses of Proposition 1.5). This will suffice to com-
plete the proof of the theorem. Indeed, it is clear that the representation X is
quasi-cuspidal. Further the hypothesis W(L, ) = {1} implies that "X ¢ N (L)
Combining these two observations with 5.2 of [4], we see that

Aifres, 08y,

Therefore, if r(U’U) is an equivalence of categories, then iy ¥ = zg X, as required.
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Let V be an object in R, ,(G) and W an object in Nz »(L). The adjoint relation

Homg(V, i§ W) —> Hom, ("7 V, W) (1.6.1)
maps o € Homg(V,i$ W) to e o r\*”(a) where e:r"?i§ W — W is induced by the
natural L-homomorphism

f )i w— we ol

In particular, the identity map of i W corresponds to the natural L-homomorphism
e: ;(5 9i¢ W — W. The hypothesw W(L,o) = {1} and 5.2 of [4] imply that this map is

an 1somorphlsm Hence r([f Do i§ p =2 1d, the identity functor of N, 4 (L).

Let ap: V — iSr (UL‘”V be the natural G-homomorphism corresponding, under

(1.6.1), to id: =7V — HEDV, the identity map of X7 V. Thus e o 5 (ay) = id
where

e: I(UL 9; G(r(L MYy - r(UL’J) V.
By the previous paragraph, e is an isomorphism, whence r(L’“)(acV) is also an iso-
morphism. We now apply the exact functor r(L ) to the exact sequence

0— Keray — V —> i§ 29 1 — Coker oy —> 0.

Since rUL ’”)(ocV) is an isomorphism, the extreme terms
r(é"“)(Ker ap) and P 9 (Coker ay)

must both be zero. Using Corollary 1.5, we deduce that
Kerapy =0 and Cokeray =0.

Thus op: V — i§ (5 'V is an isomorphism and i$ o r(lf’”) = id, the identity functor of

N(L,#(G). Therefore r(U ) is indeed an equivalence of categories and we have comple-
ted the proof of the theorem. O

COROLLARY. For any P € P(L), the representation i$ X is faithfully projective in
R0 (G). In particular, the functor
Vi Homg(is =, V): R(1.0)(G) — mod — Endg(i§ )

is an equivalence of categories.

2. An Estimate on Length

Again let ¢ be an irreducible supercuspidal representation of a Levi subgroup L of G.
Let P be a parabolic subgroup of G with Levi component L and write U for the uni-
potent radical of P. Let W(L) = N(L)/L and set

N(L,0) = {n € Ng(L): "6 = ov, for some v € X(L)},

(2.0.2)
W(L,o)= N(L,0)/L.
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We now use Corollary 1.6 to show that the length of the induced representation i$a
is at most |W(L, o)|. This slightly sharpens the bound |W(L)| of 7.2.3 of [11].

As in Section 1, we write p q): N(L) = N »(L) for the projection functor
(implied by the Bernstein decomposition of L) and set r(é’“) = P(L) O T'U-

PROPOSITION. The functor r%’”): N.0)(G) = N1\ (L) takes nonzero objects to
nonzero objects.
Proof. Let I be a nonzero object in Rz »(G). By Corollary 1.6, HomG(ig >, 10) £
0. Hence, by the second adjoint theorem, Hom,(Z, r(UL’“)H) # 0. In particular,
AEOTT £ 0 O
U .

COROLLARY. The length of the representation iSo is at most |W(L, ¢)|. In parti-
cular, if W(L, o) = {1}, then iga is irreducible.

Proof. By the proposition, ItiSe < It r%’”)iga, where It denotes length. By 2.12 of
[4], r(lf’a)iga has a filtration by L-subspaces whose associated graded module is

@D.cmr.n "0 and, hence, It rE7iSe = WL, 0)]. O

3. Equivalences of Categories

Let L and M be Levi subgroups of G with L contained in M. We fix a parabolic sub-
group P of G with Levi component L and write O for the unique parabolic subgroup
of G containing P and having Levi component M. Note that M N P is then a para-
bolic subgroup of M with Levi component L. We again let ¢ be an irreducible super-
cuspidal representation of L. The parabolic induction functor iQG (M) — R(G)
then yields a functor

ig: Ni.o)(M) = R0 (6).

3.1. We now determine when this is an equivalence of categories. Our criterion is
stated in terms of the group W(L, o) of (2.0.2) and the corresponding object for
M which we denote by WM(L,g). Thus WM(L,¢0) = NM(L,0)/L where
NM(L,0) = M N N(L, o).

THEOREM. The functor ig: R.o(M) = R.»(G) is an equivalence of categories if
and only if W(L, o) = WM(L, o).
Proof. We first prove necessity. Thus suppose

ig: RL.o(M) = RLq)(G)
is an equivalence of categories. Then there exists a functor

F: ER(L,U)(G) - m(L,a)(M)
such that

FoiQGgid, iQGongd,
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where id denotes the identity functors, respectively, of Rz (M) and Rz »(G). It fol-
lows that F furnishes a left (and a right) adjoint to ig .
Write N for the unipotent radical of Q and

V%'a)l NL.0)(G) = N1 (M)
for the composition of the projection functor
P(r.o): NM) — NR(z0)(M)
(L,0)

and the restriction of the Jacquet functor ry: M(G) — R(M) to R »(G). Then ryy

is also a left adjoint to ig, whence, by uniqueness of adjoints, F = r%‘“). In particular,

rE7 o i§ = id, the identity functor of Rz q)(M).
Evaluating at i}/ .0, and using transitivity of parabolic induction, we obtain
HE?iGe =~ M _ 5. We next apply the functor

i Rz (M) > Rzo(L)

(which is left adjoint to i{fp: Nr.0)(L) = Rrs(M)). Using transitivity of Jacquet
modules, this yields

(L,0).G .~ (L,0) M
g ipo = rydar bunpO-

By [4] 2.12, the left side has length |W(L, ¢)| and the right side length |[W™ (L, 5)|. We
conclude that W(L,s) = WM(L, ).

3.2. We now begin the proof of sufficiency. Let V' be an object in Nz »(G) and W
an object in N, ;(M). The adjoint relation
Homg(V, i§ W) = Homy(ry "V, W), (3.2.1)
gives rise to a natural transformation
e iy 7 oif — id, (3.2.2)
the identity functor of N, »(M). For each object W in N, 5 (M),
e=ew: rs\l,"”)ig W— W
corresponds, under (3.2.1), to the identity map of iQG W: it is induced by the map
[ i§W— Wedy
In these terms, (3.2.1) is described by
s> eo r(,é’”)(s), s € Homg(V, ig w).
Similarly, (3.2.1) gives rise to a natural transformation

o id — i§ o iy ?, (3.2.3)
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where id now denotes the identity functor of N, ,)(G). Again, for each object V' in
Rr.0)(G),

a=ap V- if ALy
corresponds, under (3.2.1), to the identity map of r%’”)V and (3.2.1) is described by

{—s iQG(t) oa, tE€ HomM(r(]\f’”) vV, W). (3.2.4)

3.3. We will show that (3.2.2) and (3.2.3) are equivalences under the hypothesis
W(L, g) = WM(L, ¢). Our proof relies on the following general result:

PROPOSITION. Let A and B be abelian categories with direct sums. Let f, g be right
exact functors from A to B that preserve direct sums. Let t: f— g be a natural
transformation such that, for some faithful object F in A, tg. fF — gF is an iso-
morphism. Then t is a natural equivalence.

This follows from the five-lemma; see, for example, [12] p. 24.

L . . .
The functors rgv 9 and zQG are exact. They also preserve direct sums, since, for

example, they admit right adjoints. Therefore the functors rSVL’”) o ig and iQG o I’SVL’”)

are each (right) exact and preserve direct sums.

3.4. We now prove that

L.6).G s )
e: rg\, J)lg(l%w T) - i,z

is an isomorphism. Since {7, % is faithful in N (M), Proposition 3.3 will then
imply that (3.2.2) is an equivalence.

First, we need some notation. Let 4y denote a maximal split torus in L. Then 4 is
also a maximal split torus in M and in G. Let

WY = Ng(Ao)/Ca(Ao), WM = Na(Ao)/ Cr(Ao),
W = Ni(40)/Cr(Ao).
Note that, since Cg(A4y) is contained in L,
Ca(Ag) = Cu(Ag) = Cr(Ao),
and, hence, that W > WM > WZ. Let
No(L,0) = {n € Ng(A9) N Ng(L):"o =2 ov, for some v € X(L)},
Wo(L, 0) = No(L, 0)/Cr(Ap).
The hypothesis W(L, o) = WM(L, ) implies that
Wo(L, ) c WM, (3.4.1)
Consider the representation

LG M G
Inig ivnp > Zrnip 2.
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By Theorem 5.2 of [4], this has a filtration by M-subspaces such that the associated
graded object is

O rem
WM\{we WG LC M)/ WE
For any w in the index set, i\f-. p ("Z) € Reepwey(M). Thus, if i p ("Z) € R(r0 (M),
then there is a w; € WM such that "L =L, "¢ = gv for some v € X(L), ie.,
wiw € Wo(L, o). By (3.4.1), this forces w € WM. We conclude that

L,0).G M ~ M
rg\, J)lQ(zMﬁP 2) 2 iyap 2

By inspection of [4] 5.5, this isomorphism is ¢ (up to a nonzero scalar).

3.5. It remains to show that (3.2.3) is an equivalence. We could deduce this from
Proposition 2 by means of an argument from Section 1.6. Instead, we show that
wiGE — iQG r%’”)ig X is an isomorphism. Using Proposition 3.3 once more, this will
imply that (3.2.3) is an equivalence and so will complete the proof.

By (3.2.4), the adjoint relation (3.2.1) maps e:ry”iG % — il , T to i§(e) oo
Therefore iQG(e) oo =1id, the identity map of i$X. Since e is an isomorphism and,
hence, also iQG (e), we conclude that f is an isomorphism. OJ

3.6. As an immediate consequence, we obtain the following generalization of the
second part of Corollary 2.

COROLLARY. Suppose W(L,c) = WM(L,c). Let n be an irreducible object in
N.0)(M). Then ig(n) is irreducible.

4. An Example and Some Comments

We now show, by an example, that the converse of Corollary 3.6 above is false.
Thus, by Theorem 3.1, parabolic induction can fail to be an equivalence of categories
but still always take irreducible objects to irreducible objects. When L is maximal
in G, Proposition 4.3 below shows that this occurs if and only if the action (induced
by conjugation) of W(L,a) on Irr(L, o), the set of equivalence classes of irreducible
objects in Nz 4 (L), has no fixed points. Of course, the example shows that Proposi-
tion 4.3 is not merely vacuously true; as explained in the introduction, it is, in
essence, due to P. Kutzko.

4.1. To construct the supercuspidal o of the example, we first recall, in the language
of [6], a very special case of a construction of certain supercuspidal representations of
GLy(F) due to Carayol [10]. We refer to [6] for unexplained notation or terminology.

Let E/F be a totally ramified field extension of degree N. For any uniformizer wg
in E, the element f = ! is minimal over F (see [6] 1.4.14 or [15]). We identify
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My(F) with Endp(E) and thus also GLy(F) with Autp(E). Let U be the Endz(E)-
stabilizer of the Op-lattice chain {PiE: i€ 7} of E. Then U is a minimal hereditary
Or-order in Endg(E). Write %8 for the Jacobson radical of 2 and set
U'(A) =1+ K" for n € N. Fixing an additive character ¥, of F with conductor
P, we define a (linear) character g of U'(20)/U*() by

Yp(l +x) =yptr(fx), xe¥.

Then the G-intertwining set Zg(yf4) equals U LQOE* (by a very special case of The-
orem 1.5.8 of [6]). Since U'(2) N EX =1 + P, y; extends to the group U'(A)E*.
Let A denote any such extension. Then the compactly induced representation
n = ind A is irreducible and, hence, supercuspidal.

We write ©(n) for the set of characters y of F* such that = = 7y where ny denotes
the representation

g n(g)y(detg), ge G=GLy(P).

Clearly, y € ©(n) if and only if A and Ay intertwine where Ay has the analagous
meaning. We assume now that the extension E/F is tamely ramified. Then, by the
discussion of projective normalizers in [8], A and Ay intertwine if and only if
A = Ay which occurs if and only if

Ker y O det (U'(Q)E™).
Since E/F is tame, Ng/p(1 +Pg) = 1 4+ Pr and, hence,
det (U'Q)E™) = Ng/p(E™).

Therefore &(n) = {y: y o Ng/p = 1}.

We now fix a uniformizer @ in F and let { denote a primitive (¢ — 1)-st root of
unity in F where ¢ is the order of the residue field kr. We assume also that 4 divides
g — 1. It follows that there is a unique character 5: F* — C* that is trivial on @ and
1 + P and satisfies 7() = +v/—1.

We need two special cases of the above construction. First, let £} be the splitting
field of the polynomial X? + wr. Choose a uniformizer wg, in E; such that

w%l = —owr and set ff; = wgll. Let o, denote a supercuspidal representation of
GL,(F) constructed from f; as above. Since N, /r(ET) = (1 4+ Pr) (3 (wp),
S(a) = {1, 7). (4.1.1)

Second, let £, be the splitting field of the polynomial X* 4 {z . Fix a uniformizer
wg, in E> with wj‘gz = —{wpandset §, = wgzl. Let g, be a supercuspidal representa-
tion of GL4(F) obtained from f, as above. Using

Niyr(ES) = (1 + Pp) (&4 (w0),

we deduce that

S(a2) = (xon) (4.1.2)
with y, the unramified character of F* such that y,(wr) = —v—1.
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Let L be the standard Levi subgroup GLy(F) x GLo(F) x GL4(F) of GLg(F). Then
6 =01®0n®o0, is an irreducible supercuspidal representation of L. We let
L = LN SLg(F). As above, we put

©06) = F* — C*:6 = ay),

where 6y again has the obvious meaning. Since ¢ admits a Whittaker model, the
restriction ¢|L is multiplicity-free (see, for example, [16]). (For our particular |L,
this also follows immediately from [8] Corollary 1.6 iv).) Therefore, by, for instance,
Section 1 of [8] (see especially Corollary 1.6 and Remark (ii)), the length of the
restriction ¢|L equals |S(g)|.

Let 0 = 6|L. Then &(6) = S(01) N S(03) which is trivial by (4.1.1) and (4.1.2).
Therefore ¢ is an irreducible, and supercuspidal, representation of L.

4.2. We have W(L) = N(L)/L = {1, w} where the non-trivial element w interchan-
ges (up to conjugacy in L) the two 2 x 2 blocks of L. Then, using (4.1.1) and (4.1.2),

W=

0=2on®o; Qo
(01 ® 011 ® 02701
= a7,

where ¥, € X(L) is given by

(gls 82, g3)'_) XO(detg3)s g1, 82 S GLz(F)v 83 € GL4(F)

Hence, "o = avy, where vy = 79| L € X(L), since n|L = 1. We conclude that W(L,0) =
{1, w}. In particular, i§: R s (L) > R (G) is not an equivalence of categories for
any parabolic subgroup P of G = SLg(F) with Levi factor L. We now show, however,
that i$(ov) is irreducible for all v € X(L).

Recall that Irr(L, o) denotes the set of equivalence classes of irreducible objects
in N, (L). Thus each element of Irr(L, o) is represented by an unramified twist
of o. The action of N(L, o) on L by conjugation induces an action of W(L, ¢) on
Irr(L, o). Suppose now that v belongs to the fixed-point set Irr(L, 6)"“? for some
ve X(L), i.e., "(ov) =2 ov. Then "(6v) and 6v share an irreducible component on
restriction to L where ¥ is any element of X(L) such that 7|L = v. Using (the proof of)
Proposition 1.17 (ii) [7], we see there exists a character y of F* such that "(cv) = gvy.
Hence, there are unramified characters v, v{ of GL,(F) and v, of GL4(F) such
that

/ /
o1nvVy E o1vViy, oV E onvix, o2Vy =2 02V2).

The final equivalence implies that y € (y, #) (by (4.1.2)). Tensoring the first equiva-
lence with y and comparing with the second, we obtain a,3> = g, (i.e., ¥* € S(a1)).
Hence, by (4.1.1), 7> =5 or y*> = 1. Using y € (x, 1), we see that y> = ? is impos-
sible. Therefore we must have 3> = 1, whence y = 1 or y = 3 5. However this is
inconsistent with the first equivalence by (4.1.1). This contradiction proves that
Irr(L, )" is empty.
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Since W(L, a) = {1}, lG(GV) is irreducible for all ¥ € X(L) where P is any parabolic
subgroup of G= GLg(F) with Levi factor L. Let y be a character of F* such that
G(av) =~ zG(ov),g for some 7 € X(L). Then & = &y or "(67) = 5y. We have just seen
that the latter is impossible. Therefore y € ©(6) = {1} and hence @(zg(av)) = {1}.
Since, by [16], the restriction iG(&ﬁ)l G is multiplicity-free, it follows as above that
G(av)| G is irreducible. Flnally, it is easy to verify that zG(&ﬁ)l G = iS(av), where
v=7|L and P=PNG (or see 9.2 of [8]). We conclude that iS(av) is irreducible
for all v € X(L).

4.3. Let G again be a general (reductive p-adic) group. Let L be a maximal Levi
subgroup of G. From the example, we know that the functor iS: N (L) —
N(L,0)(G) can fail to be an equivalence of categories but still always take irredu-
cible objects to irreducible objects. (Simply take L and ¢ as in 4.2 and let G be
the intersection of SLg(F) and the standard Levi subgroup GL4(F) x GL4(F) of
GLg(F).)

We now show that a feature we noted in this example, that the fixed-point set
Irr(L, 6)""9 is empty, in fact characterizes such functors.

PROPOSITION. Let L be a maximal Levi subgroup of G. The functor
iS: Rr.o(L) > R1.)(G) is not an equivalence of categories but takes irreducible
objects to irreducible objects if and only if Trr(L, 6)"E s empty.

Proof. If W(L,0) = {1}, then i$: M., (L) = N5 (G) is an equivalence of
categories and, clearly, Irr(L, 0)"“? is nonempty. We assume therefore that
W(L, o) = {1, w} with w # 1.

Suppose first that Irr(L, 6)"“? is nonempty. Adjusting o if necessary, we have
"o = g. We write ¢ = oo where a is unitary and # € X,(L) = Hom(L, R.(). There-
fore, Yoy =2 0¢o{ where { = 17(”’17)*1 € X,(L). Examining central characters, we see
that { = 1, whence "oy = (. By results of Harish-Chandra and Silberger (see, for
example Lemma 2.2 of [18]), it follows that one of two possibilities must occur:
either iSao is itself reducible or iS(coy) is reducible for some (nontrivial)
% € X,(L). In particular, i§(ov) is reducible for some v € X(L).

Finally, we show that if reducibility occurs then Irr(L, a)"&? is nonempty. We
might as well assume that i$(o) is itself reducible. Then i$(s) has length two and
so we have an exact sequence

0—>n1—>i1§(a)—>n2—>0

with ; irreducible for i =1, 2.

If this sequence splits, then a simple Jacquet module calculation, as in the initial
part of the proof of Proposition 1.5, shows that "o = g. We assume therefore that
the sequence is nonsplit. In this case, we can use Casselman’s square-integrability cri-
terion exactly as in the remainder of the proof of Proposition 1.5 to show that
Yoo = oo for a certain (unitary) representation in Irr(L, o). Hence, in either case,
Irr(L, )" is nonempty. O
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Remark. The phenomenon described in the proposition is quite rare. In particular,
it is not hard to show that Irr(L, ¢)"“? is always nonempty when G is semisimple.
Indeed, suppose W(L) = {1, w} with w # 1. (Of course, the case where W(L) = {1} is
utterly trivial.) It is straightforward to check that w acts nontrivially on X(L) (or see
the proof of (6) on page 48 of [17]). Hence, the homomorphism

vie v (")l X(L) — X(L)

has nontrivial image. When G is semisimple, the complex torus X(L) is one-
dimensional. It follows that, in this case, the above homomorphism is surjective
(and coincides with the map v v?: X(L) — X(L)). Therefore, if "o = ¢{ for some
¢ € X(L), we may write { =5 (")~ for some € X(L), whence "(o%) = o1. (A var-
iant of this simple argument was pointed out to us by M. Reeder.)

Remark. The proposition is no longer valid, as stated, when the Levi subgroup L
1S not maximal.

5. Induction and Restriction

We return to the system of notation of Section 3. Thus L and M are Levi subgroups
of G with L contained in M, P is a parabolic subgroup of G with Levi component L
and Q is the unique parabolic subgroup of G containing P and having Levi compo-
nent M. Of course, M N P is then a parabolic subgroup of M with Levi component
L. As always, ¢ is an irreducible supercuspidal representation of L.

Let A= Endg (i§ ), B = Endy (i}, Z). By Proposition 1.2 and Corollary 1.6,
the functors

W Hompy (V- p 2, W): N1y (M) — mod — B,
Vi Homg(i% 2, V): R(1.0)(G) — mod — A (5.0.1)

are equivalences of categories.
Parabolic induction corresponds, under these equivalences, to a functor ¢ nod—
B — mod — A, i.e., there is a commutative diagram of functors

Nro(G) — modb—A
5 1 A (5.0.2)
Rpo(M) — mod—B.

We describe ¢ below (up to natural equivalence).

5.1. Let b € B=Endy(i}},pX). Since induction is an additive functor, the process
b iG(b) defines a ring homomorphism from Enda (i}, X) to Endg(ig ijjnp Z).
Explicitly, if we realise (the space of) ig(i%m p2) as a space of functions from G to
(the space of) i{fp Z in the usual way, then

(iG(b)F)(g) = b(F(g)), (5.1.1)
for all b € Endy(i}jnp 2), F € i§(i}inp ), g € G.
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Transitivity of parabolic induction gives a canonical isomorphism
ig ivgp = 2 ip Z. (5.1.2)

We therefore obtain a ring homomorphism ¢o: B — A. The functor ig is exact and
clearly takes nonzero objects to nonzero objects. It is therefore faithful. In particular,
the homomorphism ¢y is injective. (Of course, injectivity of ¢y also follows directly
from (5.1.1).)

We view A as a left B-module via ¢y (i.e., b.a = tg(b)a for b € Band a € A) and as
a right A-module via multiplication in 4. This defines a (B, .A)-bimodule structure
on A. We show in 5.3 that 7 is equivalent to the resulting functor

—®pA: mod — B — mod — A.

5.2. We will need the following general observation on adjoint isomorphisms. Let
C and D be additive categories and F: D — C and G: C — D a pair of adjoint func-
tors. It follows easily that F and G are also additive functors (Corollary 7.2 of [1])
and thus, for each object M in D and N in C, there is a natural isomorphism of
Abelian groups

o« Home(FM, N) — Homp(M, GN). (5.2.1)

The abelian group Hom¢(FM, N) is a right End¢c FM-module via composition (i.e.,
xy=xoy for x € Homc(FM,N), y € Endc (FM)). It is therefore also a right
Endp M-module via the ring homomorphism Endp M — End¢ FM induced by F.
Similarly, Homp(M, GN) is a right EndpM-module via composition.

Since the isomorphism (5.2.1) is natural, we have

a(fFg) =a(f)g, [feHomc(FM,N), geEndpM;

that is, o is an isomorphism of right Endp M-modules.

5.3. We now apply this observation in the context of the second adjoint theorem
and the equivalences (5.0.1).

Recall that N denotes the unipotent radical of Q. Write N for the unipotent radical
of the M-opposite O of Q. Let rgv-L’“) = P(L.0) © 'y Where rg: R )(G) = R(M) is the
normalized Jacquet functor (restricted to N, (G)) and pu g R(M) —
N.e)(M) projects from NR(M) to N (M). By the second adjoint theorem and
the Bernstein decomposition of R(M),

I‘(K[,"a)l ER(L,(;)(G) — SR(L,G)(]\/D
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is right adjoint to ig: N0y (M) = R »(G). In particular, for each object V in
N(L.»(G), there is a natural isomorphism

Homg(i§ iYfp T, V) —> Homy (il p . 107 1),

By the discussion in Subsection 5.2, this is an isomorphism of B-modules (viewing
the left-hand side as a B module via the embedding 79: B — A and the isomorphism

(5.1.2)).

We rephrase this as follows: Write resé:mob — B — mobd — A for the functor
defined by restriction along the embedding ty. Thus, if N is an object in mod — A,
resé (N) = Nand n.b = ntg(b) for n € N, b € B. Then the following diagram of func-
tors commutes:

NRr.0(G) = mob—A
r(;’”) J, \L resgl
Rpo(M) — mod—B.

Using uniqueness of left adjoints, it is now a simple matter to describe the functor ¢
in (5.0.2) (up to natural equivalence). Indeed, for objects M in mod — B and N in
mod — A, the process

f > (m> fim ® 1)): Hom4(M ®3 A, N) — Homp(M, resii N),
defines a natural isomorphism. Thus (— ®z A, resé) is an adjoint pair and hence

~ — ®p .A. We have proved the following:

THEOREM. With notation as above, the following diagrams of functors commute up
to natural equivalence:

m(L,J)(G) i) mod — A
N | resg
Nr.0)(M) —  mod - B,
Rro(G) — mod—A

igh 1 —@pa
Ro(M) — mod—B.

Remark. The second diagram yields another proof that parabolic induction takes
finitely generated objects to finitely generated objects (cf. Remark 1.3). It suffices to
show that if W is finitely generated in Nz (M), then iQGW is finitely generated in
NR.»(G). Now, in an abelian category with direct sums, the notion of finite gen-
eration can be expressed in purely categorical terms and is preserved under equiv-
alences of categories. Therefore, by the second diagram, we have only to prove that
if M is a finitely generated right B-module, then M ®z A is a finitely generated right
A-module. This is obvious.
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