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Abstract

Two ensembles are frequently used to model random graphs subject to constraints: the
microcanonical ensemble (= hard constraint) and the canonical ensemble (= soft con-
straint). It is said that breaking of ensemble equivalence (BEE) occurs when the specific
relative entropy of the two ensembles does not vanish as the size of the graph tends to
infinity. Various examples have been analysed in the literature. It was found that BEE is
the rule rather than the exception for two classes of constraints: sparse random graphs
when the number of constraints is of the order of the number of vertices, and dense ran-
dom graphs when there are two or more constraints that are frustrated. We establish BEE
for a third class: dense random graphs with a single constraint on the density of a given
simple graph. We show that BEE occurs in a certain range of choices for the density
and the number of edges of the simple graph, which we refer to as the BEE-phase. We
also show that, in part of the BEE-phase, there is a gap between the scaling limits of the
averages of the maximal eigenvalue of the adjacency matrix of the random graph under
the two ensembles, a property that is referred to as the spectral signature of BEE. We
further show that in the replica symmetric region of the BEE-phase, BEE is due to the
coexistence of two densities in the canonical ensemble.
Keywords: Constrained random graph; Gibbs ensemble; relative entropy; breaking of
ensemble equivalence; graphon; variational representation; maximal eigenvalues; replica
symmetry
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1. Introduction and main results

Section 1.1 provides the background and the motivation behind our paper. Section 1.2 states
the definition of the microcanonical and the canonical ensemble in the context of constrained
random graphs, recalls the notion of ensemble equivalence, lists the key definitions of graphons
and subgraph counts, and gives the variational characterisation of the specific relative entropy
of the two ensembles for dense random graphs derived in [6], which is the main tool in our
paper. Section 1.3 states our main theorems. Section 1.4 identifies the typical graphs under the
two ensembles. Section 1.5 offers a brief discussion and an outline of the remainder of the
paper.
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1.1. Background and motivation

In this paper we analyse random graphs that are subject to constraints. Statistical physics
prescribes which probability distribution on the set of graphs we should choose when we want
to model a given type of constraint [12]. Two important choices are: (i) the microcanoni-
cal ensemble, where the constraints are satisfied by each individual graph; (ii) the canonical
ensemble, where the constraints are satisfied as ensemble averages. For random graphs that
are large but finite, the two ensembles represent different empirical situations. One of the
cornerstones of statistical physics is that the two ensembles become equivalent in the ther-
modynamic limit, which in our setting corresponds to letting the size of the graph tend to
infinity. However, this property does not hold in general. We refer to [19] for more background
on the phenomenon of breaking of ensemble equivalence (BEE).

BEE has been investigated for various choices of constraints, including the degree sequence
and the total number of subgraphs of a specific type. The key distinctive object is the relative
entropy Sn of the microcanonical ensemble with respect to the canonical ensemble when the
graph has n vertices. In the sparse regime, where the number of edges per vertex remains
bounded, the relevant quantity is s∞ = limn→∞ n−1Sn, because n is the scale of the number
of vertices. In the dense regime, where the number of edges per vertex is of the order of the
number of vertices, the relevant quantity is s∞ = limn→∞ n−2Sn, because n2 is the scale of the
number of edges.

Sparse regime: In [10, 11, 18] it was shown that constraining the degrees of all the ver-
tices leads to BEE, even when the graph consists of multiple communities. An explicit
formula was derived for s∞ in terms of the limit of the empirical degree distribution
of the constraint. In [17] a formula was put forward that expresses the specific relative
entropy in terms of a covariance matrix under the canonical ensemble.

Dense regime: In [6] it was shown that constraining the densities of a finite number
of subgraphs may lead to BEE. The analysis relied on the large deviation principle
for graphons associated with the Erdős–Rényi (ER) random graph [3, 5]. The main
result was a variational formula for s∞ in the space of graphons. In [7], for the special
case where the constraint is on the densities of the edges and triangles, it was shown
that s∞ > 0 when the constraints are frustrated, i.e. do not lie on the ER-line where the
density of triangles is the third power of the density of edges. Moreover, the asymptotics
of s∞ near the ER-line was identified, and turns out to depend on whether the ER-line
is approached from above or below.

It is an open problem whether a single constraint may lead to BEE [6]. It was believed that
this cannot be the case, because for a single constraint there is no frustration. The goal of the
present paper is to show that this intuition is wrong: we condition on the density of a given
finite simple graph and prove that BEE occurs in a certain range of choices for the density and
the number of edges of the simple graph, which we refer to as the BEE-phase. We analyse how
s∞ tends to zero near the curve that borders the BEE-phase. This phase transition is unlike any
of the phenomena surrounding BEE observed before. In our case, BEE is due to the coexistence
of two densities in the BEE-phase, similar to the phase transition between water and ice. Thus,
our paper provides new insight into the mechanisms causing BEE.

In [9] the gap �n between the averages of the maximal eigenvalue of the adjacency matrix
of a constrained random graph under the two ensembles was considered. A working hypothesis
was put forward, stating that BEE is equivalent to this gap not vanishing in the limit as n → ∞.
For a random regular graph with a fixed degree, this equivalence was proved for a range of
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BEE for random graphs under a single constraint 1183

degrees that interpolates between the sparse and the dense regime. In the present paper we
prove the same for the single constraint. In particular, we compute δ∞ = limn→∞ n−1�n, show
that δ∞ �= 0 if and only if the density and the number of edges of the simple graph fall in the
BEE-phase, and analyse how δ∞ tends to zero near the curve that borders the BEE-phase.

We will see that the notions of replica symmetry and replica symmetry breaking high-
lighted in [15] play an important role. In the regime of replica symmetry we have a complete
identification of s∞ and δ∞; in the regime of replica symmetry breaking some pieces of the
characterisation are missing. Furthermore, we establish a direct connection between the region
of replica symmetry for regular graphs and the region of ensemble equivalence.

1.2. Definitions and preliminaries

In this section, which is partly lifted from [6], we present the definitions of the main
concepts to be used here, together with some key results from prior work. We consider
scalar-valued constraints, even though [6] deals with more general vector-valued constraints.

Section 1.2.1 presents the formal definition of the two ensembles and the definition of
ensemble equivalence in the dense regime. Section 1.2.2 recalls some basic facts about
graphons. Section 1.2.3 recalls the variational characterisation of ensemble equivalence proven
in [6]. Section 1.2.4 looks at the average of the maximal eigenvalue value of the adjacency
matrix in the two ensembles and recalls a working hypothesis put forward in [9] that links
ensemble equivalence to a vanishing gap between the two averages.

1.2.1. Microcanonical ensemble, canonical ensemble, relative entropy For n ∈N, let Gn denote
the set of all 2(

n
2) simple undirected graphs with n vertices. Let T denote a scalar-valued func-

tion on Gn, and T∗ a specific scalar that is graphical, i.e. realisable by at least one graph in Gn.
Given T∗, the microcanonical ensemble is the probability distribution Pmic on Gn with hard
constraint T∗ defined, for G ∈ Gn, as

Pmic(G) :=
{

|{G ∈ Gn : T(G) = T∗}|−1 if T(G) = T∗,
0 otherwise.

The canonical ensemble Pcan is the unique probability distribution on Gn that max-
imises the entropy Sn(P) := −∑

G∈Gn
P(G) log P(G) subject to the soft constraint

〈T〉 := ∑
G∈Gn

T(G) P(G) = T∗. This gives the formula [13]

Pcan(G) := 1

Z(θ∗)
eθ

∗T(G), G ∈ Gn, (1.1)

with Z(θ∗) the partition function. In (1.1), the Lagrange multiplier θ∗ must be set to the unique
value that realises 〈T〉 = T∗; see [6, (2.6) and (2.7)].

The relative entropy of Pmic with respect to Pcan is defined as

Sn(Pmic | Pcan) :=
∑

G∈Gn

Pmic(G) log
Pmic(G)

Pcan(G)
.

For any G1,G2 ∈ Gn, Pcan(G1) = Pcan(G2) whenever T(G1) = T(G2), i.e. the canonical proba-
bility is the same for all graphs with the same value of the constraint. We may therefore rewrite
the relative entropy as

Sn(Pmic | Pcan) = log
Pmic(G∗)

Pcan(G∗)
,

where G∗ is any graph in Gn such that T(G∗) = T∗.
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Remark 1.1. Both the constraint T∗ and the Lagrange multiplier θ∗ in general depend on n,
i.e. T∗ = T∗

n and θ∗ = θ∗
n . We consider constraints that converge when we pass to the limit

n → ∞, i.e.
lim

n→∞ T∗
n =: T∗∞. (1.2)

Consequently, we expect that
lim

n→∞ θ∗
n =: θ∗∞. (1.3)

Throughout the paper we assume that (1.3) holds. If convergence fails, then we may still con-
sider subsequential convergence. The subtleties concerning (1.3) were discussed in detail in
[6, Appendix A].

All the quantities above depend on n. In order not to burden the notation, we exhibit this
n-dependence only in the symbols Gn and Sn(Pmic | Pcan). When we pass to the limit n → ∞,
we need to specify how T(G), T∗, and θ∗ are chosen to depend on n. We refer the reader to [6],
where this issue was discussed in detail.

Definition 1.1. (Ensemble equivalence.) In the dense regime, if

s∞: = lim
n→∞ n−2Sn(Pmic | Pcan) = 0,

then Pmic and Pcan are said to be equivalent.

This particular notion of ensemble equivalence is known as measure equivalence of ensem-
bles and is standard in the study of ensemble equivalence of networks. Other notions of
ensemble equivalence are thermodynamic equivalence and macrostate equivalence. Under cer-
tain hypotheses, the three notions have been shown to be equivalent for physical systems
[19]. We refer the reader to [19, 20] for further discussion of different notions of ensemble
equivalence.

1.2.2. Graphons There is a natural way to embed a simple graph on n vertices in a space
of functions called graphons. Let W be the space of functions h : [0, 1]2 → [0, 1] such that
h(x, y) = h(y, x) for all (x, y) ∈ [0, 1]2. A finite simple graph G on n vertices can be represented
as a graphon hG ∈W in a natural way as

hG(x, y) :=
{

1 if there is an edge between vertex 	nx
 and vertex 	ny
,
0 otherwise.

(1.4)

The space of graphons W is endowed with the cut distance

d�(h1, h2) := sup
S,T⊂[0,1]

∣∣∣∣ ∫
S×T

dx dy [h1(x, y) − h2(x, y)]

∣∣∣∣, h1, h2 ∈W .

On W there is a natural equivalence relation ∼. Let � be the space of measure-preserving
bijections σ : [0, 1] → [0, 1]. Then h1(x, y) ∼ h2(x, y) if δ�(h1, h2) = 0, where δ� is the cut
metric defined by

δ�(h̃1, h̃2) := inf
σ1,σ2∈�

d�(hσ1
1 , hσ2

2 ), h̃1, h̃2 ∈ W̃,

with hσ (x, y) = h(σx, σy). This equivalence relation yields the quotient space (W̃, δ�). As
noted above, we suppress the n-dependence. Thus, by G we denote any simple graph on n
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vertices, by hG its image in the graphon space W , and by h̃G its image in the quotient space
W̃ . For a more detailed description of the structure of the space (W̃, δ�) we refer to [1, 2, 8].

For h ∈ W̃ and F a finite simple graph with m vertices and edge set E(F), define

t(F, h) :=
∫

[0,1]m

∏
{i,j}∈E(F)

h(xi, xj) dx1 . . . dxm.

Then the homomorphism density of F in G equals t(F, hG), where hG is the empirical graphon
defined in (1.4).

In this paper we focus on the special case where the constraint T(G) = T(hG) := t(F, hG) is
on the homomorphism density T∗

n of a specific subgraph F. The map T is well-defined on both
the space of graphs Gn for each n and the space of graphons. Rewriting (1.1), we obtain

Pcan(G) = en2[θ∗
n T(G)−ψn(θ∗

n )], G ∈ Gn,

where

ψn(θ∗
n ) := 1

n2
log

∑
G∈Gn

en2[θ∗
n T(G)] = 1

n2
log Z(θ∗

n ).

It turns out that, under the scaling n2, the function ψn converges. Hence, rewriting (1.1) in this
form aids us in the analysis of the canonical ensemble.

1.2.3. Variational characterisation of ensemble equivalence In order to characterise the
asymptotic behaviour of the two ensembles, the entropy function of a Bernoulli random
variable is essential. For u ∈ [0, 1], let

I(u) := 1
2 u log u + 1

2 (1 − u) log (1 − u).

Extend the domain of this function to the graphon space W by defining

I(h) :=
∫

[0,1]2
dx dy I(h(x, y))

(with the convention that 0 log 0 := 0). On the quotient space (W̃, δ�), define I(h̃) = I(h),
where h is any element of the equivalence class h̃. Note that I(h) takes values in

[− 1
2 log 2, 0

]
.

Apart from a shift by 1
2 log 2, h 
→ I(h) plays the role of the rate function in the large deviation

principle for the empirical graphon associated with the Erdős–Rényi random graph, derived
in [5].

The key result in [6] is the following variational formula for s∞, where W̃∗ := {h̃ ∈
W̃ : T(h) = T∗∞} is the subspace of all graphons that meet the constraint T∗∞. This is a compact
set, since T is continuous in the cut metric and (W̃, δ�) is compact [14].

Theorem 1.1. (Variational characterisation of ensemble equivalence.) Subject to (1.2) and
(1.3), limn→∞ n−2Sn(Pmic | Pcan) =: s∞, with

s∞ = sup
h̃∈W̃

[
θ∗∞T(h̃) − I(h̃)

]− sup
h̃∈W̃∗

[
θ∗∞T(h̃) − I(h̃)

]
. (1.5)

Theorem 1.1 and the compactness of W̃∗ give us a variational characterisation of ensemble
equivalence: s∞ = 0 if and only if at least one of the maximisers of θ∗∞T(h̃) − I(h̃) in W̃ also
lies in W̃∗ ⊂ W̃ , i.e. satisfies the hard constraint.
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We need the following lemma, which relates T∗∞ and θ∗∞ without requiring knowledge of
T∗

n and θ∗
n .

Lemma 1.1. Under the assumptions in (1.2) and (1.3), θ∗∞ = arg maxθ∈R [θT∗∞ −ψ∞(θ )],
where ψ∞(θ ) := limn→∞ ψn(θ ) = suph̃∈W̃

[
θT(h̃) − I(h̃)

]
.

Proof. For every n ∈N,

θ∗
n = arg max

θ∈R
[n2[θT∗

n −ψn(θ )]] = arg max
θ∈R

[θT∗
n −ψn(θ )].

Let fn(θ, T∗
n ) := θT∗

n −ψn(θ ) and f∞(θ, T∗∞) = θT∗∞ −ψ∞(θ ). By [6, Theorem 3.2 and
Lemma A.1],

fn(θ∗
n , T∗

n ) = sup
θ∈R

fn(θ, T∗
n ) = [θ∗

n T∗
n −ψn(θ∗

n )] → [θ∗∞T∗∞ −ψ∞(θ∗∞)]

= θ∗∞T∗∞ − sup
h̃∈W̃

[
θ∗∞T(h̃) − I(h̃)

]= f∞(θ∗∞, T∗∞), n → ∞.

Furthermore, for every θ ∈R, fn(θ, T∗
n ) ≤ fn(θ∗

n , T∗
n ), and hence

f∞(θ, T∗∞) = lim
n→∞ fn(θ, T∗

n ) ≤ lim
n→∞ fn(θ∗

n , T∗
n ) = f∞(θ∗∞, T∗∞),

so that θ∗∞ is a maximiser of f∞(·, T∗∞). �

1.2.4. Maximal eigenvalue of the adjacency matrix In [9] a working hypothesis was put for-
ward, stating that breaking of ensemble equivalence is manifested by a gap between the scaling
limits of the averages of the maximal eigenvalue of the adjacency matrix of the random
graph under the two ensembles. More precisely, let λn denote the maximal eigenvalue of the
adjacency matrix of G ∈ Gn. Then the working hypothesis is that

lim
n→∞�n �= 0 =⇒ BEE,

BEE =⇒ lim
n→∞�n �= 0 apart from exceptional constraints,

with �n := Ecan[λn] − Emic[λn]. In [9] this equivalence was proven for the specific example
where the constraint is on all the degrees being equal to d(n), with ( log n)β ≤ d(n) ≤ n −
(log n)β for some β ∈ (6,∞). It turns out that BEE occurs and that limn→∞ �n = 1 − p when
limn→∞ n−1d(n) = p ∈ [0, 1], i.e. the exceptional constraints correspond to the ultra-dense
regime where p = 1.

For our single constraint in the dense regime, we will be interested in the quantity
δ∞ := limn→∞ n−1�n.

1.3. Main results

In what follows, F is any finite simple graph with k edges, and the constraint is on the homo-
morphism density of F being equal to T∗

n , as defined in Section 1.2.2. Recall from Remark 1.1
that we assume that (T∗

n )n∈N and (θn)n∈N converge to some constants T∗∞ and θ∗∞ respectively.
For the sake of convenience, we write T∗ = T∗∞ and θ∗ = θ∗∞. In the four theorems below we
allow for k ∈ [1,∞), although k ∈N is needed to interpret the constraint in terms of a subgraph
density.
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FIGURE 1. A numerical picture of the phase diagram. The left and right lines together form the critical
curve (T∗, kc(T∗)). In the figure, T∗ is denoted by T∗ and kc(T∗) is denoted by k(T∗). The minimum is

achieved at k0 = 4.591 . . . and T0 = 0.3237 . . .

1.3.1. Parameter regime Our first two theorems identify the parameter regime for BEE.

Theorem 1.2. (Computational criterion for ensemble equivalence.) For θ ∈ [0,∞) and k ∈
[1,∞), let u∗(θ, k) be a maximiser of

sup
u∈[0,1]

[θuk − I(u)]. (1.6)

(a) For every T∗ ∈ [( 1
2

)k
, 1
)

there is ensemble equivalence if and only if there exists a
θ0 = θ0(T∗, k) ∈ [0,∞) such that (u∗(θ0, k))k = T∗. In that case the Lagrange multiplier
θ∗ = θ∗(T∗, k) equals θ0.

(b) There exists a unique θ̂ = θ̂(k) ∈ [0,∞) such that θ∗(T∗, k) = θ̂ for all T∗ for which
there is breaking of ensemble equivalence.

Theorem 1.3. (Phase diagram.)

(a) There exists a function kc : (0, 1) → [1,∞) such that for every T∗ ∈ (0, 1) there is
ensemble equivalence when log2 (1/T∗) ≤ k ≤ kc(T∗) and breaking of ensemble equiv-
alence when k> kc(T∗).

(b) T∗ 
→ kc(T∗) achieves a unique minimum at the point (T0, k0), with k0 the unique
solution of the equation ((k0 − 1)/k0) log (k0 − 1) = 1 and T0 = ((k0 − 1)/k0)k0 .

(c) T∗ 
→ kc(T∗) is analytic on (0, 1) \ {T0}.
(d)

( 1
2

)kc(T∗) ∼ T∗ as T∗ ↓ 0 and kc(T∗)
( 1

2

)kc(T∗) ∼ 1 − T∗ as T∗ ↑ 1.

A numerical picture of the phase diagram described in Theorem 1.3 is shown in Fig. 1.
Note that the results above only hold in the regime T∗ ∈ [( 1

2

)k
, 1
)
, which corresponds to

the regime θ∗ ≥ 0. This assumption is necessary, since the results from [4] that we use only
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hold for non-negative θ∗. For k and T∗ not in this regime, we do not know if there is ensemble
equivalence.

1.3.2. Replica symmetry Our last two theorems quantify the specific relative entropy and the
spectral gap in the replica symmetry regime. This regime was first defined in [5] and further
studied in [15]. Using the theory developed in [15], it is possible to quantify the specific relative
entropy s∞ and the difference of the largest eigenvalue δ∞ for certain T∗ in the BEE-phase.

Definition 1.2. (Replica symmetry.) Consider the Erdős–Rényi random graph G on n vertices
with retention probability p ∈ [0, 1] conditioned on t(F,G) ≥ T∗ for some finite simple graph
F. If G converges in the cut metric to a constant graphon, then we say that T∗ is in the replica
symmetric region.

From the theory of large deviations for random graphs developed in [5], we know that T∗ is
in the replica symmetric region if and only if

inf
t(F,f )≥T∗ Ip(f ) (1.7)

is minimised by a constant graphon, with Ip the rate function given by

Ip(f ) =
∫

[0,1]2
dx dy

(
f (x, y) log

f (x, y)

p
+ [1 − f (x, y)] log

1 − f (x, y)

1 − p

)
. (1.8)

Note that I(f ) = I1/2(f ) − 1
2 log 2. Hence, if T∗ is in the replica symmetric region, then there

is an explicit solution for the second supremum in (1.5). In [15], it was shown that T∗ is in
the replica symmetric region when (T∗, Ip(T∗ 1/d)) lies on the convex minorant of the function
x 
→ Ip(x1/d), with d the maximum degree of the subgraph F. If F is regular, then the converse
statement holds as well.

Fix a subgraph F with k edges and maximum degree d. Let T∗
1 (k) ∈ (( 1

2

)k
, T0

)
and T∗

2 (k) ∈
(T0, 1) be the two solutions of the equation kc(T∗(k)) = k, so that (T∗

1 (k), T∗
2 (k)) = BEE-phase.

In Lemma 3.1, we prove that the replica symmetric region contains
[( 1

2

)k
, T∗

1 (d)
]∪ [T∗

2 (d), 1].
Thus, if d< k, then in part of the BEE-phase there is replica symmetry. This allows us to
formulate the following two theorems (which are vacuous for d = k).

Theorem 1.4. (Specific relative entropy.) For every T∗ in the replica symmetric part of the
phase of breaking of ensemble equivalence,

s∞ =
{
θ̂ (k)[T∗

1 (k) − T∗] + [
I(T∗ 1/k) − I(T∗

1 (k)1/k)
]
> 0, T∗ ∈ (T∗

1 (k), T∗
1 (d)],

θ̂ (k)[T∗
2 (k) − T∗] + [

I(T∗ 1/k) − I(T∗
2 (k)1/k)

]
> 0, T∗ ∈ [T∗

2 (d), T∗
2 (k)).

Consequently,

s∞ =
{

C(T∗
1 (k), k) [T∗ − T∗

1 (k)]2 + O([T − T∗
1 (k)]3), T∗ ↓ T∗

1 (k),

C(T∗
2 (k), k) [T∗ − T∗

2 (k)]2 + O([T − T∗
2 (k)]3), T∗ ↑ T∗

2 (k),

with

C(T∗, k) = T∗ (1−2k)/k

2k

{
1

k

(
1 + T∗ 1/k

1 − T∗ 1/k

)
+
(

1

k
− 1

)
log

(
T∗ 1/k

1 − T∗ 1/k

)}
.
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Theorem 1.5. (Spectral signature.) For every T∗ in the replica symmetric part of the phase of
breaking of ensemble equivalence,

δ∞ = T∗ 1/k
1 [T∗

2 (k) − T∗] + T∗ 1/k
2 [T∗ − T∗

1 (k)]

T∗
2 (k) − T∗

1 (k)
− T∗ 1/k < 0,

T∗ ∈ (T∗
1 (k), T∗

1 (d)] ∪ [T∗
2 (d), T∗

2 (k)).

Consequently,

δ∞ =
{

Ĉ(T∗
1 (k), k)[T∗ − T∗

1 (k)] + O([T∗ − T∗
1 (k)]2), T∗ ↓ T∗

1 (k),

Ĉ(T∗
2 (k), k)[T∗ − T∗

2 (k)] + O([T∗ − T∗
2 (k)]2), T∗ ↑ T∗

2 (k),

with

Ĉ(T∗, k) = T∗ 1/k
2 (k) − T∗ 1/k

1 (k)

T∗
2 (k) − T∗

1 (k)
− 1

k
T∗ (1−k)/k.

1.4. Typical graph under the microcanonical and canonical ensemble

The BEE-phase can also be characterised through convergence of the random graph drawn
from the two ensembles. In Lemmas 5.1 and 5.2 we show that the random graph drawn from
the canonical ensemble converges to the maximiser(s) of the first supremum of (1.5), while the
random graph drawn from the microcanonical ensemble converges to the maximiser(s) of the
second supremum of (1.5).

Outside the BEE-phase, both suprema are attained by the constant graphon h ≡ T∗ 1/k,
meaning that for large n both ensembles behave approximately like the Erdős–Rènyi ran-
dom graph with retention probability p = T∗ 1/k. Inside the BEE-phase, the first supremum
is maximised by the two constant graphons T∗

1 (k)1/k and T∗
2 (k)1/k, neither of which lies in W̃∗.

Consequently, the random graph drawn from the canonical ensemble converges to the random
graphon

T∗
2 (k) − T∗

T∗
2 (k) − T∗

1 (k)
δT∗

1 (k)1/k + T∗ − T∗
1 (k)

T∗
2 (k) − T∗

1 (k)
δT∗

2 (k)1/k ,

meaning that for large n the canonical ensemble behaves approximately like a mixture of two
Erdős–Rényi random graphs. If T∗ is in the replica symmetric part of the BEE-phase, then the
second supremum is still minimised by the constant graphon h ≡ T∗ 1/k. Hence, the random
graph is asymptotically deterministic under the microcanonical ensemble and random under
the canonical ensemble. Thus, BEE occurs due to coexistence of two densities. This is similar
in spirit to the coexistence of water and ice at the melting point, at which a first-order phase
transition between water and ice occurs.

In the region of replica symmetry breaking, the maximisers of the second supremum are
unknown, and it is not even known whether or not there is a unique maximiser (see Fig. 2).
In the case of non-uniqueness, also under the microcanonical ensemble the random graph is
asymptotically random.

1.5. Discussion and outline

Theorem 1.2 reduces the variational formula on W̃ to a variational formula on [0, 1], and is
an application of a reduction principle explained in [4] (see also [3]). The proof relies on the
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FIGURE 2. A numerical picture of the average largest eigenvalue λ= limn→∞ 1
nE[λn] of the adjacency

matrix under the microcanonical ensemble (top curve) and the canonical ensemble (bottom curve), as a
function of T∗ for a subgraph F with k = 7 edges and maximum degree d = 5. The top curve is shown
only for T∗ in the replica symmetric region. In the region of replica symmetry breaking we have no

explicit expression for λ under the microcanonical ensemble.

variational characterisation in Theorem 1.1. The main difficulty lies in computing the tuning
parameter θ∗ as a function of the density T∗, which is resolved through Lemma 1.1. The proof
follows from an analysis of the two variational expressions, for which we rely in part on the
results in [16]. From Theorem 1.2, for each k we can identify the BEE-phase as follows. The
expression in (1.6) has at most two local maximisers u∗

1(θ )< u∗
2(θ ), which are both increasing

in θ . For θ < θ̂ , u∗
1(θ ) is the global maximiser; for θ > θ̂ , u∗

2(θ ) is the global maximiser; and
for θ = θ̂ , u∗

1(θ ) and u∗
2(θ ) are both global maximisers. Hence, the values u ∈ (u∗

1(θ ), u∗
2(θ )) can

never be a global maximiser, and so the BEE-phase contains (u∗
1(θ )k, u∗

2(θ )k). Since u∗
1(0) = 1

2
and limθ→∞ u∗

2(θ ) = 1, the interval (u∗
1(θ )k, u∗

2(θ )k) is the entire BEE-phase.
Theorem 1.3 identifies the BEE-phase and captures the main properties of the critical curve

bordering this phase. The proof relies on Lemma 3.1, which allows us to use results from [15]
and establish a connection between ensemble equivalence and replica symmetry, in the sense
that T∗ lies in the BEE-phase for a subgraph with k edges if and only if T∗ lies in the region
of replica symmetry breaking for p = 1

2 and a k-regular subgraph (recall (1.7) and (1.8)). This
connection is purely analytic: it establishes equivalence of variational formulas and implies
that the graph in Fig. 1 is a cross-section of the curves in [15, Figure 2] at p = 1

2 . It is not
clear, however, how to probabilistically interpret the relationship between replica symmetry
for regular subgraphs and breaking of ensemble equivalence for general graphs. Note that we
do not require any regularity of the subgraph F, and also the degrees of F do not play any role.
It might be easier to use the variational formula in (1.6) (with Ip instead of I) to analyse replica
symmetry, rather than the convex minorant of x 
→ Ip(x1/k).

Theorem 1.4 gives an explicit formula for the specific relative entropy s∞ in part of the BEE-
phase. The proof exploits the connection with replica symmetry. If a subgraph has more edges
than its maximal degree (i.e. is not a k-star), then the BEE-phase near T∗

1 (k) and T∗
2 (k) is replica

symmetric. This implies that the second supremum in (1.5) also has a constant maximiser,
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which allows us to explicitly compute s∞. It turns out that the relative entropy undergoes a
second-order phase transition as T∗ approaches the critical curve.

Theorem 1.5 shows that the working hypothesis put forward in [9] is met in the replica sym-
metric part of the BEE-phase. A random graph drawn from the canonical ensemble converges
to a constant graphon whose height is a random mixture of the two maximisers u1, u2 of (1.6).
The average largest eigenvalue converges to a value on the line segment connecting (u1/k

1 , u1)

and (u1/k
2 , u2). In the region of replica symmetry, a random graph drawn from the micro-

canonical ensemble converges to the constant graphon whose height is (T∗)1/k, as illustrated in
Fig. 2. Note that the average largest eigenvalue is larger in the microcanonical ensemble than
in the canonical ensemble, contrary to what was found in [9], where the constraint was on the
degree sequence. It turns out that δ∞ undergoes a first-order phase transition as T∗ approaches
the critical curve.

The numerical picture of the phase diagram in Fig. 1 was made using Mathematica. The
computations involve finding an approximate value of θ̂ (k) for each k (up to an accuracy of five
digits), and computing u∗

1(θ̂(k), k) and u∗
2(θ̂ (k), k). The dotted lines are formed by the points

(u∗
1(k)k, k) and (u∗

2(k)k, k). This is done for k starting at 4.592 and increasing with increments
of 0.002.

In [19], BEE for interacting particle systems was studied at three different levels: thermo-
dynamic, macrostate, and measure. It was shown that these levels are in fact equivalent. A
general formalism was put forward, based on an abstract large deviation principle, linking
the occurrence of BEE to non-convexity of the rate function associated with the microcanon-
ical ensemble as a function of the parameters controlling the constraint. In our context, the
large deviation principle for graphons in [5] provides the conceptual basis for identifying the
BEE-phase via the variational formula derived in [6], and the link with the convex minorant
mentioned above fits in with the picture provided in [19].

Theorems 1.2–1.5 are proved in Sections 2–5, respectively.

2. Proof of Theorem 1.2

Throughout the proof, we fix k ∈N, and suppress k from the notation. We analyse the
expression

sup
h̃∈W

[θT(h̃) − I(h̃)
]

(2.1)

with θ ∈ [0,∞), and determine for which values of T∗ a maximiser of this supremum is in the
set W̃∗. Note that it suffices to consider θ ∈ [0,∞), since T∗ ≥ ( 1

2

)k. This was shown in [6,
Lemma 5.1] in the case that F is a triangle, but the proof generalizes to general finite simple
graphs.

By [4, Theorem 4.1], the supremum equals the supremum in (1.6), and each maximiser
of (2.1) is a constant function, where the constant is a maximiser of (1.6). Furthermore, by
Lemma 1.1, θ∗ is a maximiser of the supremum

sup
θ≥0

[
θT∗ − θT(u∗(θ )) + I(u∗(θ ))

]= sup
θ≥0

[
θT∗ − θ (u∗(θ ))k + I(u∗(θ ))

]
,

where u∗(θ ) is a maximiser of (1.6). By [16, Proposition 3.2], lθ (u) := θuk − I(u) has at most
two maxima and there exists a θ̂ such that, for θ < θ̂ , the first local maximum is the unique
global maximum and, for θ > θ̂ , the second local maximum is the unique global maximum.
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FIGURE 3. Three plots of lθ (u) for k = 7 and θ = 0.3, θ = θ̂ (7), and θ = 0.4. For θ = 0.3, u∗
1(θ ) is the

global maximiser; for θ = θ̂ (7), u∗
1(θ ) and u∗

2(θ ) are both global maximisers; and for θ = 0.4, u∗
2(θ ) is the

global maximiser. In the figures, the function lθ (u) is denoted by l(u) and the local maximisers u∗
1(θ ) and

u∗
2(θ ) are denoted by u1 and u2 respectively. The BEE-phase is (u∗

1(θ̂)k, u∗
2(θ̂ )k).

Hence, for all θ �= θ̂ , u∗(θ ) is well-defined. For θ = θ̂ , both maxima are a global maximum. In
that case, we let u∗(θ ) denote either of the two maximisers.

Let m(θ ) = θT∗ − lθ (u∗(θ )) = θT∗ − θ (u∗(θ ))k + I(u∗(θ )). In Fig. 3, plots of lθ are shown
for several values of θ . Write

u := u∗(θ ), u′ := ∂u

∂θ
(θ ).

Then

lθ ′(u) = θkuk−1 − 1
2 log u + 1

2 log (1 − u) = 0,

m′(θ ) = T∗ − uk − θkuk−1u′ + 1
2 u′ log (u) − 1

2 u′ log (1 − u)

= T∗ − uk − u′( 1
2 log u − 1

2 log (1 − u) − θkuk−1)
= T∗ − uk.

Hence, if there exists a θ0 ≥ 0 such that (u∗(θ0))k = T∗, then m′(θ0) = 0 and so θ∗ = θ0. In that
case (u∗(θ∗))k = T∗, so there is ensemble equivalence. If such a θ0 does not exist, then there is
breaking of ensemble equivalence.

Let u∗
1(θ ) and u∗

2(θ ) be the first and second local maximum of lθ , respectively. Then θ 
→
u∗

1(θ ) and θ 
→ u∗
2(θ ) are increasing. Furthermore, for all θ < θ̂ , u∗

1(θ ) is the unique global
maximum, while for all θ > θ̂ , u∗

2(θ ) is the unique global maximum. Hence, if there is breaking
of ensemble equivalence, then m′(θ )> 0 for θ < θ̂ and m′(θ )< 0 for θ > θ̂ . We conclude that
θ∗ = θ̂ .

3. Proof of Theorem 1.3

We first fix some notation. For given k and θ , let u∗
1(θ, k) and u∗

2(θ, k) be the first and second
local maximum respectively of lθ,k(u) = θuk − I(u). Let θ̂ (k) be the unique value of θ such that
u∗

1(θ̂ (k), k) = u∗
2(θ̂(k), k). Define Jk(x) = I(x1/k) and T1(k) = u∗

1(θ̂ (k), k)k, T2(k) = u∗
2(θ̂(k), k)k.

3.1. Existence of kc

Lemmas 3.1 and 3.2 establish the existence of the critical curve. Lemma 3.1 shows the
connection between replica symmetry and ensemble equivalence as discussed in Section 1.5,
since T is in the region of replica symmetry for p = 1

2 if and only if (T, I(T1/k)) lies on the
convex minorant of Jk.
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Lemma 3.1. (Connection with replica symmetry.) Let k ≥ 1 and T ∈ [( 1
2

)k
, 1
)
. There is ensem-

ble equivalence for T∗ = T if and only if (T, I(T1/k)) lies on the convex minorant of the
function Jk.

Proof. Note that I(x) = I1/2(x) − 1
2 log 2 (recall (1.8)), so (T, I(T1/k)) lies on the convex

minorant of Jk if and only if (T, I1/2(T1/k)) lies on the convex minorant of the function x 
→
I1/2(x1/k).

In [15, Appendix A], it is shown that there exist q1, q2 ∈ (0, 1) such that (qk, I(q)) is not on
the convex minorant of J if and only if qk ∈ (qk

1, qk
2). The values q1, q2 are defined as the unique

values in [0,1] such that the tangent lines of J at qk
1 and qk

2 are the same, i.e. J′(qk
1) = J′(qk

2) =: D
and J(qk

1) + D(qk
2 − qk

1) = J(qk
2), or, equivalently, Dqk

1 − J(qk
1) = Dqk

2 − J(qk
2).

Recall from Section 1.5 that there is breaking of ensemble equivalence for
T∗ = T ∈ [( 1

2

)k
, 1
)

if and only if T ∈ (uk
1, uk

2), where u1 = u∗
1(θ̂(k), k) and u2 = u∗

2(θ̂ (k), k).

Since u1, u2 are the maximisers of x 
→ θ̂xk − I(x) and x 
→ xk is monotone, we have
that T1 := uk

1 and T2 := uk
2 are the maximisers of x 
→ θ̂x − I(x1/k) = θ̂x − J(x). Hence,

J′(T1) = J′(T2) = θ̂ . Furthermore, θ̂ was defined such that θ̂uk
1 − I(u1) = θ̂uk

2 − I(u2), so
θ̂T1 − J(T1) = θ̂T2 − J(T2).

From the above, we conclude that u1 = q1 and u2 = q2, which completes the proof. �

There is ensemble equivalence for T∗ ≤ T1(k) and T∗ ≥ T2(k), and ensemble inequivalence
for T∗ ∈ (T1(k), T2(k)). By [15, Lemma A.5], k 
→ u∗

1(θ̂ , k) is decreasing and k 
→ u∗
2(θ̂ , k) is

increasing. Although k 
→ (u∗
1(θ̂ , k))k is clearly decreasing, it is not a priori obvious whether

k 
→ (u∗
2(θ̂ , k))k is increasing, since u∗

2(θ̂ , k)< 1. If the latter is the case, then for all k> kc(T∗)
there is breaking of ensemble equivalence, and for all k ≤ kc(T∗) there is ensemble equiva-
lence, where kc(T∗) is chosen such that T∗ = T1(kc) or T∗ = T2(kc). This proves the first part
of Theorem 1.3. Also, since T1(k) ≥ ( 1

2

)k, this also shows that kc ≥ log2 (1/T∗). The following
lemma fills in the gap.

Lemma 3.2. (Monotonicity.) The function k 
→ T1(k) is decreasing and k 
→ T2(k) is increas-
ing.

Proof. The function ∂Jk/∂k is a concave function for every k. Because the line segment
connecting (T1(k), Jk(T1(k))) with (T2(k), Jk(T2(k))) lies below the curve (x, Jk(x)), we have
that, for all α ∈ [0, 1] and k′ ↓ k,

Jk′
(
αT1(k) + (1 − α)T2(k)

)= Jk
(
αT1(k) + (1 − α)T2(k)

)
+ (k′ − k)

∂Jk

∂k

(
αT1(k) + (1 − α)T2(k)

)+ o(k′ − k)

≥ αJk(T1(k)) + (1 − α)Jk(T2(k))

+ (k′ − k)

(
α
∂Jk

∂k
(T1(k)) + (1 − α)

∂Jk

∂k
(T2(k))

)
+ o(k′ − k)

= αJk′ (T1(k)) + (1 − α)Jk′ (T2(k)) + o(k′ − k).

Hence, for k′ > k small enough, the line segment connecting the points (T1(k), Jk′ (T1(k))) and
(T2(k), Jk′ (T2(k))) lies below the curve (x, Jk′ (x)), and is not tangent to the curve at any of the
end points. Thus, by [15, Lemma A.3], T1(k′)< T1(k)< T2(k)< T2(k′). �
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3.2. Minimum of kc

By [16, Proposition 3.2], for all k ≤ k0, lθ,k has a unique maximiser for all θ ≥ 0. For all
k> k0, there exists a θ ≥ 0 such that lθ,k has two maximisers. Hence, the minimum value of
kc(T∗) is k0. In the proof of [16, Proposition 3.2] it is shown that θ̂(k0) = kk0−1

0 /(2(k0 − 1)k0 ),
and so

l′
θ̂(k0),k0

(
k0 − 1

k0

)
= (k0)k0−1

2(k0 − 1)k0
k0

(
k0 − 1

k0

)k0−1

− 1

2
log (k0 − 1)

= k0

2(k0 − 1)
− 1

2
log (k0 − 1) = 0.

Hence, u∗(θ̂(k0), k0) = (k0 − 1)/k0, and so for T∗ = ((k0 − 1)/k0)k0 we have kc(T∗) = k0. We
conclude that kc has a unique minimum at the point (((k0 − 1)/k0)k0, k0).

3.3. Analyticity of kc

Analyticity of kc follows from a straightforward application of the implicit function
theorem. Let f : (0,∞) × (0, 1)2 →R

2 be given by

f (k, x, y) = (
J′

k(x) − J′
k(y), J′

k(x)x − J′
k(y)y + J(y) − J(x)

)
.

Recall from the proof of Lemma 3.1 that, for each k, T1(k) and T2(k) are defined such that
f (k, T1(k), T2(k)) = 0. Note that f is analytic, and its Jacobian,( ∂f1

∂x
∂f1
∂y

∂f2
∂x

∂f2
∂y

)
(T1(k), T2(k)) =

(
J′′

k (T1(k)) −J′′
k (T2(k))

T1(k)J′′
k (T1(k)) −T2(k))J′′

k (T2(k))

)
,

is invertible if T1(k) �= T2(k). Hence, for all k> k0, T1 and T2 are analytic functions of k, so kc
is an analytic function of T∗ outside its minimum.

Next, consider the behaviour of kc near T0, so as T2 − T1 ↓ 0. By implicit differentiation, as
k ↓ k0, the derivative of T1(k) is given by

T ′
1(k) = 1

(T1 − T2)J′′
k (T1)J′′

k (T2)

×
[

(T2 − T1)J′′
k (T2)

∂J′
k

∂k
(T1) + J′′

k (T2)

(
∂Jk

∂k
(T1) − ∂Jk

∂k
(T2)

)]
= 1

J′′
k (T1)

(
∂J′

k

∂k
(T1) +

∂Jk
∂k (T1) − ∂Jk

∂k (T2)

T2 − T1

)

= 1

J′′
k (T1)

O(T2 − T1).

It is not difficult to show that, for k = k0, the function J′′
k0

has a zero that is also a minimum at

T = T0. Hence, as k ↓ k0, J′′
k (T1(k)) = O((T2 − T1)2), which implies that the derivative of T ′

1(k)
diverges as k ↓ k0. In a similar fashion, we can show that the derivative of T ′

2(k) diverges as
k ↓ k0. Hence, at T0, kc is at least differentiable and has derivative zero.

https://doi.org/10.1017/jpr.2022.127 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.127


BEE for random graphs under a single constraint 1195

3.4. Scaling of kc near the boundary

In order to identify the asymptotics of kc for T∗ near the edges of the interval (0,1), we first
compute the limit of θ̂ as k → ∞. In the following, we suppress the dependence of θ̂ on k. By
Taylor expansion,

lθ (u∗
1) ≤ lθ

( 1
2

)+ (
u∗

1 − 1
2

)
l′θ
( 1

2

)≤ θ( 1
2

)k + 1
2 log 2 + θk

( 1
2

)k = θ
( 1

2

)k(1 + k) + 1
2 log 2,

and lθ (1) = θ < lθ (u∗
2). This implies that

θ̂ <
log 2

2[1 − ( 1
2

)k(1 + k)]
.

Also, u∗
2(θ, k) ∈ ((k − 1)/k, 1) by [16, Proposition 3.2]. Hence,

lθ,k(u∗
2(θ, k)) ≤ θ − k − 1

2k
log

(
k − 1

k

)
− 1

2

(
1 − k − 1

k

)
log

(
1 − k − 1

k

)
= θ − 1

2
log

(
1 − 1

k

)
− 1

2k
log

(
1

k − 1

)
,

and lθ,k
( 1

2

)= θ
( 1

2

)k + 1
2 log 2< lθ,k(u∗

1(θ, k)). This implies that

θ̂ >
log 2 + log

(
1 − 1

k

)+ 1
k log

( 1
k−1

)
2
[
1 − ( 1

2

)k] .

Combining the bounds above, we obtain that θ̂ → 1
2 log 2 as k → ∞.

For T∗ ↓ 0, Let y ∈ ( 1
2 , 1

)
. Then

l′
θ̂ ,k

( 1
2 + yk)= θ̂k

( 1
2 + yk)k−1 − 1

2
log

(
1 + 2yk

1 − 2yk

)
= θ̂k

( 1
2 + yk)k−1 − 1

2
log

(
1 + 4yk

1 − 2yk

)
≤ log 2

2
[
1 − ( 1

2

)k(1 + k)
]k
( 1

2

)k−1 − 2yk + o
(
k
( 1

2

)k)+ o(yk)< 0

as k → ∞. Thus, u∗
1(θ̂ , k)< 1

2 + yk for all y ∈ ( 1
2 , 1

)
and k large enough. Hence,

( 1
2 + ykc

)kc ≥
T∗ for T∗ small enough. We also have T∗ ≥ ( 1

2

)k for all k. Since this holds for all y ∈ ( 1
2 , 1

)
and

( 1
2 + yk

)k ∼ ( 1
2

)k, we have T∗ ∼ ( 1
2

)kc .
For T∗ ↑ 1, let x ∈ (0, 1). Then

l′
θ̂ ,k

(1 − xk) = k
(
θ̂ (1 − xk)k−1 + 1

2 log x
)− 1

2 log (1 − xk).

As k → ∞, (1 − xk)k−1 → 1 and log (1 − xk) → 0. Hence, if − 1
2 log x ≥ θ̂ , then l′

θ̂ ,k
(1 − xk)<

0 for k large enough, which implies that u∗
2(θ̂ , k)< 1 − xk. If − 1

2 log x< θ̂ , then l′
θ̂ ,k

(1 − xk)>

0, which implies that u∗
2(θ̂ , k)> 1 − xk. Recall that θ̂ → 1

2 log 2. Thus, choosing x = 1
2 , we get(

1 − ( 1
2

)kc
)kc ∼ T∗, and so kc

( 1
2

)kc ∼ 1 − T∗.
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4. Proof of Theorem 1.4

If d = k, then the statement of the theorem is vacuous, so we may assume that d< k. Let
T∗ denote either T∗

1 (k) or T∗
2 (k). In this proof, we will often use that fact that I(f ) = I1/2(f ) −

1
2 log 2. Any reference to the theory of replica symmetry is made with the implicit assumption
that p = 1

2 .
Since there is ensemble equivalence for T∗, (T∗, I((T∗)1/k)) lies on the convex minorant

of x 
→ I(x1/k), and so T∗ �∈ (q1(k)k, q2(k)k), where q1(k), q2(k) are defined as in the proof of
Lemma 3.1. By [15, Lemma A.5], q1(k)< q1(d)< q2(d)< q2(k), because d< k, with d the
largest degree of H. Hence, for all T ∈ (T∗

1 (k), q1(d)] and T ∈ [q2(d), T∗
2 (k)), (T, I(T1/d)) lies

on the convex minorant of x 
→ I(x1/d), but T is not in the region of ensemble equivalence.
Thus, by [15, Lemma 3.3], T is in the region of replica symmetry for t(H, ·). This implies that
h ≡ T1/k is the unique minimiser of

inf{I(h̃) : h̃ ∈ W̃, t(H, h̃) ≥ T} = inf{I(h̃) : h̃ ∈ W̃, t(H, h̃) = T} = inf
h̃∈W̃∗

I(h̃).

Furthermore, since T is in the BEE-phase, we have θ∗ = θ̂ . We conclude that

s∞ = sup
h̃∈W̃

[θ∗T(h̃) − I(h̃)] − sup
h̃∈W̃∗

[θ∗T(h̃) − I(h̃)]

= [θ̂T∗ − I(T∗ 1/k)] − [θ̂T − I(T1/k)]

= θ̂ (T∗ − T) + [I(T1/k) − I(T∗ 1/k)]

= [J′
k(T∗) − θ̂ ](T − T∗) + J′′

k (T∗)(T − T∗)2 + O((T − T∗)3)

= T∗ 1/k−2

2k

{
1

k

(
1 + T∗ 1/k

1 − T∗ 1/k

)
+
(

1

k
− 1

)
log

(
T∗ 1/k

1 − T∗ 1/k

)}
(T − T∗)2 + O((T − T∗)3)

as T → T∗. The last equality follows from the fact that J′
k(T∗) = θ̂ (see the proof of

Lemma 3.1).

5. Proof of Theorem 1.5

We first show that a graph sampled from the canonical ensemble converges to a probability
distribution on a finite set of constant graphons. In [4, Theorems 3.2 and 4.2] this is shown for
the exponential random graph model with a fixed parameter θ∗. We adapt the proof to the case
where we have a sequence of parameters (θ∗

n )n∈N converging to some θ∗.

Lemma 5.1. Let Gn be a random graph drawn from the canonical ensemble Pcan with param-
eter θ∗

n . Let U(θ ) be the set of maximisers of (1.6) for some parameter θ . Then, recalling (1.4),
minu∈U(θ∗∞) δ� (̃hGn , ũ) → 0 as n → ∞ in probability.

Proof. Let η > 0 and define Ã(θ, η) := {h̃ ∈ W̃ | δ�(h̃, Ũ(θ )) ≥ η}. Recall from the proof of
Theorem 1.2 that U(θ ) consists of a single point for θ �= θ̂ and two points for θ = θ̂ . Also recall
the definition of the function lθ from the proof of Theorem 1.2. We first prove the case that
θ∗∞ �= θ̂ . Then lθ∗

n
converges to lθ∗∞ uniformly as n → ∞, so U(θ∗

n ) converges to U(θ∗∞). Here

we assume without loss of generality that θ∗
n �= θ̂ and let U(θ ) denote the single maximiser of

lθ by a slight abuse of notation. Hence,

Ã(θ∗
n , η) ⊂ Ã(θ∗∞, η/2) (5.1)
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for all n large enough by the triangle inequality. We now adapt the arguments from the proof
of [4, Theorem 3.2].

By the compactness of W̃ and Ũ(θ ), and upper semi-continuity of θ∗∞T − I, it follows that

2ε := sup
h̃∈W̃

[θ∗∞T(h̃) − I(h̃)] − sup
h̃∈Ã(θ∗∞,η/2)

[θ∗∞T(h̃) − I(h̃)]> 0.

Since the θ∗
n T are all bounded functions and the sequence (θ∗

n )n∈N is bounded, there
exists a finite set R such that the intervals {(a, a + ε) | a ∈ R} cover the range of θ∗

n T and
θ∗∞T for all n large enough. For each a ∈ R, let F̃a(θ∗

n ) := (θ∗
n T)−1([a, a + ε]). Now define

Ãa(θ∗
n , η) := Ã(θ∗

n , η) ∩ F̃a(θ∗
n ) and Ãa

n(θ∗
n , η) = Ãa(θ∗

n , η) ∩ G̃n. Choose δ = 1
2ε. Since θ∗

n →
θ∗∞, we have

(θ∗
n T)−1([a, a + ε]) ⊂ (θ∗∞T)−1([a − δ, a + ε+ δ]) =: G̃a (5.2)

for all n large enough. Now define B̃a := Ã(θ∗∞, η/2) ∩ G̃a and B̃a
n := B̃a ∩ G̃n.

Using (5.1) and (5.2), we obtain Ãa
n(θ∗

n , η) ⊂ B̃a
n. Hence,

Pcan(Gn ∈ Ã(θ∗
n , η)) ≤ e−n2ψn(θ∗

n )
∑
a∈R

en2(a+ε) |̃Aa
n(θ∗

n , η)|

≤ e−n2ψn(θ∗
n )
∑
a∈R

en2(a+ε) |̃Ba
n|

≤ e−n2ψn(θ∗
n )|R| sup

a∈R
en2(a+ε) |̃Ba

n|.

Using the large deviation principle for the Erdős–Rényi random graph in [4, (8.1)], we obtain

lim sup
n→∞

log |̃Ba
n|

n2
≤ − inf

h̃∈B̃a
I(h̃).

Also, by [6, Lemma A.1], we have

lim
n→∞ψn(θ∗

n ) =ψ∞(θ∗∞) = sup
h̃∈W̃

[θ∗∞T(h) − I(h)].

Combining these two results, we conclude that

lim sup
n→∞

log Pcan(Gn ∈ Ã(θ∗
n , η))

n2
≤ sup

a∈R

[
a + ε− inf

h̃∈B̃a
I(h̃)

]
− sup

h̃∈W̃
[θ∗∞T(h) − I(h)]. (5.3)

The remainder of the proof now follows exactly as in [4]. Indeed, for each h̃ ∈ B̃a, we have
θ∗∞T(h̃) ≥ a − δ. Hence,

sup
h̃∈B̃a

[θ∗∞T(h̃) − I(h̃)] ≥ a − δ − inf
h̃∈B̃a

I(h̃).

Substituting this into (5.3), we get

lim sup
n→∞

log Pcan(Gn ∈ Ã(θ∗
n , η))

n2
≤ ε+ δ+ sup

a∈R
sup
h̃∈B̃a

[θ∗∞T(h̃) − I(h̃)] − sup
h̃∈W̃

[θ∗∞T(h̃) − I(h̃)]

≤ ε+ δ+ sup
h̃∈Ã(θ∗∞,η/2)

[θ∗∞T(h̃) − I(h̃)] − sup
h̃∈W̃

[θ∗∞T(h̃) − I(h̃)]

≤ ε+ δ− 2ε= −ε
2

.
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We have thus shown that δ� (̃hGn , Ũ(θ∗
n )) → 0 as n → ∞ in probability. Since U(θ∗

n ) → U(θ∗∞),
this concludes the proof in the case θ∞ �= θ̂ .

Now assume that θ∞ = θ̂ . Then (5.1) may no longer hold, since U(θ∗∞) now consists of
two points, whereas U(θ∗

n ) may consist of only one point. However, if we define U′(θ ) as
the set consisting of the two local maxima of lθ , and define Ã′(θ, η) analogously, then the
analogue of (5.1) does hold for all n large enough. Here we use that the two local maxima
of lθ∗

n
converge to the two local maxima of lθ∗∞ . The rest of the proof then goes through as

before to show that δ� (̃hGn , Ũ′(θ∗
n )) → 0 in probability. Again using convergence of the local

maxima, we obtain δ� (̃hGn , Ũ′(θ∗∞)) → 0 in probability. However, for θ∗∞ = θ̂ , we have that
Ũ′(θ∗∞) = Ũ(θ∗∞), which concludes the proof. �

Corollary 5.1. Assume that T∗ is in the BEE-phase. Let Gn be a random graph drawn from the
canonical ensemble Pcan. Then hGn converges weakly to

uk
2 − T∗

uk
2 − uk

1

δu1 + T∗ − uk
1

uk
2 − uk

1

δu2,

with u1 < u2 the two maximisers of (1.6) for θ = θ̂ .

Proof. From Lemma 5.1 it is clear that the laws of (Gn)n∈N form a tight sequence of
probability measures. Hence, by Prokhorov’s theorem, for every subsequence (nk)k∈N there
exists a further subsequence (nkl )l∈N such that (Gnkl

)l∈N converges weakly to the random
graphon pδu1 + (1 − p)δu2 for some p ∈ [0, 1]. Since the homomorphism density is con-
tinuous and bounded, this implies that (Ecan[t(H,Gnkl

)])l∈N converges to puk
1 + (1 − p)uk

2.
However, by the definition of the canonical ensemble, this sequence also converges to T∗.
Hence,

T∗ = lim
l→∞ Ecan[t(H,Gnkl

)] = puk
1 + (1 − p)uk

2.

Solving for p, we obtain that (Gnkl
)l∈N converges weakly to

uk
2 − T∗

uk
2 − uk

1

δu1 + T∗ − uk
1

uk
2 − uk

1

δu2 .

Since the subsequence (nk)k∈N is arbitrary and the expression above does not depend
on the chosen subsequence, we conclude that weak convergence holds for the sequence
(Gn)n∈N. �

We can also show convergence of the microcanonical ensemble.

Lemma 5.2. Let Gn be a random graph drawn from the microcanonical ensemble Pmic. Then
h̃Gn converges in probability to F̃∗, with F̃∗ the set of minimisers in W̃∗ of I.

Proof. The proof is similar to the proof of [5, Theorem 3.1]. Fix ε > 0 and let

F̃ε := {̃h ∈ W̃∗ | δ�(h̃, F̃∗)> ε},
F̃εn := {̃h ∈ F̃ε | δ�(h̃, F̃∗)> ε, h̃ = G̃ for some G ∈ Gn}.

https://doi.org/10.1017/jpr.2022.127 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2022.127


BEE for random graphs under a single constraint 1199

Then, by [6, (3.22) and Corollary 2.9],

lim
n→∞

1

n2
log Pmic(F̃ε) = lim

n→∞
1

n2
log (|̃Fεn|Pmic(Gn = G∗

n))

= inf
h̃∈W̃∗

I(h̃) + lim
n→∞

1

n2
log |̃Fεn|

= inf
h̃∈W̃∗

I(h̃) − inf
h̃∈F̃ε

I(h̃),

where G∗
n is any graph in Gn such that G̃∗

n ∈ W̃∗. Since W̃∗ is a compact set and F̃ε does not
contain any minimisers of infh̃∈W̃∗ I(h̃), we conclude that the expression above is negative,
which implies that limn→∞ Pmic(F̃ε) = 0. �

We next turn our attention to the largest eigenvalue. For a graph Gn on n vertices, n−1λn(Gn)
equals the operator norm ‖hGn‖op of the empirical graphon of Gn. The operator norm is
continuous and bounded, so we have

lim
n→∞ n−1Ecan[λn] = pu1 + (1 − p)u2 = T∗(u2 − u1) + u1u2(uk−1

2 − uk−1
1 )

uk
2 − uk

1

=: f (T∗).

If T∗ is in the region of replica symmetry for the subgraph H, then h ≡ (T∗)1/k is the unique
minimiser of I in W̃∗. So, in this case,

lim
n→∞ n−1Emic[λn] = (T∗)1/k > f (T∗),

since the function x 
→ x1/k is concave, f is affine in T∗, and we have f (uk
1) = u1 = (uk

1)1/k and
f (uk

2) = u2 = (uk
2)1/k.

The second part of the theorem follows from a simple Taylor expansion.

Funding Information

The research in this paper was supported through NWO Gravitation Grant NETWORKS
024.002.003.

Competing Interests

There were no competing interests to declare which arose during the preparation or
publication process of this article.

References

[1] BORGS, C., CHAYES, J. T., LOVÁSZ, L., SÓS, V. T. AND VESZTERGOMBI, K. (2008). Convergent graph
sequences I: Subgraph frequencies, metric properties, and testing. Adv. Math. 219, 1801–1851.

[2] BORGS, C., CHAYES, J. T., LOVÁSZ, L., SÓS, V. T. AND VESZTERGOMBI, K. (2012). Convergent sequences
of dense graphs II: Multiway cuts and statistical physics. Ann. Math. 176, 151–219.

[3] CHATTERJEE, S. (2015). Large Deviations for Random Graphs, École d’Été de Probabilités de Saint-Flour
XLV.

[4] CHATTERJEE, S. AND DIACONIS, P. (2013). Estimating and understanding exponential random graph models.
Ann. Statist. 5, 2428–2461.

[5] CHATTERJEE, S. AND VARADHAN, S. R. S. (2011). The large deviation principle for the Erdős–Rényi random
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