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In this work, we present the stability theory for inhomogeneous fluids subjected to standing
acoustic fields. Starting from the first principles, the stability criterion is established for
two fluids of different acoustic impedance (product of density and speed of sound of the
fluid) separated by a plane interface. Through stability theory and numerical simulations,
we show that, in the presence of interfacial tension, the relocation of high-impedance fluid
from the pressure anti-node to the pressure node occurs when the acoustic force overcomes
the interfacial tension force, which is in agreement with recent acoustic relocation
experiments in the microchannel. Furthermore, we establish an acoustic Bond number that
characterizes stable (Boa < 1) and relocation (Boa > 1) regimes. Remarkably, it is found
that the critical acoustic energy density required for relocation can be significantly reduced
by increasing the height of the channel which could help in designing acoustofluidic
devices that handle immiscible fluids.

Key words: microfluidics

1. Introduction

When an acoustic field encounters inhomogeneity, it exerts acoustic radiation force on
it. Here, by inhomogeneity, we mean non-uniform or discontinuous variation of physical
properties in a system such as particles/cells suspended in fluid, emulsions, co-flowing
streams of miscible or immiscible fluids, and fluid subjected to a temperature gradient. The
acoustic forces acting on inhomogeneity are extensively studied in microscale flows, and
this field is known as ‘microscale acoustofluidics’ (Friend & Yeo 2011). Over the last two
decades, acoustofluidics has found a wide range of applications in biological (Christakou
et al. 2013; Collins et al. 2015; Iranmanesh et al. 2015; Ahmed et al. 2016; Lakshmanan
et al. 2020), chemical (Shi et al. 2009; Xie et al. 2020) and medical (Li et al. 2015; Lu
et al. 2019; Zhang et al. 2020) sciences.
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Recently, the relocation and stabilization of inhomogeneous co-flowing fluid streams in
microchannels have gained the attention of the research community which is evident from
the following works. Through silicon-glass microchannel experiments, using standing
bulk acoustic waves, Deshmukh et al. (2014) could relocate the high-impedance sodium
chloride solution to the pressure node (centre) and the low-impedance water to the pressure
anti-node (sides). Also, they could stabilize a high-impedance fluid at the centre (and
the low-impedance fluid to the sides) against gravity stratification using acoustic fields.
Following this, using the hypothesis on mean Eulerian pressure, Karlsen, Augustsson &
Bruus (2016) derived the acoustic body force to explain the relocation of inhomogeneous
fluids. Using the same theory, Karlsen et al. (2018) showed that the acoustic body
force acting on stable inhomogeneous fluid configuration could effectively suppress the
boundary-driven Rayleigh streaming in the bulk. In addition to the above works on
inhomogeneous miscible fluids, Hemachandran et al. (2019) experimentally demonstrated
the relocation of immiscible fluids using acoustic fields by overcoming the interfacial
tension forces. Hoque & Sen (2023) extended the analysis on immiscible fluids to study
the dependence on the speed of sound, density of the fluid and the width of the fluid
stream on frequency. They showed that a single resonant frequency can be achieved for the
co-flowing fluids for a given width ratio. Other notable works on the practical applications
of acoustic forces on co-flowing inhomogeneous fluids include iso-acoustic focusing of
cells (Augustsson et al. 2016), acoustic focusing of sub-micron particles (Gautam et al.
2018; Van Assche et al. 2020), tweezing and patterning of inhomogeneous fluids in a
microchannel (Karlsen & Bruus 2017; Baudoin et al. 2020), rapid mixing of fluids using
an alternating multinode method (Pothuri, Azharudeen & Subramani 2019), and reversible
stream–droplet transition in a microfluidic co-flowing immiscible system (Hemachandran
et al. 2021).

In our previous work (Rajendran et al. 2022), the theory of acoustic forces acting on
inhomogeneous fluids was developed from first principles, without any prior assumptions
on the mean Eulerian pressure. The generalized acoustic body force derived was shown to
predict the experimental results of Deshmukh et al. (2014), Karlsen et al. (2016), Karlsen
et al. (2018) and Hemachandran et al. (2019). It was proved that an impedance gradient
is a necessary condition for the relocation/stabilization of inhomogeneous fluids under
acoustic fields. Nevertheless, due to the intricacy of the acoustic body force equation, the
stability of a particular configuration cannot be readily inferred from it without performing
numerical simulations. Although the relocation force component from the generalized
acoustic body force is deduced by Rajendran et al. (2022), the exact conditions at which
an inhomogeneous system relocates, remains stable or is neutral are not established. To
address the above problem, this paper aims to provide the stability criterion (a simple
algebraic equation) from which one can obtain a complete and clear picture of the stability
of inhomogeneous fluids subjected to acoustic fields.

In this work, using linear stability analysis, we derive the characteristic equation that
governs the stability of inhomogeneous fluids (with and without interfacial tension) under
an acoustic body force. We study the various parameters such as the initial arrangement
of fluids, the position of the interface with respect to the pressure node and pressure
antinodes, acoustic energy density, the height of the channel or fluid interface, and surface
tension to establish the necessary and sufficient conditions for relocation and stability.
For fluids with interfacial tension, a non-dimensional number called the acoustic Bond
number is obtained theoretically which characterizes the stable and unstable (relocation)
regimes. Also, we deduce a relation between the critical acoustic energy density and the
height of the channel which paves a way for relocating fluids with higher interfacial tension
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Stability of inhomogeneous fluids under acoustic fields

(O(101 mN m−1 to 102 mN m−1)) in a microchannel. Furthermore, numerical simulations
are carried out using a generalized acoustic body force which agrees well with the derived
theoretical stability criterion.

2. Physics of the problem

The hydrodynamics of the inhomogeneous fluids involved in this study is governed by the
mass-continuity and momentum equations (Landau & Lifshitz 1987),

∂ρ

∂t
+ ∇ · (ρV ) = 0, (2.1a)

ρ
DV
Dt

= −∇p + η∇2V + βη∇(∇ · V ) + f ac, (2.1b)

where ρ represents density, V represents the velocity vector field, p represents the pressure
field, η is the dynamic viscosity of the fluid, β = (ξ/η) + (1/3), ξ is the bulk viscosity,
D/Dt denotes the material derivative (D/Dt = ∂t + V · ∇) and all the above fields vary at
a slow time scale t.

The body force f ac responsible for the above slow time scale phenomena is created by
the acoustic fields varying at a fast time scale (tf ). In general, the dependent fields such
as velocity, pressure, density and compressibility can be decomposed using perturbation
theory, based on the time scales as gτ = g(r, t) + g1(r, tf ), where g1(r, tf ) = g1(r)e−iωtf is
a first-order time-harmonic acoustic field that varies on the fast time scale tf (tf ∼ 1/ω ∼
0.1 μs), ω(∼1 MHz) is the angular frequency of the acoustic fields and g is the fields that
vary on a slow time scale t(t � tf ). The slow time scale phenomena such as acoustic
streaming, acoustic relocation and streaming suppression are created by f ac which is
the divergence of the time-averaged Reynolds stress tensor consisting of the product of
first-order fast time scale acoustic fields (Rajendran et al. 2022),

f ac = −∇ · 〈ρv1v1〉 =
(

1
2∇(κ〈|p1|2〉 − ρ〈|v1|2〉)

)
+ (〈v1 × ∇ × (ρv1)〉)

+
(
−1

2 〈|p1|2〉∇κ − 1
2 〈v2

1〉∇ρ
)

(2.2)

= ( f ac1
) + ( f ac2

) + ( f ac3
), (2.3)

where p1 and v1 denote the first-order (fast time scale) pressure and velocity fields due to
acoustic waves (see Appendix A) and 〈· · · 〉 indicates time averaging over a period t � tf
(the time average of two first-order fields 〈u1v1〉 is defined as 1

2 Re(u

1v1), where 
 denotes

complex conjugation). The terms ρ and κ denote the slow time scale (background) density
and compressibility of the fluid respectively. In (2.2), the first term ( f ac1

) is a conservative
or gradient term that induces pressure and not fluid flow, the second term ( f ac2

) is only
dominant at boundary layers and is responsible for boundary-driven Rayleigh streaming,
and the third term ( f ac3

) is responsible for relocation and stabilization of inhomogeneous
fluids. Hence, only the relevant third term, f ac3

, is considered for theoretical analysis. For
the standing acoustic wave applied along the x-direction, the pressure p1 = pa sin(kwx)
and velocity v1 = ( pa/iρc) cos(kwx), where pa denotes the pressure amplitude, c denotes
the speed of sound in a medium, kw = 2π/λw denotes the wavenumber, λw denotes the
wavelength (for standing half-wave, λw = 2w, where w is the width of the channel).
The force term f rl causing the relocation can be obtained from f ac3

after disregarding
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Figure 1. Inhomogeneous fluids (of different impedance ZA and ZB) separated by a plane interface subjected
to a standing acoustic half-wave. In the absence of interfacial tension, the fluid system (a) is in an unstable
equilibrium, (b) is in a stable equilibrium, (c) is in neutral equilibrium and (d) is in a non-equilibrium state.
In the presence of interfacial tension, the fluid system (a) is in a conditionally stable equilibrium, (b) is in
stable equilibrium, (c) is in stable equilibrium and (d) is in a conditionally stable equilibrium. Note: (d) the
configuration shown is not in the scope of this work.

the conservative term, which can be written as (Rajendran et al. 2022)

f rl = −Eac cos(2kwx)∇Z̃, (2.4)

where Eac = p2
a/(4ρavgc2

avg) = (v2
aρavg)/4 is the acoustic energy density, va denotes the

velocity amplitude, Z = ρc denotes impedance, Z̃ = Z/Zavg, c̃ = c/cavg and ρ̃ = ρ/ρavg,
where the subscript ‘avg’ denotes the respective average quantities of fluids A and B. Here,
x = 0 denotes the pressure node and x = ±w/2 denote the pressure anti-nodes. To improve
readability, throughout the manuscript, ‘pressure node’ and ‘pressure anti-nodes’ are
referred to as ‘node’ and ‘anti-node’ respectively. It is important to note that the first-order
fields p1 and v1 assumed for the theoretical analysis correspond to a homogeneous fluid.
However, an inhomogeneous fluid configuration of different fluid impedances (ZA and ZB)
leads to different pressure fields and different acoustic wavelengths in the two fluids. The
accuracy of this assumption is evaluated using numerical simulations in § 3.2, where the
variation of the pressure field in each fluid is taken into account.

2.1. Stability analysis of inhomogeneous fluids in the absence of interfacial tension
A two-dimensional fluid domain subjected to a standing acoustic half-wave in the
x-direction, with two fluids separated by a sharp vertical interface, as shown in
figure 1(a–c), is considered for the stability analysis. Before beginning the analysis, it is
necessary to understand the equilibrium of the system in the absence of interfacial tension.
In a completely enclosed domain, a fluid initially at rest (V = 0) will remain at rest (or
equilibrium) if the body force can be completely absorbed in pressure, f rl = ∇p from
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Stability of inhomogeneous fluids under acoustic fields

(2.1b) and (2.4). By taking the curl of the above relation, the condition for equilibrium is
given as ∇ × f rl = 0. Thus,

− Eac

Zavg

[
∂

∂x

(
cos(2kwx)

∂Z
∂y

)
− ∂

∂y

(
cos(2kwx)

∂Z
∂x

)]
= 0. (2.5)

It is clear from (2.5) that the given fluid configuration will be in an equilibrium state,
only if the direction of the acoustic standing wave is normal to the fluid–fluid interface
(the direction of the acoustic standing wave is parallel to the direction of the impedance
gradient) as shown in figures 1(a)–1(c). Since ∇ × f rl /= 0 for the configuration shown in
figure 1(d), it is not in equilibrium and tends to relocate to the stable configuration without
any perturbations. The stability nature of the equilibrium configurations is analysed by
imposing infinitesimal perturbations on the interface. Now we proceed to show that in
the absence of interfacial tension, the configuration shown in figure 1(a) is in unstable
equilibrium (perturbations grow), figure 1(b) is in stable equilibrium (perturbations decay)
and figure 1(c) is in neutral equilibrium (perturbations neither grow nor decay).

The effect of viscosity is neglected in the stability analysis, as it governs only
the time scale of the phenomenon and does not contribute to the stability criterion.
Although the physical properties are non-uniform in an inhomogeneous system, the
fluid particles considered in the flow field have constant density ρ, speed of sound
c and impedance Z. Thus, the material derivative of all properties is zero, which
includes the incompressibility condition (Dρ/Dt = ∂ρ/∂t + V · ∇ρ = 0). By combining
the incompressibility condition with (2.1a) and neglecting the viscosity, the governing
equations (2.1) reduce to

∂u
∂x

+ ∂v

∂y
= 0, (2.6a)

ρ
Du
Dt

= −∂p
∂x

− Eac cos(2kwx)
Zavg

∂Z
∂x

, (2.6b)

ρ
Dv

Dt
= −∂p

∂y
− Eac cos(2kwx)

Zavg

∂Z
∂y

, (2.6c)

where u, v are the x-component and y-component of the velocity field V . Since the body
force term is a function of impedance, the following impedance relation is required for the
closure:

DZ
Dt

= ∂Z
∂t

+ u
∂Z
∂x

+ v
∂Z
∂y

= 0. (2.6d)

Now, the flow fields are decomposed into an unperturbed zeroth-order stationary state
and infinitesimal perturbations as u = u0 + δu, v = v0 + δv, p = p0 + δp, ρ = ρ0 + δρ

and Z = Z0 + δZ. In this study, the variation of acoustic impedance is considered only
in the x-direction (figure 1a–c), Z0 = Z0(x). At the stationary state (u0 = v0 = 0), the
unperturbed zeroth-order equations become ∂p0/∂x = −(Eac cos(2kwx)/zavg)(∂Z0/∂x)
from (2.6b), ∂p0/∂y = 0 from (2.6c) and ∂Z0/∂t = 0 from (2.6d). Using the above
zeroth-order relations and neglecting the second-order terms in (2.6), the first-order
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perturbation equations governing the stability become

∂δu
∂x

+ ∂δv

∂y
= 0, (2.7a)

ρ0
∂δu
∂t

= −∂δp
∂x

− Eac cos(2kwx)
Zavg

∂δZ
∂x

, (2.7b)

ρ0
∂δv

∂t
= −∂δp

∂y
− Eac cos(2kwx)

Zavg

∂δZ
∂y

, (2.7c)

∂(δZ)

∂t
= −δu

∂Z0

∂x
. (2.7d)

Analysing the disturbances into normal modes, the amplitude of the disturbances δu, δv,
δρ, δp and δz takes the following form:

A(x, y, t) = Â(x) exp(ikyy + nt), (2.8)

where ky is the wavenumber considered along the y-direction. Applying the above
amplitude relations in the form of (2.8) to (2.7),

∂δ̂u
∂x

+ ikyδ̂v = 0, (2.9a)

ρ0nδ̂u = −∂δ̂p
∂x

− Eac cos (2kwx)
Zavg

∂δ̂Z
∂x

, (2.9b)

ρ0nδ̂v = −ikyδ̂p − iky
Eac cos (2kwx)

Zavg
δ̂Z, (2.9c)

nδ̂Z = −δ̂u
∂Z0

∂x
. (2.9d)

The partial notation is dropped since the only derivatives in (2.9) are with respect to the
x coordinate. Multiplying by iky throughout (2.9c) and combining with (2.9a) and (2.9d),
we obtain

δ̂p = −ρ0
n

ky
2

dδ̂u
dx

+ Eac
cos(2kwx)

Zavg

δ̂u
n

dZ0

dx
. (2.10)

Substituting (2.9d) and (2.10) into (2.9b) results in

d
dx

(
ρ0

dδ̂u
dx

)
− ρ0k2

y δ̂u = −Eac
2kwδ̂u
Zavg

k2
y

n2
dZ0

dx
sin(2kwx). (2.11)

Considering two uniform fluids of different impedance ZA and ZB separated by interfaces
positioned at xs,

Z0 = ZA + (ZB − ZA)H(x − xs), (2.12a)

dZ0

dx
= (ZB − ZA)δ(x − xs), (2.12b)

where H(x − xs) is the Heaviside step function at x = xs and δ(x − xs) is Dirac’s
δ-function at x = xs. Substituting (2.12b) into (2.11),

d
dx

(
ρ0

dδ̂u
dx

)
− ρ0k2

y δ̂u = −Eac
2kwδ̂u
Zavg

k2
y

n2 sin(2kwx)(ZB − ZA)δ(x − xs). (2.13)
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Stability of inhomogeneous fluids under acoustic fields

Equation (2.13) is the governing differential equation for the stability of inhomogeneous
fluids (without interfacial tension). For a uniform region on either side of the interface(s)
where there are no discontinuities in the impedance, the governing equation (2.13) reduces
to

d2δ̂u

dx2 − k2
y δ̂u = 0. (2.14)

The solution of (2.14) is of the form δ̂u = C1 exp(ky(x − xs)) + C2 exp(−ky(x − xs)),
where C1, C2 are constants. Since δ̂u must vanish at the boundaries, we can write the
solution as

δ̂uB = C exp(ky(x − xs)) (x < xs), (2.15a)

δ̂uA = C exp(−ky(x − xs)) (x > xs), (2.15b)

where the constant C in (2.15) is chosen to ensure continuity in velocity across the
interfaces. For the solution at the interface (x = xs), we integrate (2.13) along infinitesimal
distance (dx ≈ 0), the second term in the left-hand side of the equation is zero and the
remaining terms are

Δ

(
ρ0

dδ̂us

dx

)
= −Eac

2kwδ̂us

Zavg

k2
y

n2 (ZB − ZA)

∫
(sin(2kwx)δ(x − xs)) dx, (2.16)

where δ̂us is the value of δ̂u at x = xs. Using (2.15) and the Dirac delta identity∫
f (x)δ(x − a) dx = f (a) to solve for eigenvalue n in (2.16),

ρA(−kyδ̂us) − ρB(kyδ̂us) = −Eac
2kwδ̂us

Zavg

k2
y

n2 (ZB − ZA) sin(2kwxs), (2.17)

where ρA and ρB indicate the densities of fluids A and B. Rearranging (2.17), the
characteristic value n for the stability problem becomes

n =
√

ky

ρA + ρB
φEac(ZB − ZA) sin(2kwxs), (2.18)

where φ = 2kw/Zavg. From the above characteristic value n, the slow time scale t ∼ 1/n ∼
1 ms (as kw, ky ∼ O(104), Eac ∼ O(102), ρ ∼ O(103), c ∼ O(103), ω ∼ O(106) and Z ∼
O(106)), which is much greater than the fast time scale acoustic fields tf ∼ 1/ω ∼ 0.1 μs.

The characteristic equation (2.18) establishes the acoustic stability criterion when
inhomogeneous fluids (without interfacial tension) in a microchannel are subjected to a
standing acoustic wave. If the eigenvalue n is imaginary in (2.18), then the configuration
is in a stable equilibrium and the configuration is in an unstable equilibrium when
the eigenvalue n is real. For a standing acoustic half-wave, in (2.18), the values
of ky/(ρB + ρA), φ and Eac are always positive. Thus, the sign of ZB − ZA (initial
configuration of the fluids) and sin(2kwxs) (relative location of the interface with respect
to the standing acoustic wave) decide the nature of the eigenvalue in (2.18). Here, ZB − ZA
is positive when high-impedance fluid is present to the right of the interface and negative
when high-impedance fluid is present to the left of the interface. Additionally, sin(2kwxs)
has a negative value to the left of the node (xs is negative), a positive value to the right of
the node (xs is positive) and zero when the interface coincides with the node (centre of the
microchannel) or anti-node (sides of the microchannel) (xs = 0).
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Figure 2. Different inhomogeneous fluid configurations commonly used in microfluidics and their equilibrium
nature. (a) Single interface configurations; (b) double interface configurations. Equations (2.18) and (2.21) are
used to calculate n for fluids without interfacial tension and with interfacial tension.

As per the above arguments, the inhomogeneous system in figure 1(a) is in an
unstable equilibrium as eigenvalue n is real, and the system in figure 1(b) is in a stable
equilibrium as eigenvalue n is imaginary. It can be concluded from the above discussion
and figures 2(a-i) and 2(a-ii) that a system is said to be acoustically stable (unstable) if
the initial configuration of the fluids is in such a way that the low (high) impedance fluid
is present at the anti-node(s) and the high (low) impedance fluid is present at the node(s).
This conclusion is consistent with the demonstration of acoustic relocation of fluids within
a microchannel by Deshmukh et al. (2014). For the case where the interface coincides with
the node, sin(2kwxs) = 0. Thus, the system is in a neutral equilibrium (n = 0) as shown in
figures 1(c) and 2(a-iii). The above analysis can be easily extended to an inhomogeneous
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system consisting of multiple interfaces. In this case, the eigenvalues evaluated at the
fluid interfaces govern the nature of the system. Figure 2(b) shows the stability of two
interface systems that are widely used in acoustofluidic applications (Augustsson et al.
2016; Karthick & Sen 2018; Nath & Sen 2019; Wu et al. 2019; Rufo et al. 2022). It can
be seen from figure 2(b-i) that when high impedance fluid is at the sides (anti-nodes), the
eigenvalue at both the interfaces (IF1 and IF2) is real and hence the system is in unstable
equilibrium. The system is in stable equilibrium in figure 2(b-ii), as the eigenvalue at both
interfaces is imaginary.

2.2. Stability analysis of inhomogeneous fluids in the presence of interfacial tension
Proceeding to solve for immiscible fluids, the effect of surface tension must be accounted.
The discontinuity in impedance occurring in the interfaces (xs) is modelled by including
the interfacial tension effects in the x momentum equation (2.9b) as (Chandrasekhar 1961)

ρ0nδ̂u = −∂δ̂p
∂x

− Eac cos (2kwx)
Zavg

∂δ̂Z
∂x

− k2
y

∑
s

T δ̂xsδ(x − xs), (2.19)

where T is the interfacial tension and δ̂xs denotes the perturbation of the interfaces,
and (d/dt)δ̂xs = δ̂us =⇒ δ̂xs = δ̂us/n. The governing differential equation for stability
between inhomogeneous fluids with interfacial tension is obtained similar to the case
without interfacial tension, as in § 2.1,

d
dx

(
ρ0

dδ̂u
dx

)
− ρ0k2

y δ̂u = −Eac
2kwδ̂u
Zavg

k2
y

n2 sin(2kwx)(ZB − ZA)δ(x − xs)

+ k2
y

n2

∑
s

k2
y
(
T δ̂us

)
δ(x − xs). (2.20)

Integrating (2.20) across an infinitesimal distance (dx ≈ 0) and solving for the
characteristic value n,

n =
√

ky

ρA + ρB

(
φEac(ZB − ZA) sin(2kwxs) − k2

yT
)
. (2.21)

From the above characteristic equation for n, the slow time scale t is (∼ 1/n ∼ 1 ms,
where T ∼ O(10−3)) is much greater than the fast time scale acoustic fields (tf ∼ 0.1 μs).
Equation (2.21) establishes the acoustic stability criterion when fluids with interfacial
tension are subjected to a standing acoustic wave. It can be seen from (2.21) that the
interfacial tension (T) and wavenumber of the perturbation (ky) play a role in the stability
of immiscible fluids.

In the presence of interfacial tension (T > 0), the fluid system shown in figure 1(b)
is always stable, as the negative sign of (ZB − ZA) sin(2kwxs) results in an imaginary
eigenvalue n in (2.21). However, for the fluid system shown in figure 1(a), the sign of
(ZB − ZA) sin(2kwxs) is positive in (2.21). Thus, the system is conditionally stable, and
the stability is determined by the relative magnitudes of φEac(ZB − ZA) sin(2kwxs) and
k2

yT . The fluid system in figure 1(a) becomes unstable (n is real) if the acoustic force
density Frl (φEac(ZB − ZA) sin(2kwxs)) dominates (or is greater than) the interfacial force
density Fint (k2

yT) and becomes stable (n is imaginary) if the interfacial force density
dominates the acoustic force density. For the case where the interface coincides with the
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node (sin(2kwxs) = 0 and eigenvalue n is imaginary), the system is in a stable equilibrium,
as shown in figures 1(c) and 2(a-iii).

Now, for a conditionally stable configuration, we proceed to find the minimum energy
density required to relocate the fluid systems in figures 1(a) and 2(b-i) with interfacial
tension (T > 0). Since the interface height, h, is finite, this leads to the quantization of the
possible modes ky = khm = mπ/h. The minimum (critical) acoustic energy density (Ecr)
required to relocate the fluid system is decided by the first conceivable mode, kh1 = kh =
π/h, and the critical acoustic energy density is obtained by limiting the eigenvalue n to
zero in (2.21). Thus,

Ecr = k2
hTZavg

sin(2kwxs)2kw(ZB − ZA)
. (2.22)

If the applied energy density Eac is less than the critical energy density Ecr (Eac < Ecr),
the interfacial tension succeeds in stabilizing a potentially unstable configuration. The
same system becomes unstable and eventually relocates to a stable configuration when
Eac > Ecr, which qualitatively agrees with the recent experiments by Hemachandran et al.
(2019). The above discussions on the equilibrium nature of different inhomogeneous fluid
configurations (with and without interfacial tension) are clearly summarized in figure 2.

3. Numerical results and discussion

The numerical framework employed here is similar to the previous work (Rajendran et al.
2022). At first, we study the stability and relocation using the acoustic relocation force f rl
in (2.4) where the acoustic energy density is assumed to be constant. In addition to this, we
extend the numerical analysis using the generalized acoustic body force f ac in (2.2) where
the first-order pressure and velocity vary during relocation (thus Eac is time-dependent)
(Rajendran et al. 2022).

The numerical analysis is carried out on a two-dimensional fluid domain of height h =
160 μm and width w = 360 μm in COMSOL Multiphysics 6.0. Along with the laminar
flow equations, the discontinuous interface used in the theoretical analysis is modelled
as sharp but continuous using phase field equations. For this study, the fluids mineral
oil (Z = 1.23 MPa s m−1) and silicone oil (Z = 0.961 MPa s m−1) are used. A mesh
refinement procedure, similar to those employed by Rajendran et al. (2022), is used to
confirm that the numerical findings are not affected by grid size. Three different fluid
configurations are considered for the study, namely:

(i) High–Low–High (HLH) configuration where the high impedance fluid is present
at the anti-nodes (sides) and the low impedance fluid is present at the node (centre)
as shown in figure 3(a);

(ii) Low–High–Low (LHL) configuration where the low impedance fluid is present at
the anti-nodes (sides) and the high impedance fluid is present at the node (centre)
as shown in figure 3(b);

(iii) High–Low (HL) configuration where the high impedance fluid occupies the
domain to the left of the centre of the microchannel and the low impedance fluid
occupies the domain to the right of the centre of the microchannel as shown in
figure 3(c).

For the sake of brevity, the configurations shown in figures 2(a-i) (or 1) and 2(a-ii) are
not discussed explicitly as their stability and relocation are captured by the HLH and LHL
configurations. The Low–High (LH) configuration is also not discussed, as it would be
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t = 0 s
Without

interfacial tension

(T = 0)

t = 0.15 s t = 2 s

t = 2 s t = 6 s

t = 1.3 s t = 6 s

t = 2 st = 0 s t = 4 s

t = 2 s t = 4 s

t = 2 s

t = 0 s

t = 4 s

Eac = 80 J m–3, T = 0 mN m–1 (Eac > 0)

Anti-Node Node Anti-Node

(Stable)

(Unstable)

with interfacial tension

(T > 0) Eac = 80 J m–3, Ecr = 88.78 J m–3, T = 1 mN m–1 (Eac < Ecr)

Eac = 120 J m–3, Ecr = 88.78 J m–3, T = 1 mN m–1 (Eac> Ecr)

Frl > Fint 

Frl < Fint 

For any interfacial

tension (T > 0)

(Stable)

(Stable)

(Neutral)

Eac = 120 J m–3, T ≥ 0 mN m–1 (Eac> 0)

Without interfacial

tension (T = 0)

With interfacial

tension (T > 0)

0.961 1.100 1.230

Eac = 120 J m–3, T = 0 mN m–1 (Eac > 0)

Eac = 120 J m–3, T = 1 mN m–1 (Eac > 0)

Z (MPa s m–1)
Mineral oil (high impedance fluid)

Silicone oil (low impedance fluid)

(a)

(b)

(c)

Figure 3. Stabilization and relocation of inhomogeneous fluids using simplified body force (2.4) with
constant Eac: (a) HLH configuration; (b) LHL configuration; (c) HL configuration.

analogous to the HL configuration. For all the analyses, the initial interface is perturbed
and modelled as xs( y) = A0 cos((2π/h)y + h/2), where A0 = 0.01h is the perturbation
amplitude.
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3.1. Numerical analysis of stability using relocation body force frl and steady acoustic
energy density Eac

For the numerical simulations shown in figure 3, we employ (2.4) as body force and
assume Eac to be constant with respect to time, throughout the relocation process.
The boundary condition for the analysis is no slip at the walls and the pressure is
constrained at a point (bottom left corner of the channel). In the absence of interfacial
tension (T = 0 mN m−1), it is observed that for any Eac > 0, the HLH configuration
undergoes relocation to a stable LHL configuration as in figure 3(a) (the simulation
is shown for Eac = 80 J m−3). In this case, the magnitude of Eac only influences the
time scale of the relocation process by competing with the viscosity. However, in the
presence of interfacial tension, T = 1 mN m−1, the HLH fluid configuration remained
stable for all energy densities below 88 J m−3, and relocation is observed for all energy
densities above 89 J m−3. These simulations are in close agreement with the critical
acoustic energy density Ecr = 88.78 J m−3 predicted by (2.22) for the mineral–silicone
oil combination. Simulation results of other fluid combinations shown in figure 5 also
agree with (2.22). When the applied Eac is just above Ecr, the fluids take a much longer
time to relocate. Thus, for convenience, the simulation is shown for Eac = 120 J m−3

in figure 3(a).
For LHL configuration with and without interfacial tension (T ≥ 0), for any Eac > 0,

the relocation of fluid is not observed, and the system remained stable, as shown in
figure 3(b) (the simulation is shown for Eac = 120 J m−3). In the HL configuration, the
node of the standing acoustic half-wave coincides with the fluid–fluid interface. Here, for
fluids with interfacial tension, relocation is not observed for any Eac > 0 and the fluid
system remained stable (figure 3c). However, for fluids without interfacial tension, the
HL configuration is observed to be in neutral equilibrium (figure 3c). These simulation
results of unstable, stable and neutral equilibrium of inhomogeneous fluids (figure 3)
are in agreement with the stability criteria (from (2.18) and (2.21)) that we established
theoretically in § 2.

The applicability of the steady Eac assumption on the relocation of larger impedance
difference fluids is discussed below. The resonant frequency changes as the fluid
distribution varies inside the channel during the relocation process. Thus, when the
system is actuated at a single frequency, Eac is stronger for some resonant intermediate
configurations and drops drastically for most of the non-resonant intermediate
configurations. In our previous work (Jayakumar & Subramani 2022), this problem is
overcome using the frequency sweep between the resonant frequencies of stable and
unstable configurations. In this way, Eac does not vary significantly and can be maintained
approximately constant during the relocation process. This clearly demonstrates the
relevance of the steady Eac assumption in the stability analysis.

3.2. Numerical analysis of stability using generalized body force fac

Thus far, in the theoretical stability analysis (§ 2) as well as in the numerical simulations
(§ 3.1), a simplified equation for f rl (2.4) is employed as a body force with the assumption
of constant Eac (the amplitudes pa and va of first-order fields p1 and v1 do not vary
during relocation). In this section, the generalized acoustic body force f ac in (2.2) is
employed and the first-order fields required to calculate the above f ac are obtained from
the wave equations (frequency domain – see Appendix A) by actuating the channel
walls at a frequency ν with a wall displacement d0. There are two reasons for using a
generalized acoustic body force f ac. (1) To show the relocation predicted by f rl and f ac
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is approximately the same. When we use much simpler f rl instead of the complex f ac, the
first-order field equations are not required to be solved which will significantly reduce the
computation time for simulation of relocation of inhomogeneous fluids. (2) To explain the
previous microchannel experiments in immiscible fluid relocation (Hemachandran et al.
2019).

For one-dimensional (1-D) standing half-wave simulations, the sidewalls are actuated
in phase at a displacement d0 at a frequency ν. In laminar flow equations, the boundary
conditions used are no-slip at all walls, and the pressure is constrained at a point (bottom
left corner of the channel). To disregard the effect of streaming, the first-order acoustic
fields are allowed to slip in the frequency domain.

Figure 6(a) shows the HLH configuration subjected to a 1-D standing half-wave by
actuating sidewalls at a displacement d0 of 0.21 nm and a frequency ν of 1.73 MHz.
In this case, it is observed that the resulting pressure amplitude Pa of 0.67 MPa (Eac =
85.58 J m−3) could not relocate the fluids in the HLH configuration and thus remains
stable. However, when the displacement is increased to 0.22 nm, the resulting pressure
amplitude of Pa = 0.69 MPa (Eac = 86.22 J m−3) could relocate the HLH configuration
to a stable equilibrium, as shown in figure 6(b). The value of Ecr (86.22 J m−3) obtained
through a generalized body force f ac (where the variation of pressure field in each fluid is
taken into account) is in close agreement with Ecr (88.78 J m−3) obtained by the simplified
relocation force f rl (where the assumptions of homogeneous p1, v1 and steady Eac are
involved). From the above discussion, it is evident that for fluids with an impedance
difference as large as 24.91 % (mineral–silicone oil), the deviation in critical acoustic
energy density (Ecr) predicted by theoretical stability analysis and generalized body force
f ac is found to be only 3.22 %. Thus, the assumption of homogeneous p1 and v1 and steady
Eac employed in theoretical analysis holds.

In the case of a 1-D standing half-wave, when the interface of the fluid coincides with
the pressure node (xs = 0), for any Eac, relocation is not observed using both f ac and f rl
(figures 3c and 4c) as predicted by the stability criteria in (2.21). However, Hemachandran
et al. (2019) through experiments demonstrated the relocation of fluids irrespective of
the location of the vertical interface xs. In their experiments, the frequency employed
(2.1 MHz) is far from the 1-D resonant half-wave frequency (ν = 1.6 MHz ≈ cavg/2w).
In our previous work (Rajendran et al. 2022), we have shown that the above relocation is
due to standing two-dimensional (2-D) acoustic wave (frequency ν = 2.1 MHz between
cavg/2w and cavg/2h) as shown in figure 4(d). From figure 4(d) it is clear that the
pressure node is not vertical but inclined with respect to the fluid interface owing to
the 2-D actuation (all four walls are actuated at d0). The above 2-D relocation can be
clearly explained by the fact that if the fluid interface and node are not perpendicular
to each other, then ∇ × f rl /= 0. This implies that when a sufficient energy density
is applied, the fluid system in figure 4(d) will not be in equilibrium and relocation
begins without imposing any perturbations unlike the other relocation discussed in
this work.

3.3. Characterization of stable and unstable (relocation) regime
When the 1-D acoustic standing wave is imposed on fluids with interfacial tension, the
configurations (figures 1b, 2b-i and 3a) having high impedance fluid at the anti-node and
low impedance fluid at the node, become conditionally stable. From (2.21), it is evident
that the stability of the above inhomogeneous fluid configurations is governed by the ratio
of Frl and Fint, which is called the acoustic Bond number (Boa) similar to other acoustic

964 A23-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

37
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.371


V.K. Rajendran, S.P. Aravind Ram and K. Subramani

t = 0 s t = 3.35 s t = 3.5 s t = 5 s
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t = 0 s t = 0.02 s t = 0.15 s t = 2 s

t = 0 s t = 0.02 s t = 0.15 s t = 2 s

Anti-node Node Anti-node Mineral oil (high impedance fluid) Silicone oil (low impedance fluid)

v = 1.73

MHz

v = 1.73

MHz

v = 1.73

MHz

v = 2.1

MHz

Wall actuation

displacement d0
Z (MPa s m–1)

0.961 1.230

|p1|(MPa)
0 0.67

|p1|(MPa)
0 0.62

|p1|(MPa)
0 0.62

|p1|(MPa)
0 0.62

|p1|(MPa)
0 0.69

|p1|(MPa)
0 1.47

|p1|(MPa)
0 0.77

|p1|(MPa)
0 0.60

|p1|(MPa)
0 3.54

|p1|(MPa)
0 3.54

|p1|(MPa)
0 3.54

|p1|(MPa)
0 3.54

|p1|(MPa)
0 1.37

|p1|(MPa)
0 1.39

|p1|(MPa)
0 1.17

|p1|(MPa)
0 1.13

(a)

(b)

(c)

(d )

Figure 4. Stabilization and relocation of inhomogeneous fluids using generalized body force f ac in (2.2) along
with the first-order pressure field (|p1| = √

real( p

1p1)) for different fluid configurations. One-dimensional

(1-D) actuation is imposed on configurations shown in (a–c), and two-dimensional (2-D) actuation is
imposed on configurations shown in (d). (a) HLH configuration remains stable up to Eac = 85.58 J m−3

(pa = 0.67 MPa, d0 = 0.21 nm, ν = 1.73 MHz). (b) HLH configuration undergoes relocation above Eac =
86.22 J m−3 (pa = 0.69 MPa, d0 = 0.22 nm, ν = 1.73 MHz). Significant variation in |p1| during relocation is
observed. (c) HL configuration where the fluid interface coincides with the node remains in stable equilibrium
even at Eac = 2334 J m−3 (pa = 3.54 MPa, d0 = 20 nm, ν = 1.73 MHz). (d) Relocation of HL configuration
due to 2-D wall actuation ( pa = 1.37 MPa, d0 = 20 nm, ν = 2.1 MHz).
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Relocation regime

(n2 > 0)

F rl
 (
µ

N
 m

–
3
)

Non-relocation regime

(n2 < 0)

Stable

Unstable (relocation)
PEG-Dextran (T = 0.18 mN m–1)

Mineral–Silicone (T = 1 mN m–1)

Silicone–Olive (T = 1.2 mN m–1)

Silicone–Ethanol (T = 1.6 mN m–1)

Water–Mineral (T = 3.2 mN m–1)

n = 0

Bo a,cr
 =

 1

0.06

0.06 0.07

1.2

Fint (µN m–3)

Figure 5. Characterization of relocation and non-relocation regimes of immiscible HLH fluid configuration
using acoustic Bond number Boa and characteristic value n. The blue and grey colours indicate the theoretically
predicted relocation regime (n2 > 0 or Boa > 1: unstable) and non-relocation regime (n2 < 0 or Boa < 1:
stable), respectively. The line separating these two regimes indicates a neutral configuration (n = 0 or Boa = 1).
The data points are obtained through numerical simulations where the open circle indicates relocation and the
cross mark indicates non-relocation.

dimensionless numbers (Mitas, Manor & Thiele 2021; Muñoz et al. 2021):

Boa = Frl

Fint
= φEac�Z sin (2kwxs)

k2
hT

. (3.1)

The Boa that separates the stable and unstable region is called the critical acoustic Bond
number Boa,cr. From (2.21),

Boa,cr = 1. (3.2)

For Boa > Boa,cr, the above configurations become unstable (relocation occurs) and for
Boa < Boa,cr, the configurations remain stable. Figure 5 shows the simulation results
of different immiscible fluid combinations. The relocation and non-relocation regimes
predicted by the simulations are in line with (3.2). It must also be noted that the fluids
with higher interfacial tension require a higher acoustic force for relocation.

3.4. Effect of the height of the channel on stability
The height of the channel h plays a critical role in the stability of immiscible fluids. For
a given Eac, the increase in h weakens the stabilizing effect of the interfacial tension
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0.961
Z (MPa s m–1)

1.100 1.230

t = 0 s t = 1.3 s t = 1.6 s t = 2.5 s

Mineral oil (high impedance fluid)

Silicone oil (low impedance fluid)

(b)

(a)

Figure 6. Effect of channel height on stability: (a) channel height h = 80 μm – no relocation is observed
as applied energy density (Eac = 120 J m−3) is less than the critical energy density (Ecr = 384 J m−3);
(b) channel height h = 160 μm – relocation is observed as applied energy density (Eac = 120J m−3) is high
than the critical energy density (Ecr = 88.78 J m−3). This demonstrates that the interfacial tension force
weakens as the height of the channel increases and thus a higher height of the channel results in a lower
Eac required for relocation as (Ecr ∝ 1/h2).

force, as analysed theoretically in § 2. From (2.22), it can be inferred that the critical
acoustic energy density is inversely proportional to the square of the channel height
(Ecr ∝ 1/h2). In figure 6(a), for a microchannel of height h = 80 μm consisting of
mineral–silicone oil with an interfacial tension T = 1 mN m−1, the fluid system is stable
as the applied Eac (120 J m−3) is lower than the critical energy density (Ecr = 384 J m−3).
However, for h = 160 μm and keeping the remaining parameters the same, fluid relocation
is observed as the applied Eac (120 J m−3) is higher than the critical energy density
(Ecr = 88.78 J m−3).

The above discussion on the effect of channel height on acoustic relocation has high
relevance in practical applications. To relocate fluids with a high interfacial tension of
(O(101mN m−1–102 mN m−1)), in commonly used acoustofluidic channels of height
(depth) ranging from 100 μm to 200 μm, the required Eac becomes ≈O(104) J m−3,
which is very high compared with the Eac employed in typical acoustofluidic experiments
(O(102 J m−3–103 J m−3)). Equation (2.22) tells that the above problem can be solved by
increasing the channel height as Eac ∝ 1/h2. Hence, the height (depth) of the channel is
a crucial aspect to be considered during the fabrication of an acoustofluidic microchannel
for handling high interfacial tension fluids.

4. Conclusion

We have theoretically established the stability criteria for inhomogeneous fluids
subjected to standing acoustic fields, which is consistent with the previous experimental
investigations on miscible (Deshmukh et al. 2014; Karlsen et al. 2016) and immiscible
fluids (Hemachandran et al. 2019). Numerical simulations using a simplified and
generalized acoustic body force were carried out to understand the various parameters that
contribute towards the stability and relocation of fluids. However, the effect of viscous
boundary layer-driven acoustic streaming on relocation is neglected in this work, which
will be addressed in an upcoming paper. The insights gained from this study can have
potential applications in inhomogeneous fluid handling and particle manipulation in the
field of acoustofluidics.
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Appendix A. First-order fields in the frequency domain

The first-order fields (fast time scale) on the frequency domain are written as

−iωρ1 = ∇ · (ρv1), (A1a)

−iωρv1 = −∇p1 + η∇2v1 + βη∇(∇ · v1), (A1b)

−iωρκp1 = −iωρ1 + v1 · ∇ρ. (A1c)

Also, combining (A1a) and (A1c), we get

− iωκp1 = −∇ · v1, (A1d)

where p1 is the first-order pressure field, ρ1 refers to first-order density field, v1 is
the first-order velocity field, ρ is the slow time scale density, κ is the slow time scale
compressibility, ω is the angular frequency, η is the dynamic viscosity of the fluid, ξ is
the volume fluid viscosity and β = (ξ/η) + (1/3). The detailed analysis of first-order and
second-order fields acting on inhomogeneous fluids is given by Rajendran et al. (2022).
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